函数的图像和性质(学生版)
- 格式:doc
- 大小:184.49 KB
- 文档页数:4
志之所趋,无远弗届第六讲 三讲函数的图像和性质一.三角运算1.设a ∈R ,b ∈[0,2π).若对任意实数x 都有sin ⎝⎛⎭⎫3x -π3=sin(ax +b ),则满足条件的有序实数对 (a ,b )的对数为 .2.已知函数f (x )=log a (x 2+1+x )+1a x-1+32(a >0,a ≠1),若f (sin(π6-α))=13(α≠k π+π6,k ∈Z ),则f (cos(α-2π3))= .341.将函数23则4则f5意的x ,存在x 1,x 2使得f (x 1)≤f (x )≤f (x 2)成立,且|x 1-x 2|的最小值为π4,则f ⎝⎛⎭⎫π4的值为 .6.函数f (x )=sin ωx (ω>0)的部分图象如图所示,点A ,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则f ⎝⎛⎭⎫12= .三.三角方程及三角不等式 1.函数y =sin(2x -π3)的定义域为 .志之所趋,无远弗届2.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是 .3.若直线x =a ·π2(│a │≤1)与函数y =tan(2x +π4)的图像不相交,则a = .四.图像的性质1.已知函数f (x )=2sin(ωx +π4)(ω>0)的图像在区间[0,1]上恰有3个最高点,则ω的取值范围是 .2.已知函数f (x )=2sin(ωx -π3)(ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为 .3ω的取45(1(26(1(2g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.。
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
第三部分函数专题09二次函数的图象与性质(6大考点)核心考点核心考点一二次函数的图象与性质核心考点二与二次函数图象有关的判断核心考点三与系数a、b、c有关的判断核心考点四二次函数与一元二次方程的关系核心考点五二次函数图象与性质综合应用核心考点六二次函数图象的变换新题速递核心考点一二次函数的图象与性质(2022·浙江宁波·统考中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.32m>C.1m<D.322m<<(2021·江苏常州·统考中考真题)已知二次函数2(1)y a x=-,当0x>时,y随x增大而增大,则实数a的取值范围是()A.a>B.1a>C.1a≠D.1a<(2022·江苏徐州·统考中考真题)若二次函数2=23y x x--的图象上有且只有三个点到x轴的距离等于m,则m的值为________.知识点:二次函数的概念及表达式1.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2.二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:()()12y a x x x x =--,其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.知识点:二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2b a 时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2b a 时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小【变式1】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式2】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式3】(2022·江苏盐城·滨海县第一初级中学校考三模)如图1,对于平面内的点A 、P ,如果将线段P A 绕点P 逆时针旋转90°得到线段PB ,就称点B 是点A 关于点P 的“放垂点”.如图2,已知点()4,0A ,点P 是y 轴上一点,点B 是点A 关于点P 的“放垂点”,连接AB 、OB ,则OB 的最小值是______.【变式4】(2022·吉林长春·校考模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()0,2A ,点()2,0C ,则互异二次函数()2y x m m =--与正方形OABC 有公共点时m 的最大值是__________.【变式5】(2021·湖北随州·一模)如图,抛物线2(0,0)y ax k a k =+><与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且14PC OC =.过点P 作DE AB ∥,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示)(2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若90ODC ∠=︒,4k =-,求a 的值.核心考点二与二次函数图象有关的判断(2021·广西河池·统考中考真题)点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >(2021·湖南娄底·统考中考真题)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是()A .0104x <≤B .01142x <≤C .01324x <≤D .0314x <≤(2020·广西贵港·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.知识点、抛物线的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.知识点、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是,(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★知识点、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121【变式1】(2022·四川泸州·校考模拟预测)二次函数2y ax bx c =++(0a ≠)的自变量x 与函数y 的部分对应值如下表:x…1-01234…2y ax bx c =++…8301-03…则这个函数图像的顶点坐标是()A .()2,1-B .()12-,C .()1,8-D .()4,3【变式2】(2022·山东日照·校考一模)设()12,A y -,()21,B y ,()32,C y 是抛物线()212y x =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【变式3】(2021·陕西西安·校考模拟预测)在同一坐标系中,二次函数211y a x =,222y a x =,233y a x =的图象如图,则1a ,2a ,3a 的大小关系为______.(用“>”连接)【变式4】(2022·广西·统考二模)如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则a 的取值范围是______.【变式5】(2022·河南南阳·统考三模)在平面直角坐标系中,已知抛物线242y ax ax =-+.(1)抛物线的对称轴为直线_______,抛物线与y 轴的交点坐标为_______;(2)若当x 满足15x ≤≤时,y 的最小值为6-,求此时y 的最大值.核心考点三与系数a、b、c 有关的判断(2022·湖北黄石·统考中考真题)已知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线=1x -,有以下结论:①<0abc ;②若t 为任意实数,则有2a bt at b -≤+;③当图象经过点(1,3)时,方程230ax bx c ++-=的两根为1x ,2x (12x x <),则1230x x +=,其中,正确结论的个数是()A .0B .1C .2D .3(2022·山东日照·统考中考真题)已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为32x =,且经过点(-1,0).下列结论:①3a +b =0;②若点11,2y ⎛⎫⎪⎝⎭,(3,y 2)是抛物线上的两点,则y 1<y 2;③10b -3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有()A .1个B .2个C .3个D .4个(2021·贵州遵义·统考中考真题)抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)经过(0,0),(4,0)两点.则下列四个结论正确的有___(填写序号).①4a +b =0;②5a +3b +2c >0;③若该抛物线y =ax 2+bx +c 与直线y =﹣3有交点,则a 的取值范围是a 34≥;④对于a 的每一个确定值,如果一元二次方程ax 2+bx +c ﹣t =0(t 为常数,t ≤0)的根为整数,则t 的值只有3个.知识点、二次函数图象的特征与a,b,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,h x =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。
1.函数的概念:在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 2.函数的三种表示方法:(1)列表法:把自变量x 的一系列值和函数y 的对应值列成表格来表示函数的方法. (2)解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. (3)图象法:用图象直观、形象地表示一个函数的方法. 3.函数自变量的取值范围的确定:函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式:自变量的取值范围是任意实数.(2)分式:自变量的取值范围是使分母不为零的任意实数. (3)根式:当根指数为偶数时,被开方数为非负数. (4)零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类. 4.函数图像:(1)函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象.一次函数图像及性质知识回顾(2)函数图象的画法:①列表; ②描点; ③连线. (3)函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的解析式,如果满足函数解析式,这个点就在函数的图象上,否则就不在这个函数的图象上.一、一次函数的概念一般地,形如(,是常数,)的函数,叫做一次函数.(1)一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.(2)当,时,是正比例函数,正比例函数是一次函数的特例,一次函数包括正比例函数.二、一次函数的图象(1)一次函数(,,为常数)的图象是一条直线.(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取,两点; ②如果这个函数是一般的一次函数(),通常取,,即直线与两坐标轴的交点.(3)由函数图象的意义知,满足函数关系式的点在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做直线:,有时直接称为直线. 三、一次函数的性质1.一次函数图象的位置y kx b =+k b 0k ≠y kx b =+0b =0k ≠y kx =y kx b =+0k ≠k b ()00,()1k ,0b ≠()0b ,0b k ⎛⎫- ⎪⎝⎭,y kx b =+()x y ,l l ()x y ,y kx b =+l y kx b =+y kx b =+l y kx b =+y kx b =+知识讲解一次 函数,符号0b =图象性质 随的增大而增大 随的增大而减小在一次函数中:(1)当时,其图象一定经过一、三象限;当时,其图象一定经过二、四象限. (2)当时,图象与轴交点在轴上方,所以其图象一定经过一、二象限;当时,图象与轴交点在轴下方,所以其图象一定经过三、四象限. 当0b =时,图象过原点.反之,由一次函数的图象的位置也可以确定其系数、的符号.2.一次函数图象的增减性 在一次函数中:(1)当时,一次函数的图象从左到右上升,随的增大而增大; (2)当时,一次函数的图象从左到右下降,随的增大而减小.【例1】在下列等式中,y 是x 的函数的有( )223201x y x y -=-=,,||||y x y x x y ===,,.A .1个B .2个C .3个D .4个【例2】图中,表示y 是x 的函数图象是( )()0k kx b k =+≠k b 0k >0k <0b >0b <0b =0b >0b <Ox yyx OOx yyx OOx yyxOy x y x y kx b =+0k >0k <0b >y x 0b <y x y kx b =+k b y kx b =+0k >y kx b =+y x 0k <y kx b =+y x 同步练习【例3】已知346=0x y +-,用含x 的代数式表示y 为 ;用含y 的代数式表示x 为 .【例4】某商店进一批货,每件6元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,那么y与x 的函数关系式是______________,自变量x 的取值范围是______________.【变式练习】电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次 通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式是________________ .【例5】已知函数223y x =+,当11x =-时,相对应的函数值1y =______;当52-=x 时,相对应的函数值2y =______; 当3x m =时,相对应的函数值3y =______.反过来,当11y =时,自变量x =______.【例6】已知,6xy =根据表中 自变量x 的值,写出相对应的函数值. x … 4-3-2-1-21-0 21 1234… y …【例7】求出下列函数中自变量x 的取值范围.(1)52+-=x x y (2)324-=x xy (3)32+=x y(4)12-=x x y (5)321x y -= (6)23++=x x y(7)10+=x x y (8)|2|23-+=x x y (9)x x y 2332-+-=【例8】写出等腰三角形中一底角的度数y 与顶角的度数x 之间的函数关系.【变式练习】已知:等腰三角形的周长为50cm ,若设底边长为xcm ,腰长为ycm ,求y 与x 的函数解析式及自变量x 的取值范围.【变式练习】用40m 长的绳子围成矩形ABCD ,设AB xm =,矩形ABCD 的面积为2Sm ,(1)求S 与x 的函数解析式及x 的取值范围;(2)写出下面表中与x 相对应的S 的值: x (8)99.51010.51112…S…(3)猜一猜,当x 为何值时,S 的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积.同步课程˙一次函数图像及性质 【例9】2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S (千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )【变式练习】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行使情况的图像大致是( )【变式练习】如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为( )【例10】边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),则S 与t 的大致图象为( )OO O Ottt tSSSSDCBADCBAO O O O yyyyx xxx O O O O ttt tSSSSDCBABAO【变式练习】如图,在矩形ABCD 中,2AB =,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例11】如果 A B 、两人在一次百米赛跑中,路程S (米)与赛跑的时间t (秒)的关系如图所示,则下列说法中正确的是 ( )A .A 比B 先出发 B .A B 、两人的速度相同 C .A 先到达终点 D .B 比A 跑的路程多【变式练习】如下图左,甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距离A 地18km 的B 地,他们离出发地的距离S (km )和行驶时间t (h )之间的函数关系的图象如图所示.根据图中提供的信息,符合图象描述的说法是( )A .甲在行驶的过程中休息了一会B .乙在行驶的过程中没有追上甲C .乙比甲先到了B 地D .甲的行驶速度比乙的行驶速度大DCBAOOOOtttt SSSSDCBADCBA3311123131yyyyxxxO O O O tSO BA【变式练习】如上图右,某校八年级同学到距学校千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,、分别表示步行和骑车的同学前往目的地所走的路程(千米)与所用时间(分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发分钟B .步行的速度是千米/时C .骑车同学从出发到追上步行同学用了分钟D .骑车的同学和步行的同学同时达到目的地【例12】下列函数中,哪些是一次函数?哪些是正比例函数?(1) (2) (3)(4) (5) (6)【变式练习】下列函数中,是正比例函数的是( )A .2y x =B .x y 21=C .2y x =D .21y x =-【例13】若23y x b =+-是正比例函数,则的值是( )A .0B .23-C .23 D .【变式练习】已知,当m 取何值时,y 是x 的正比例函数?乙甲2.520.5O tS60545030y (千米)x (分钟)l2l1O 61l 2l y x 3062015x y +=-5xy =-21y x =--35x y =--()()212y x x x =---21x y -=b 32-2(1)1y m x m =-+-【变式练习】已知函数(为常数)是正比例函数,则_________.【例14】函数2y x =-的图象一定经过下列四个点中的( )A .点()12,B .点()21-,C .点1(1)2-, D .点1(1)2-,【变式练习】已知正比例函数(,为常数),经过点(24),,以下哪个点不在该正比例函数图图象上( )A .点(24)--,B .点(00),C .点(12),D .点(12)-,【例15】一次函数y x =-的图象平分( )A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限【例16】若直线y kx =经过点()53A -,,则k =______.如果这条直线上点A 的横坐标A x =13-,那么它的纵坐标A y =______.【例17】已知与x 成正比例,当时,,求与x 之间的函数关系式,并判断它是不是正比例函数.【变式练习】已知z m y =+,m 是常数,y 是x 的正比例函数,当2x =时,1z =;当3x =时,1z =-,求z 与x 的函数关系.【变式练习】已知与(m n ,为常数)成比例,试判断y 与x 成什么函数关系?1(2)k y k x -=-k k =y kx =0k ≠k 2y -3x =1y =y y m +x n +【例18】下面哪个正比例函数的图象经过一、三象限( )A .B .C .D .【变式练习】如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .B .C .D .【例19】已知一次函数(为常数)的图象经过一、二、三象限,求取值范围 .【变式练习】已知一次函数的图象如图所示,则的取值范围是__________.【例20】如果直线不经过第四象限,那么 (填“”、“”、“”).【变式练习】若一次函数2(1)12ky k x =-+-的图象不经过第一象限,则k 的取值范围是_______.【例21】一次函数21y x =--的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【变式练习】若,,则经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限()23y x =-()3.14πy x =-π22y x ⎛⎫=- ⎪⎝⎭()526y x =-y kx b =+y 00k b >>,00k b ><,00k b <>,00k b <<,(3)(2)y k x k =-+-k k (5)1y a x a =-+-a yxO y ax b =+ab 0≥≤=0ab >0bc <a ay x b c=-+【变式练习】直线1y kx b =+过第一、二、四象限,则直线2y bx k =-不经过第____象限.【例22】关于x 的一次函数21y kx k =++的图像可能正确的是( )【例23】函数y ax b =+和y bx a =+在同一坐标系中的可能是( )【变式练习】如图所示,直线l 1:y ax b =+和l 2:-y bx a =在同一坐标系中的图象大致是( )【例24】下列表示一次函数与正比例函数图象中,一 定不正确的是( )A BC D DCBAy yyyxxxxDCBAO O OO y yyyxxxxy mx n =-y mnx =(m n 、为常数,0mn ≠且)OxyOxyOxyOxy【例25】已知函数y kx b =+的函数图像如左图,则2y kx b =+的图像可能是( )【例26】已知一次函数,若随的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【例27】已知点都在直线上,则大小关系是( ) A . B .C .D .不能比较【变式练习】已知一次函数的图象过点()03,与()21,,则这个一次函数随的增大而 .【例28】已知一次函数()122y m x m =-+-,函数随的增大而减小,且其图像不经过第一象限,则m 的取值范围是___________.【例29】下列说法正确的是( )A .若一次函数()212y m x m =-++的图象与y 轴交点纵坐标是3,则1m =±B .若点()()111222P x y P x y ,、,在直线y kx b =+()0k <上,且12x x >,那么12y y >C .若直线y kx b =+经过点()()11A m B m -,,,,当1m <-时,该直线不经过第二象限D .直线y kx k =+必经过点()10-,【例30】一次函数321+-=x y 的图象与y 轴的交点坐标是______,与x 轴的交点坐标是______. 一般的,一次函数y kx b =+与y 轴的交点坐标是______,与x 轴的交点坐标是______.y kx k =+y x ()()1242y y -,,,122y x =-+12y y ,12y y >12y y =12y y <y x y x 11-1-1-1-1O O O DCBA1111yxO yyyyxxxx同步课程˙一次函数图像及性质【变式练习】一次函数21)2y m x m =-++(的图像与y 轴的交点坐标是3,则m 的值是_______.【例31】已知一次函数y ax b =+的图像经过点()01,,它与坐标轴围成的图形是等腰直角三角形,则a的值为_________.【例32】函数2y x =的图象与y 轴交于______,而函数23y x =-的图象与y 轴交于______点.因此,函数23y x =-的图象可以看作由直线2y x =向______平移______个单位长度而得到. 当0b >时,直线y kx b =+可由直线y kx =向________平移______而得到; 当0b <时,直线y kx b =+可由直线y kx =向________平移______而得到.【变式练习】(1)将直线向右平移2个单位所得的直线的解析式是______________.(2)直线向右平移3个单位,再向下平移2个单位,求所得到的直线的解析式.【习题1】正比例函数y kx =的图象是经过原点的一条( )A .射线B .双曲线C .线段D .直线【习题2】函数在________条件下,是的一次函数;在_________条件下,与成正比例函数.【习题3】已知是一次函数,求它的解析式.【习题4】已知函数)2()12(232+--=-n xm y m .(1)当m n 、为何值时,其图象是过原点的直线;2y x =22y x =+()2211m y m xmn -=-+y x y x 1(2)2m y m x m -=-++课后练习同步课程˙一次函数图像及性质(2)当m n 、为何值时,其图象是过()04,点的直线; (3)当m n 、为何值时,其图象是一条直线且y 随x 的增大而减小.【习题5】(1)如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,(2)已知一次函数的图象经过(,)和(,)两点,且,,则( )A .B .,C .,D .(3)已知一次函数,若随的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限(4)如图,一次函数的图象大致是( )【习题6】如图所示,在同一直角坐标系中,一次函数,,,的图像分别是,,,;那么,,,的大小关系是_________________.y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <y kx b =+1x 1y 2x 2y 12x x <12y y <0k >0k <0b >0k <0b <0k <y kx k =+y x 1y ax a=+DC B A OO O O yyyyxxxx 1y k x =2y k x =3y k x =4y k x =1l 2l 3l 4l 1k 2k 3k 4k同步课程˙一次函数图像及性质【习题7】将32y x =-先向左平移3个单位,在向上平移2个单位得到函数解析式为 ;将2433y x =-+先向下平移1个单位,在向右平移2个单位得到的函数解析式为 .【习题8】点()()P a b Q c d ,、,在一次函数5y x =+的函数图像上,则()()a c d b c d ---的值为______.O yxl 4l 3l 2l 1。
第37讲三次函数的图像与性质三次函数f(x)=ax3+bx2+cx+d(a≠0)具有丰富的性质,利用导数研究这些性质,其研究的过程与方法具有普遍性,一般性和有效性,可以迁移到其他函数的研究中.本专题主要研究三次函数的单调性,极值,最值,对称性等,并在研究的过程中体会数形结合,分类与整合,化归与转化等思想方法.1.已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R),设直线l1,l2分别是曲线y=f(x)的两条不同的切线,若函数f(x)为奇函数,且当x=1时f(x)有极小值为-4.①求a,b,c,d的值;②若直线l3亦与y=f(x)相切,且三条不同的直线l1,l2,l3交于点G(m,4),求实数m的取值范围.2.已知函数f(x)=x3-tx2+1,求证:对任意实数t,函数f(x)的图像总存在两条切线相互平行.3.已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.4.已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.5.已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。
第3讲(学生)一次函数的图象和性质讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第3讲(学生)一次函数的图象和性质讲义)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第3讲(学生)一次函数的图象和性质讲义的全部内容。
第3讲一次函数的图象和性质(1)学习目标:学会用图表描述变量的变化规律,会准确地画出函数图象,结合函数图象,能体会出函数的变化情况学习重点:函数的图象学习难点:函数图象的画法学习过程引入:信息1:下图是一张心电图,信息2:下图是自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变化二变化,你从图象中得到了什么信息?问题:正方形的边长x与面积S的函数关系为S=x2,你能想到更直观地表示S与x 的关系的方法吗?一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).•已经知道了形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数,其中k 叫做比例系数.那么正比例函数的图象有什么特征呢?范例:例1.画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=—2x2.y=列表表示几组对应值:y3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=—2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限. 1比较可以看出:两个图象都是经过原点的直线.函数y=x•的图象从左向右上升,经过一、三象限,即随x增大y也增大;函数y=—x•的图象从左向右下降,经过二、四象限,即随x增大y反而减小.归纳:正比例函数图象的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.•当x〉0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;当k〈0时,•图象经过二、四象限,从左向右下降,即随x增大y反而减小.正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=kx.思考:经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?经过原点与点(1,k)的直线是函数y=kx的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.Ⅲ.练习用你认为最简单的方法画出下列函数图象:1.y=x 2.y=-3x练习1、某函数具有下面的性质:(1).它的图象是经过原点的一条直线.(2).y随x增大反而减小.121232请你举出一个满足上述条件的函数,写出解析式,画出图象.2。
5.4.3 正切函数的性质与图象7题型分类一、正切函数的图象二、正切函数的性质1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ,2.值域:R3.周期性:正切函数是周期函数,最小正周期是π4.奇偶性:正切函数是奇函数,即()x x tan tan -=-.5.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增三、正切函数型tan()(0,0)y A x A ωϕω=+≠>的性质1、定义域:将“x ωϕ+”视为一个“整体”.令,2x k k z πωϕπ+≠+∈解得x .2、值域:(),-¥+¥3、单调区间:(1)把“x ωϕ+”视为一个“整体”;(2)0(0)A A ><时,函数单调性与tan (,)2y x x k k z ππ=≠+∈的相同(反);(3)解不等式,得出x 范围.4、周期:T πω=(一)正切函数的定义域、值域问题(1)求正切函数定义域的方法①求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠π2+k π,k ∈Z.②求正切型函数y =A tan (ωx +φ)(A ≠0,ω>0)的定义域时,要将“ωx +φ”视为一个“整体”.令ωx +φ≠k π+π2,k ∈Z ,解得x . (2)求正切函数值域的方法①对于y =Atan (ωx +φ)的值域,可以把ωx +φ看成整体,结合图象,利用单调性求值域.②对于与y =tan x 相关的二次函数,可以把tan x 看成整体,利用配方法求值域(二)正切函数的图象问题熟练掌握正切函数的图象和性质是解决与正切函数有关的综合问题的关键,需注意的是正切曲线是被相互平行的直线x =π2+k π,k ∈Z 隔开的无穷多支形状相同的曲线组成的. 题型3:正切函数的图象及应用3-1.(2024高一上·宁夏银川·期末)函数()2tan f x x x =×(11x -<<)的图象可能是( )A .B .C .D .3-2.(2024高二下·浙江丽水·期中)函数3()3tan f x x x =-在ππ,22⎛⎫- ⎪⎝⎭的图象大致为( )A .B .C .D .3-3.(2024高一上·全国·课后作业)画出函数|tan |y x =的图象.(1)根据图象判断其定义域、值域、单调区间、奇偶性、周期性;(2)求不等式|tan |1x £的解集.3-4.(2024高一上·广东·期末)若函数tan()(0)y x ϕϕ=-³的图象与直线πx =没有交点,则ϕ的最小值为( )A .0B .π4C .π2D .π3-5.(2024高一·全国·课堂例题)观察正切函数曲线,写出满足下列条件的x 的集合.(1)满足tan 0x =的集合.(2)满足tan 0x <的集合.(3)满足tan 0x >的集合.(三)正切函数的单调性及其应用(1)运用正切函数单调性比较大小的方法①运用函数的周期性或诱导公式将角化到同一单调区间内.②运用单调性比较大小关系.(2)求函数y =tan(ωx +φ)的单调区间的方法y =tan(ωx +φ)(ω>0)的单调区间的求法是把ωx +φ看成一个整体,解-π2+k π<ωx +φ<π2+k π,k ∈Z 即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间.题型4:正切函数的单调性及其应用4-1.(2024高一下·全国·单元测试)函数tan 36y x π⎛⎫=-+ ⎪⎝⎭的单调区间是( )A .πππ,π()33k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .2,()99k k k ππ⎛⎫π-π+∈ ⎪⎝⎭Z C .2,()3939k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z D .2,()3939k k k ππππ⎛⎫-+∈⎪⎝⎭Z 4-2.(2024高一·全国·课后作业)已知函数tan y x ω=在,22ππ⎛⎫- ⎪⎝⎭上是严格减函数,则实数ω的取值范围是 .4-3.(2024高一·全国·课堂例题)函数πtan 34y x ⎛⎫=-+ ⎪⎝⎭的单调递减区间为.4-4.(2024高三·全国·专题练习) π3tan 64x y ⎛⎫=- ⎪⎝⎭的单调递减区间为 .4-5.(2024·湖南长沙·模拟预测)已知函数π()tan()(0)3f x A x ωω=+>,若f x ()在区间ππ2⎛⎫⎪⎝⎭,内单调递减,(四)正切函数的奇偶性与周期性与正切函数有关的函数的周期性、奇偶性问题的解决策略(1)一般地,函数y=A tan(ωx+φ)的最小正周期为T=π|ω|,常常利用此公式来求周期.(2)判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称,若不对称,则该函数无奇偶性;若对称,再判断f(-x)与f(x)的关系.A .cos y x=B .sin y x =C .sin2y x =D .tan2y x=6-4.(2024高一上·全国·课后作业)已知()tansin 42xf x a b x =-+(其中a b 、为常数且0ab ≠),如果()35f =,则2010()3f π-的值为( )A .3-B .3C .5-D .56-5.(2024高三上·陕西·阶段练习)已知函数()5tan 3f x x x =+-,且()2f m -=-,则()f m =( )A .4-B .1-C .1D .46-6.(2024高一下·山东潍坊·期中)已知()2023sin 2024tan 1f x x x =+-,()()()()()21012f f f f f -+-+++=.(五)正切函数的对称性正切曲线的对称中心为(k π2,0)(k ∈Z),解关于对称中心的题目时需要把整个三角函数看成一个整体,从整体性入手求出具体范围.题型7:正切函数的对称性7-1.(2024高一下·辽宁铁岭·阶段练习)函数1π()3tan 23f x x ⎛⎫=+ ⎪⎝⎭的图象的对称中心为.7-2.(2024高一下·辽宁·阶段练习)已知函数()()()sin 0,0πf x x ωϕωϕ=+><<的最小正周期为2π3,其图像的一个对称中心的坐标为π,04⎛⎫⎪⎝⎭,则曲线()()tan g x x ωϕ=+的对称中心坐标为( )A .ππ,0312k ⎛⎫- ⎪⎝⎭,k ∈ZB .ππ,0612k ⎛⎫- ⎪⎝⎭,k ∈ZC .ππ,0312k ⎛⎫+ ⎪⎝⎭,k ∈ZD .ππ,0612k ⎛⎫+ ⎪⎝⎭,k ∈Z7-3.(2024·江苏扬州·模拟预测)以点π,0()2k k ⎛⎫∈ ⎪⎝⎭Z 为对称中心的函数是( ).A .sin y x =B .cos y x =C .tan y x=D .|tan |y x =一、单选题1.(2024高一上·福建漳州·期末)函数ππ()tan 23f x x ⎛⎫=+ ⎪⎝⎭的单调区间是( )A .512,2(Z)33k k k ⎛⎫-++∈ ⎪⎝⎭B .512,2(Z)33k k k ⎡⎤-++∈⎢⎥⎣⎦C .514,4(Z)33k k k ⎛⎫-++∈ ⎪⎝⎭D .514,4(Z)33k k k ⎡⎤-++∈⎢⎥⎣⎦2.(2024高一下·内蒙古包头·期末)函数πtan 23y x ⎛⎫=- ⎪⎝⎭的定义域是( )A .5ππ,Z 122k x x k ⎧⎫≠+∈⎨⎬⎩⎭B .5ππ,Z 12x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .ππ,Z 32k x x k ⎧⎫≠+∈⎨⎬⎩⎭D .ππ,Z 3x x k k ⎧⎫≠+∈⎨⎬⎩⎭3.(2024高三上·山西晋中·阶段练习)函数()πtan 2xf x =的最小正周期是( )A .2πB .4πC .2D .44.(2024高二下·湖南·学业考试)函数tan y x =在一个周期内的大致图象是( )A .B .C .D .5.(2024·河南·模拟预测)已知函数()f x 对任意x ∈R 都有()()2=-+f x f x ,且函数()1f x +的图象关于()1,0-对称,当[]1,1x ∈-时,()tan =f x x .则下列结论正确的是( )A .函数()y f x =的图象关于点()(),0k k ∈Z 对称B .函数()y f x =的图象关于直线()2x k k =∈Z 对称C .函数()y f x =的最小正周期为2D .当[]2,3x ∈时,()()tan 2f x x =-6.(2024高一下·北京·期中)函数()tan sin tan sin f x x x x x =--+-|在区间(π2,3π2)内的图象是( )A .B .C .D .7.(2024高一·全国·课后作业)下列各式中正确的是( )A .tan1tan 2>-B .tan 735tan 800°>°C .5π4πtantan 77>D .9ππtantan 87>8.(2024高一下·河南平顶山·阶段练习)函数()πtan 27f x x ⎛⎫=- ⎪⎝⎭图象的对称中心可能是( )A .π,07⎛⎫⎪⎝⎭B .π,07⎛⎫- ⎪⎝⎭C .π,014⎛⎫ ⎪⎝⎭D .π,014⎛⎫- ⎪⎝⎭9.(2024高一下·上海·课后作业)已知函数tan y x ω=在,22ππ⎛⎫- ⎪⎝⎭内是减函数,则ω的取值范围为( )A .()2,0-B .[)1,0-C .(]0,1D .[]1,210.(2024·河南郑州·模拟预测)已知函数()π2sin 2πZ 3=πtan πZ3x x k k f x x x k k ⎧≠+∈ïï⎨ï=+∈ï⎩,,,,,若方程()f x =在()0m ,上恰有5个不同实根,则m 的取值范围是( )A .7463⎛⎤⎥⎝⎦ππ,B .71936⎛⎤ ⎥⎝⎦ππ,C .51336⎛⎤ ⎥⎝⎦ππ,D .13763⎛⎤⎥⎝⎦ππ,11.(2024高三·全国·对口高考)已知定义在R 上的奇函数()f x 满足()()2f x f x +=,且当()0,1x ∈时,()t πan 2f x x=,则()f x 在[0,5]上的零点个数是( )A .3B .4C .5D .612.(2024高二下·湖南·阶段练习)若π0,3q ⎛⎫∈ ⎪⎝⎭,则2tan q + )A .B 2+C 52D 13.(2024·宁夏银川·模拟预测)若π()tan3n f n =,(*n ∈N ),则(1)(2)(2023)f f f ++×××+=( )A .BC .0D .-14.(2024高一下·河北衡水·阶段练习)函数()π26f x x m ⎛⎫=-- ⎪⎝⎭在π,12n ⎡⎤-⎢⎥⎣⎦上的最大值为3,最小值为1-,则mn =( )A .π6B .π3C .π6-D .π3-15.(2024·湖北武汉·模拟预测)函数()()πtan 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像如图所示,图中阴影部分的面积为6π,则2023π3f ⎛⎫= ⎪⎝⎭( )A .B .CD 二、多选题16.(2024高一上·吉林长春·阶段练习)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则下列说法错误的是( )A .()f x 的最小正周期为π2B .()f x 的定义域为ππ,3x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z C .ππ44f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D .()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减17.(2024高一下·辽宁大连·阶段练习)已知函数()tan 2f x x =,则下列说法正确的是( )A .函数()f x 是奇函数B .函数()f x 的最小正周期是πC .函数()f x 在ππ(,)44-上单调递增D .函数()f x 图象的对称中心是π(,0)(Z)4k k ∈18.(2024高三上·山东·开学考试)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则下列说法正确的是( )A .()f x 的最小正周期为π2B .()f x 在ππ,63⎛⎫⎪⎝⎭上单调递减C .π3π510f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D .()f x 的定义域为ππ,Z 3x x k k ⎧⎫≠+∈⎨⎬⎩⎭19.(2024高一下·四川成都·期中)已知函数()ππtan 23f x x ⎛⎫=+ ⎪⎝⎭,则下列描述中正确的是( ).A .函数()f x 的图象关于点1,03⎛⎫- ⎪⎝⎭成中心对称B .函数()f x 的最小正周期为2C .函数()f x 的单调增区间为514,433k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD .函数()f x 的图象没有对称轴20.(2024高三上·吉林长春·阶段练习)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则( )A .π2f ⎛⎫= ⎪⎝⎭B .()f x 的最小正周期为πC .把()f x 向左平移π6可以得到函数()tan 2g x x =D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增21.(2024高一下·辽宁沈阳·期中)已知函数()πtan 4f x x ⎛⎫=+ ⎪⎝⎭,则下列叙述中,正确的是( )A .函数()f x 的图象关于点0π4,⎛⎫⎪⎝⎭-对称B .函数()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .函数()f x 的图象关于直线π2x =对称D .函数()y f x =是偶函数22.(2024高一下·安徽芜湖·期中)下列坐标所表示的点是函数πtan 26y x ⎛⎫=- ⎪⎝⎭的图像的对称中心的是( )A .π,012⎛⎫ ⎪⎝⎭B .π,06⎛⎫ ⎪⎝⎭C .5π,012⎛⎫- ⎪⎝⎭D .π,03⎛⎫ ⎪⎝⎭23.(2024高一下·全国·单元测试)下列说法中正确的是( )A .对于定义在实数R 上的函数()f x 中满足()()2f x f x +=,则函数()f x 是以2为周期的函数B .函数()πtan 3f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间为5πππ,π66k k ⎛⎫-++ ⎪⎝⎭,Zk ∈C .函数()πsin 2f x x ⎛⎫=+ ⎪⎝⎭为奇函数D .角a的终边上一点坐标为(-,则cos a =24.(2024高一下·广东佛山·阶段练习)已知函数()π7tan 23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.π6f ⎛⎫=- ⎪⎝⎭B .π6f x ⎛⎫- ⎪⎝⎭为奇函数C .()f x 图象的对称中心为()ππ,0Z 68k k ⎛⎫-+∈ ⎪⎝⎭D .()f x 的定义域为ππ,Z 122k xx k ⎧⎫≠+∈⎨⎬⎩⎭∣三、填空题25.(2024高一下·辽宁锦州·期中)()tan sin 1f x x x =++,若()22f =,则()2f -= .26.(2024高一下·广东阳江·期末)已知πtan 4a ⎛⎫+= ⎪⎝⎭a = .27.(2024高一下·上海徐汇·期中)函数2()tan tan 2,,44f x x x x ππ⎡⎤=+-∈-⎢⎥⎣⎦的值域是28.(2024高二上·广西崇左·开学考试)若函数πtan 23y x k ⎛⎫=-+ ⎪⎝⎭,π0,6x ⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为 .29.(2024高一下·上海·课后作业)函数2tan 2tan ,,64⎡⎤=+∈-⎢⎥⎣⎦y x x x ππ的值域为.30.(2024高一·全国·课后作业)若函数()tan f x x =在区间ππ,32a a ⎛⎫- ⎪⎝⎭上是增函数,则实数a 的取值范围是 .31.(2024高一·上海·专题练习)函数2tan 4tan 1y x x =+-的值域为32.(2024高一下·上海静安·期中)函数ππtan 63y x ⎛⎫=+ ⎪⎝⎭的定义域是.33.(2024高一下·湖北·期中)已知函数()πππ,222ππtan ,22a x x x f x x x ⎧+£-³ïï=⎨ï-<<ï⎩或,若函数()3π2y f f x ⎡⎤=-⎣⎦有5个零点,则实数a 的取值范围是 .34.(2024高一下·全国·课后作业)已知函数tan y x ω=-在ππ,22⎛⎫- ⎪⎝⎭内是减函数,则ω的取值范围是 .35.(2024高一上·江苏徐州·期末)已知函数()()tan 4f x nx n π⎛⎫=-∈ ⎪⎝⎭Z 在区间3,88ππ⎛⎫ ⎪⎝⎭上是减函数,则n 的取值集合为 .(用列举法表示)36.(2024·全国·模拟预测)若函数tan 4y x πω⎛⎫=+ ⎪⎝⎭在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减,且在,33ππ⎡⎤-⎢⎥⎣⎦上的最大值为ω=.37.(2024高一下·上海浦东新·期中)若函数tan()y x ω=在,44ππ⎡⎤-⎢⎥⎣⎦上为严格减函数,则实数ω的取值范围是 .四、解答题38.(2024高一·全国·课后作业)已知()tan 23f x x π⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若()f x ϕ+是奇函数,则ϕ应满足什么条件?并求出满足||2ϕπ<的ϕ值.39.(2024高一下·辽宁抚顺·期中)已知函数()()π2tan 08f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π2,(1)求()f x 图象的对称中心;(2)求不等式()2f x >-在5π3π,1616⎛⎫- ⎪⎝⎭上的解集.40.(2024高一·全国·课堂例题)画出函数1π2tan 24y x ⎛⎫=- ⎪⎝⎭在[0,2π] x ∈上的简图.41.(2024高一下·江西抚州·阶段练习)设函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,已知函数()y f x =的图象与x 轴相邻两个交点的距离为π2,且图象关于点π,08M ⎛⎫- ⎪⎝⎭对称.(1)求()f x 的单调区间;(2)求不等式()1f x -££的解集.42.(2024高一·全国·课后作业)已知函数()y f x =,其中()()tan f x A x ωϕ=+,(0ω>,π2ϕ<),()y f x =的部分图像如下图.(1)求A ,ω,ϕ的值;(2)求()y f x =的单调增区间,43.(2024高一下·上海·课后作业)已知函数()()0xf x πωω=>.(1)当4ω=时,求()f x 的最小正周期及单调区间;(2)若()3f x …在,34x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立,求ω的取值范围.44.(2024高一·全国·课后作业)已知函数π()tan 3f x x ω⎛⎫=+ ⎪⎝⎭,0ω>.(1)若2ω=,求()f x 的最小正周期与函数图像的对称中心;(2)若()f x 在[]0,π上是严格增函数,求ω的取值范围;(3)若方程()f x =在[],a b 上至少存在2022个根,且b -a 的最小值不小于2022,求ω的取值范围.45.(2024高一下·上海虹口·期末)已知函数()πtan 3f x x ω⎛⎫=+ ⎪⎝⎭,其中0ω>.(1)若2ω=,求函数()f x 的最小正周期以及函数图象的对称中心;(2)若()f x 在闭区间[]0,π上是严格增函数,求正实数ω的取值范围.。
第16讲 正弦函数图像性质(不用添加内容,任课老师根据学生情况自行添加)(不用添加内容,也不做修改)一:三角函数的图像和性质 函 数sin y x =cos y x =tan y x =图像定 义 域(),-∞+∞ (),-∞+∞,2x x k x R ππ⎧⎫≠+∈⎨⎬⎩⎭值域 []1,1-[]1,1-(),-∞+∞奇偶性 奇函数偶函数奇函数 对称轴 ()2x k k Z ππ=+∈()x k k Z π=∈对称中心 (),0k π,02k ππ⎛⎫+⎪⎝⎭,02k π⎛⎫⎪⎝⎭最小正周期2π2ππ单 调 性2k -,2k +22ππππ⎡⎤⎢⎥⎣⎦增32k +,2k +22ππππ⎡⎤⎢⎥⎣⎦减 []2k ,2k πππ-增 []2k ,2k πππ+减k -,k +22ππππ⎛⎫ ⎪⎝⎭递增二、图像的平移函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象对函数y =A sin(ωx +ϕ)+k (A .>.0, ..ω>..0, ..ϕ.≠.0,.. k .≠.0)..,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移.(4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移1:正弦函数的定义域和值域2:三角函数的单调性和奇偶性3:三角函数图像的变换(不用添加内容,任课老师根据学生情况自行添加)例1 已知tan 2α=,则sin cos sin cos αααα-+的值为_______________.例2 为了得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 2y x =的图象( ).A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度例3 .已知函数π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的部分图像如右图所示,则ϕ=( ).A .π6-B .π6C .π3-D .π3例 4:函数sin 23y x π⎛⎫=+ ⎪⎝⎭的对称轴是 ,对称中心点是 。
一次函数的图像及性质学生姓名授课日期教师姓名授课时长本讲主要学习一次函数的图像与性质,并要学会应用一次函数的图像及性质解决一些问题。
首先复习一下什么是函数及函数的三种表示法。
本次课的重难点点是一次函数图像与性质的应用,初步接触数形结合思想。
在中考中一次函数的图像与性质是必考点,难度中等,急需掌握。
知识梳理1.函数的定义及表示法1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。
对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义4. 函数的三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
公式法(解析法):即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)公式法(解析法):用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。
2023年高考数学二轮复习三角函数专题第1讲 三角函数公式,图像与性质1. 同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α= . (2)商数关系:tan α= .2.诱导公式:第①大组: )(2R k k ∈+απ, α-, απ-, απ+, απ-2 记忆口诀: ;第②大组:απ±2, απ±23 记忆口诀: 2.两角和与差的正弦、余弦、正切公式及倍角公式sin(α±β)= β――→令α=βsin 2α= .cos(α±β)= ――→令α=βcos 2α= = =tan(α±β)= ――→令α=βtan 2α= .3.公式的逆向变换及有关变形:(1)sin αcos α=(2)降幂公式:sin 2α= ,cos 2α= ;(3)1±sin 2α= ;sin α±cos α=4.辅助角公式:asin α+bcos α= ,(其中cos φ= ,sin φ= ,tan φ= .φ的终边所在象限由a 、b 的符号来确定)5.在三角的恒等变形中,注意常见的拆角、拼角技巧如:①α=(α+β)-β ②2α=(α+β)+(α-β)③α=12[(α+β)+(α-β)] ④α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. 二.三角函数定义 1.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α= ,cos α= ,tan α= ,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.2.三角函数在各象限内的正值口诀是: .三.三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点);(2)对称轴:y =sin x ,x = ,k ∈Z ;y =cos x ,x = ,k ∈Z ;对称中心:y =sin x , ,k ∈Z ;y =cos x , ,k ∈Z ;y =tan x , ,k ∈Z .(3) 单调区间:y =sin x 的增区间: (k ∈Z ),减区间: (k ∈Z );y =cos x 的增区间: (k ∈Z ),减区间: (k ∈Z );y =tan x 的增区间: (k ∈Z ).(4)周期性与奇偶性:y =sin x 的最小正周期为 ,为 函数;y =cos x 的最小正周期为 ,为 函数;y =tan x 的最小正周期为 ,为 函数.四.y =Asin(ωx +φ)的有关概念=sin x 的图象作如下变换得到:(1)相位变换:y =sin x →y =sin(x +φ),把y =sin x图象上所有的点向 (φ>0)或向 (φ<0)平行移动 个单位.(2)周期变换:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标伸长( )或缩短( )到原来的 倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标伸长( )或缩短( )到原来的 倍(横坐标不变).3.确定y =Asin(ωx +φ)+b 的解析式的步骤:(1)求A ,b.确定函数的最大值M 和最小值m ,则A = ,b = .(2)求ω.确定函数的周期T ,则ω= .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ =π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2. 4. 函数y =Asin(ωx +φ) (A>0,ω>0)性质:(1)单调性:增区间由 ,k ∈Z 得;减区间由 ,k ∈Z(2)最值:最大值为 ,当且仅当 k ∈Z 取最大值; 最小值为 ,当且仅当 k ∈Z 取最大值。
三角函数的图像与性质
(一)教学目标
1. 知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点的本质。
利用正切函数已有的知识(如定义、诱导公式、正切线等),自己或合作通过绘制正切线的变化研究性质,根据性质探究正切函数的图象。
2. 过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数图像的认知更为深刻。
让学生借助单位圆中的三角函数线能画出tan y x =的图象,借助图象理解正切函数
在
(,)
22ππ
-
上的性质(如单调性、周期性、最大值和最小值、图象与x 轴的交点等),并能解决
一些简单问题。
(二)教学重点、难点 1. 教学重点:
(1)正弦函数、余弦函数的图像形状
(2)利用正切函数已有的知识(如定义、诱导公式、正切线等)研究性质, (3)根据性质探究正切函数的图象。
2.教学难点:sin y x =在[]0,2x π∈时的函数图像。
画正切函数的简图,体会与x 轴的交点
以及渐近线,2
x k k Z
π
π=
+∈在确定图象形状时所起的关键作用。
课程安排:
1.单摆实验:“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上
的轨迹”
思考:1、该曲线是何曲线?
2、你有办法画出该曲线的图象吗?
2、“正弦函数图象的几何作图法”
在直角坐标系的x 轴上任意取一点O 1,以O 1为圆心作单位圆,从圆O 1与x 轴的交点A 起把圆O 1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O 1上的各分点作x
轴的垂线,可以得到对应于0、6π、3π、2π
、……、π2等角的正弦线,相应地,再把x 轴上从0到π2这一段(π2≈6.28)分成12等份,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数x y sin =,[]π2,0∈x 的图象,因为终边相同的角有相同的三角函数值,所以函数x y sin =在[]0,,)1(2,2≠∈+∈k Z k k k x ππ的图象与函数x y sin =,[]π2,0∈x 的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每
次π2个单位长度),就可以得到正弦函数x y sin =,R x ∈的图象,即正弦曲线。
用这种方法作图准确,但真正画图确较难实现,那么有没有什么办法让我们能快速得到正弦函数的大致图像呢?大家可以联想一下初中我们是如何画一次函数、二次函数的图像。
3.寻找快速作图法——正弦函数图象的五点作图法
五点作图法的步骤:
两种画法的区别
4.正弦函数有哪些主要性质?
5.小结:
(1)正弦函数图象的几何作图法
(2)正弦函数图象的五点作图法
(3)正弦函数图象的主要性质
6.用类似的方法做出余弦函数的图像,并找出它的性质余弦函数的图像
性质
7.正切函数性质
(1)类比正弦和余弦函数的性质猜想正切函数应该有哪些性质?(2)你能利用正切函数已有的知识研究正切函数性质吗?
8.正切函数图像
(1)你能尝试利用正切函数性质画出图像吗?
(2)请你观察正切函数图象,你认为哪些点和线是关键性的?
(3)请你利用正切函数图像再次回顾一下性质
小结
本节探究学习了哪些知识有何收获体会?
学习反馈与检测:
1、求函数tan()4
y x π
=+ 的定义域.
2、不通过求值,比较下列各组中两个正切函数值的大小: 与
3、求满足下列条件的x 的集合:
(1)tanx=0 (2)tanx=1
4、求函数的单调区间:tan(2)3
y x π
=-。