山东省邹平县实验中学七年级数学 《图形认识初步》综合测试 人教新课标版
- 格式:doc
- 大小:527.50 KB
- 文档页数:5
七年级上《图形的初步认识》测试及答案(word版可编辑修改)七年级上《图形的初步认识》测试及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级上《图形的初步认识》测试及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级上《图形的初步认识》测试及答案(word版可编辑修改)的全部内容。
七年级上《图形的初步认识》测试及答案(word 版可编辑修改) 图形的初步认识一、填空题(36分)1、 6000″ = ′= °,12°15′36″= °。
2、锯木料时,先在木板上画出两点,再过这两点弹出一条墨线,这是利用了的原理。
3、如图,从A 地到B 地走 条路线最近,它根据的是 。
4、当图中的∠1和∠2满足 时,能使OA ⊥OB(只需填上一个条件即可)。
5、在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是南偏西度.6、如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =76°,则∠BOD = °.7、小明每天下午5:30回家,这时分针与时针所成的角的度数为 °;8、如图所示的4×4正方形网格中,∠l+∠2+∠3+∠4+∠5+∠6+∠7= °.9、点A 、B 、C 是数轴上的三个点,且BC=2AB 。
已知点A 表示的数是-1,点B 表示的数是3,点C 表示的数是 ;10、如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为 ;A B ① ② ③A B C D E O 第6题数学七年级(上)复习测试题11、如图,从点O 出发的5条射线,可以组成的角的个数是 ; 12、α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算算出了23°、24°、25°这三)(151γβα++的值时,有三位同学分别个不同的结果,其中只有一个是正确的答案,则 = °.二、选择题(30分)1 、下列说法中,正确的有( )(1)过两点有且只有一条线段 (2)连结两点的线段叫做两点的距离(3)两点之间,线段最短 (4)AB =BC ,则点B 是线段AC 的中点 (5) 射线比直线短A .1个 B.2个 C 。
第四章综合能力检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是( )A B C D2.如图,下列说法正确的是( )A.图中共有5条线段B.直线AB与直线AC是同一条直线C.射线AB与射线BA是同一条射线D.点O在直线AC上3.如图,四个图形是由四个立体图形展开得到的,相应的立体图形依次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.根据下列线段的长度,能判断A,B,C三点不在同一条直线上的是( ) A.AB=8,BC=19,AC=27 B.AB=10,BC=9,AC=18.9C.AB=21,BC=11,AC=10D.AB=7.5,BC=14,AC=6.55.如图,点C是线段AB上一点,点M是AC的中点,点N是BC 的中点,如果MC比NC长2 cm,那么AC比BC长( )A.1 cmB.2 cmC.4 cmD.6 cm6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从正面看得到的平面图形的面积为5B.从左面看得到的平面图形的面积为3C.从上面看得到的平面图形的面积为3D.从三个方向看得到的平面图形的面积都是47.黑板上有四个不同的点A,B,C,D,过其中任意两个点画直线,可以画出直线的条数为( ) A.1或2 B.1,4或6C.1,3,4或6D.1,2,4或68.已知∠α的余角是23°17'38″,∠β的补角是113°17'38″,那么∠α和∠β的大小关系是( )A.∠α>∠βB.∠α=∠βC.∠α<∠βD.不能确定9.下列时刻,时针与分针的夹角为直角的是( )分A.3时30分 B.9时30分 C.8时55分 D.3时3601110.如图,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点AB.点BC.A,B之间D.B,C之间二、填空题(每题3分,共18分)11.如图,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路线可供选择,在不考虑其他因素的情况下,架设管道的最短路线是,依据是.第11题图第12题图第13题图12.如图,O为直线AB上一点,已知∠1=40°,OD平分∠BOC,则∠AOD= .13.如图,点A,O,B在同一条直线上,射线OD平分∠BOC,射线OE在∠AOC的内部,且∠DOE=90°,写出图中所有互为余角的角: .14.一个角的余角的3倍比它的补角小10°,则这个角的度数为.15.如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为10 cm,若AP=1PB,2则这条绳子的原长为cm.第15题图第16题图16.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,给出以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB-∠AOD=90°;④∠COE+∠BOF=180°.其中正确的是.(填序号)三、解答题(共52分)17.(6分)计算:(1)19°24'+76°26″-24°2'16″;(2)29°11'×3-106°32'÷4.AC,D,E 18.(8分)如图,已知C为线段AB上一点,AC=12,CB=23分别为AC,AB的中点,求DE的长.19.(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)试确定射线OC的方向;(2)求∠COD的度数;(3)若射线OE平分∠COD,求∠AOE的度数.20.(8分)如图,OB,OC,OD是三条射线,OB平分∠AOC,且∠AOE 是平角,由这些条件能否得到结论∠BOD=90°?若能,请说明理由;若不能,请你补充一个条件,并说明你的理由.21.(10分)如图,M是线段AB上一定点,点C从点M出发以1 cm/s的速度沿线段MA向左运动,同时点D从点B出发,以3 cm/s的速度沿线段BA向左运动.(点C在线段AM上,点D在线段BM上)(1)若AB=10 cm,点C,D运动了2 s,则AC+MD= ;(2)若点C,D运动时,总有MD=3AC,则AM= AB;(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求MN的AB 值.22.(12分)已知O是AB上一点,∠COE=90°,OF平分∠AOE.(1)如图1,当点C,E,F在直线AB的同侧时,若∠AOC=40°,求∠BOE和∠COF的度数;(2)在(1)的条件下,∠BOE和∠COF有什么数量关系?请直接写出结论,不必说明理由;(3)如图2,当点C,E,F分别在直线AB的两侧时,若∠AOC=β,则(2)中∠BOE和∠COF的数量关系是否仍然成立?请说明理由.第四章综合能力检测卷题号 1 2 3 4 5 6 7 8 9 10 答案 C B A B C B B B D A 11.①两点之间,线段最短12.110°13.∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 14.50°15.15或30 16.①②④17. (1)71°22'10″.(2)60°55'.18. 4.19. (1)北偏东70°.(2)70°.(3)90°.20. 不能,需要添加条件:OD平分∠COE.21. (1)2 cm(2)14(3)1或1.222. (1)25°.(2)∠BOE=2∠COF.。
七年级数学图形的初步认识测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,点A,B在直线l上,下列说法错误的是()A.线段AAAA和线段AAAA是同一条线段B.直线AAAA和直线AAAA是同一条直线C.图中以点A为端点的射线有两条D.射线AAAA和射线AAAA是同一条射线2.(3分)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C 作CCCC⊥ll于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.垂线段最短3.(3分)若∠A=30°18ʹ,∠B=30°15ʹ30ʺ,∠C=30.25°,则这三个角的大小关系正确的是()A.∠C>∠A>∠B B.∠C>∠B>∠AC.∠A>∠C>∠B D.∠A>∠B>∠C4.(3分)已知平面上A,B,C三点,过每两点画一条直线,那么直线的条数有()A.3条B.1条C.1条或3条D.0条5.(3分)图①是由五个完全相同的小正方体组成的立体图形,将图①中的一个小正方体改变位置后得到图②,则图①与图②的三视图不相同的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都不同6.(3分)如图线段AAAA=8cm,点PP在射线AAAA上从点AA开始,以每秒2cm的速度沿着射线AAAA 的方向匀速运动,则PPAA=13AAAA时,运动时间为()A.83秒B.3秒C.83秒或163秒D.3秒或6秒7.(3分)已知∠αα,∠ββ互补,那么∠ββ与12(∠αα−∠ββ)之间的关系是()A.和为45° B.差为45° C.互余D.差为90°8.(3分)如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2,若点E在直线AD上,且EA=1,求BE的长为()A.4 B.6或8 C.6 D.8 9.(3分)如图,直线AAAA与CCCC相交于点OO,∠AAOOCC=60∘,一直角三角尺EEOOEE的直角顶点与点OO重合,OOEE平分∠AAOOCC,现将三角尺EEOOEE以每秒3∘的速度绕点OO顺时针旋转,同时直线CCCC也以每秒9∘的速度绕点OO顺时针旋转,设运动时间为tt秒(0≤tt≤40),当CCCC平分∠EEOOEE时,tt的值为()A.2.5B.30C.2.5或30D.2.5或32.5 10.(3分)如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点MM1,NN1;第二次操作:分别取线段AAMM1和AANN1的中点MM2,NN2;第三次操作:分别取线段AAMM2和AANN2的中点MM3,NN3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和MM1NN1+MM2NN2+⋯+MM10NN10=()A.20−1029B.20+1029C.20−10210D.20+10210二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知直线AB,CD相交于点O,OE平分∠AOD,|∠BOD−∠AAOOCC|=30°,∠COE 的度数=____.12.(3分)如图,∠BOD=45°,∠AOE=90°,那么图中小于或等于90°的角有____个,它们的度数之和是_____.13.(3分)将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.14.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法___________.15.(3分)直线l上的三个点A、B、C,若满足BC=12AB,则称点C是点A关于点B的“半距点”.如图1,BC=12AB,此时点C就是点A关于点B的一个“半距点”.如图2若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.则MP=________cm.16.(3分)把一根绳子对折成一条线段AB,在线段AB上取一点P,使AP:PB=1:3,将绳子从点P处剪断,若剪断后的三段绳子中最长的一段为18cm,则三段绳子中最短的一段的长为_____.三.解答题(共7小题,满分52分)17.(6分)如图,已知直线l和直线外三点A,B,C,按下列要求画图:(1)画射线AAAA;(2)连接AACC;(3)在直线l上确定点E,使得AAEE+CCEE最小.18.(6分)(1)如图,若点A,O,B在同一条直线上,∠AAOOCC:∠AAOOCC=8:1,OD是∠AOC 内部的一条射线,∠CCOOCC=2∠CCOOAA,射线OE平分∠AOC.求∠DOE的度数;(2)若点A,O,B不在同一条直线上,射线OC是∠AOB(∠AOB是小于平角的角)内部的一条射线.∠AAOOCC:∠AAOOCC=8:1,∠CCOOCC=2∠CCOOAA,射线OE平分∠AOC.当∠AAOOCC=αα(0°<αα<180°)时,则∠DOE的度数为.(用含αα的代数式表示)19.(8分)综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动.他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体纸盒,图1中的___________图形经过折叠能围成无盖正方体纸盒.(2)如图2是小明的设计图,把它折成无盖正方体纸盒后与“小”字相对的是___________(3)如图3,有一张边长为40cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为5cm的小正方形,这个纸盒的容积.20.(8分)综合与探究已知线段AAAA=15,P,Q是线段AAAA上的两点(点P在点Q的左边),且PPPP=5.(1)如图1,若点C在线段AAAA上,且AACC=12AACC,当P为AACC的中点时,求AAPP的长.(2)若M为线段AAPP的中点,N为线段AAPP的中点.①如图2,当线段PPPP在线段AAAA上时,求线段MMNN的长;②当线段PPPP在线段AAAA的延长线上时(点P,Q都在AAAA的延长线上),猜想线段MMNN的长是否发生变化?请说明理由.21.(8分)一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉个立方块.22.(8分)已知:如图,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B 同时出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=_____,DM=_____;(直接填空)(2)若点C、D运动时,总有MD=3AC,①求线段AM的值,②若N是直线AB上一点,且AN-BN=MN,求MMMM AAAA的值23.(8分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一块直角三角板DOE直角顶点放在点O处.(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=____________°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠BOD、∠COE的度数;(3)如图3,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD 和∠COE有怎样的数量关系?并说明理由.。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.3.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.4.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.5.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.6.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
第四章图形的初步认识单元测试一选择题:1.下列命题中正确的是()(A)两直线相交所成四个角中有两个相等,那么这两条直线垂直;(B)两直线相交所成四个角中两对角相等,则这两直线垂直;(C)两条直线相交所成四个角中若有两个角互补,则这两直线垂直;(D)两条直线相交所成四个角中有两个对顶角互补,则这两直线垂直.2、下列说法正确的是()(A)两点之间,直线最短;(B)大于直角的角叫钝角;(C)若两个角互为余角,则这两个角不可能相等;(D)一个锐角的补角比这个锐角的余角大090.3、下列图形,()都是柱体.(A)(B)(C )(D)4、如图,下列关系式错误的是()A.∠DOE=∠BOC B.∠AOE=2∠AOCC.∠AOC>∠AOB D.∠COD+∠COB=∠BOD5、下列说法中不正确的是()A.过两点有且只有一条直线B.直线上任意两点都可以表示这条直线C.两条直线相交只有一个交点D.三条直线相交,共有三个交点6、下列说法中正确的是()A.射线比直线短一半B.延长直线AB至CC.两点之间的线叫线段D.直线上两点和它们之间的部分叫做线段7、延长线段AB至C,再反向延长AB至D,则线段CD上共有线段()条A.3B.4C.5D.68、已知线段AB=4 cm,在直线AB上,画线段BC=2cm,则AC=()cmA.6B.2C.6或2D.不能确定9、A、B、C三点在同一条直线上,AB=5cm,BC=2cm,则AC=()A.7cm B.3cm C.7cm或3cm D.无法确定10、下面给出的图形中分别有直线、射线、线段能相交的图形是()①②③④A、①②B、②③C、①④D、①③11.①平角是一条直线②射线是直线的一半③射线AB与射线BA表示同一条射线④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍⑤两点之间,线段最短⑥120.5°= 120°50׳以上说法正确的有( )A .0个 B.1个 C.2个 D.3个12.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个的是()13.若一个立体图形的正视图、左视图都是长方形,俯视图圆,则这个图形可能()A.圆柱 B 球 C 圆锥 D 三棱锥14.若∠A的余角是70°,则∠A的补角是()A.70°B.110°C.20°D.160°15.下列叙述正确的是()A.180°是补角 B 120°和60°互为补角C 120°和60°是补角D 60°是30°的补角填空题:16、线段有_____个端点,射线有_____个端点,直线_____端点。
第四章《图形认识初步》整章水平测(A)一、耐心填一填,一锤定音!(每小题3分,共30分)1.45°= 直角= 平角.2.15°-10°7′= .3.7.205°= °′″.4.如图1,是的展开图.5.类似于长方体的形状的实物有等.6.如果∠1=4°18′,∠2=3°79′,∠3=4.4°,则∠1、∠2、∠3的大小顺序是.(由小到大排列).7.如图2,图中小于平角的角共有个,其中能用一个大写字母表示的角是.8.两个角互补且相等,则这两个角分别是、.9.线段AD=76,BD=70,CD=19,点B、C在线段AD上,则AB= ,BC= .10.钟表的时针在任一时刻所在的位置作为起始位置,它旋转出一个平角至少需分钟.二、精心选一选,慧眼识金!(每小题2分,共20分)1.平面上有任意四点,经过其中两点画一条直线,共可画()A.1条直线B.4条直线C.6条直线D.1条或4条或6条直线2.从3时15分到3时30分,时针转了()A.7.5°B.15°C.90°D.10°3.一个角的补角是它的3倍,这个角是()A.30°B.45°C.50°D.60°4.如图3,是从正面、左面、上面看某几何体得到的平面图形,则该几何体是()A.六棱锥B.六棱柱C.长方体D.正方体5.下图中,是三棱柱的平面展开图的是()6.下列说法中,正确的个数是()①角是由两条射线组成的图形.②一条射线就是一个周角.③两点确定一条直线.④如果线段AB=BC,那么点B叫做线段AC的中点.A.1 B.2 C.3 D.47.点C在线段AB上,不能判断点C是线段AB中点的式子是()A.AB=2AC B.AC+BC=AB C.12BC ABD.AC=BC8.如图4,由A测B的方向是()A.南偏东30°B.北偏西30°C.南偏东60°D.北偏西60°9.如图5,∠AOB+∠BOC=90°,∠BOC与∠COD互余,那么∠AOB与∠COD的关系是()A.∠AOB>∠COD B.∠AOB=∠COD C.∠AOB<∠COD D.无法确定10.如图6,13AC AB=,14BD AB=,AE=CD,则CE为AB长的()A.16B.18C.112D.116三、用心做一做,马到成功!(本大题共70分)1.(本题10分)读句画图并填空:(1)画直线AB;(2)在线段AB上取一点O,用量角器画∠BOC=40°;(3)由图形可知,∠AOC= ;(4)画射线OC的反向延长线OD;(5)由图可知:∠AOD= ,∠DOB= .2.(本题10分)如图7,分别从正面、左面、上面观察该立体图形,能得到什么平面图形?3.(本题11分)如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.4.(本题12分)如图9,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.5.(本题12分)已知∠1和∠2互为补角,∠2度数的一半比∠1大45°,试求出∠1与∠2的度数.6.(本题15分)一个正方体小木块,六个面上分别标有1,2,3,4,5,6六个数字,我们从不同角度可以看到的正方体的一个面或几个面上的数字,最多可以有多少种不同的情况?参考答案:一、1.12,14 2.453' 3.7,12,184.圆锥 5.不惟一(略)6.123<<∠∠∠ 7.7;B ∠,C ∠ 8.90,909.6,51 10.360 二、1.D2.A 3.B 4.B 5.C 6.A 7.B 8.C 9.B 10.C 三、1.(3)140;(5)40,140.图略.2.略.3.渔船在C 处.4.90DOE =∠,76BOE =∠.5.130=∠,2150=∠.6.共有26种不同情况.。
人教版七年级上册数学图形的初步认识单元测试题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级上册数学图形的初步认识单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级上册数学图形的初步认识单元测试题含答案(word版可编辑修改)的全部内容。
第四章图形的初步认识一、精心选一选(每小题2分,共30分)1、下列说法正确的是()A、直线AB和直线BA是两条直线;B、射线AB和射线BA是两条射线;C、线段AB和线段BA是两条线段;D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有( )A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()4、经过同一平面内任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20。
25 o,则()A、∠A>∠B〉∠CB、∠B>∠A>∠CC、∠A>∠C 〉∠BD、∠C >∠A 〉∠B6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是( )西东 A D7、如左图所示的正方体沿某些棱展开后,能得到的图形是 ()8、下列语句正确的是( )A 。
钝角与锐角的差不可能是钝角;B.两个锐角的和不可能是锐角;C 。
钝角的补角一定是锐角;D.∠α和∠β互补(∠α〉∠β),则∠α是钝角或直角. 9、在时刻8:30,时钟上的时针和分针的夹角是为( ) A 、85 ° B 、75°C 、70 °D 、60°10、如果∠α=26°,那么∠α余角的补角等于 ( ) A 、20°B 、70 °C 、110 °D 、116°11、如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为 ( )A 、互余B 、互补C 、相等D 、不能确定。
第四章 图形认识初步目标检测试卷(四)一、 精心选一选:(每小题3分,共30分)1、过不在一条直线直上的A 、B 、C 三点中每两个点作一条直线,共可作直线( )A 1条B 2条C 3条D 4条2、8点30分,时钟的时针与分针所夹的角度是( )A 60°B 70°C 75°D 80°3、如图,共有( )个小于180°的角A 5B 6C 7D 84、如图,哪一个图形能够折叠成一个无盖的盒子( )AB C D5、正方体的三视图为( )A 三个大小一样的正方形B 一个正方形和两个长方形C 三个大小不一样的正方形D 以上都不对6、一个角是钝角,那么这个角的一半是( )A 锐角B 直角C 钝角D 以上都有可能7、下列说法中正确的是( )A 延长线段AB B 延长射线OAC 在直线AB 的延长线上取一点CD 延长线段BA 到C ,使BC=AB8、若两个角的度数和为90°,则这两个角中至少有一个角不大于( )A 30°B 45°C 50°D 55°9、38°15′和38.15°的关系是( )A 38°15′>38.15°B 38°15′<38.15°C 38°15′=38.15°D 以上都有可能10、下列说法正确的是( )A 在角的一边的延长线上取一点AB 角的两边张的越开,角就越大C 用一个放大倍率为2倍的放大镜放大一个20°的角是40°D 角的两边伸的越长,角就越大二、 耐心填一填:(每小题3分,共30分)1、直线有 个端点,射线有 个端点,线段有 个端点2、21周角= 平角= 直角= ° 3、一个几何体的三种视图如图,它是4、立体图形可分为 体、 体和 体 3题图 主视图 左视图 俯视图5、圆柱的侧面展开图是 ,圆锥的侧面展开图是 ,棱柱的侧面展开图是6、68°12′的余角为7、如图,图中有 条线段8、点A 是线段BC 外一点,一定有AB+AC BC ,理由是9、如图,OC 是∠AOB 的平分线,则∠AOC = 10、将一个直角三角尺绕着一条直角边旋转一周得到的几何体是 三、用心做一做:(本大题共60分)1、计算下列各题:(每小题4分,共8分)(1)、22°18′×5 (2)90°-57°23′27″2、(本题8分)已知线段AB=8cm ,点C为线段AB 上任一点,M 是AC中点,N是BC 中点,求线段MN 的长?3、(本题8分)读下列语句并画出图形:(1)画直线AC ;(2)画线段AB ;(3)画射线BC ;(4)直线AC 与BD 相交于点O4、(本题12分)指出下面每组左面三个图形是右面物体分别从哪个方向观察到的图形,如图(1)(2)C D A B E 7题图 · · · · · A O C B 9题图· A · B · D·C5、(本题12分)如图所示,O 是直线AB 上一点,OC 是任意一条射线,OD 一平分∠AOB ,OE 平分∠BOC ,那么射线OD 与OE 互相垂直吗?请说明理由6、(本题12分)如图所示,一辆汽车在马路上行驶,∠AOB=40°,∠CO’D=140°,若这辆汽车向右拐,则需拐多少度的角?若这辆汽车向左拐,则需拐多少度的角?参考答案:一、1、C ;2、C ;3、C ;4、D ;5、A ;6、A ;7、A ;8、B ;9、A ;10、B二、1、0,1,2;2、1,2,90;3、三棱柱;4、柱,锥,球;5、长方形,扇形,长方形;6、21°48′;7、10;8、>,两点之间线段最短;9、∠BOC ;10、圆锥;三、1、(1)111°30′,(2)32°36′33″;2、4cm ;3、略;4、(1)俯视图,左视图、主视图,(2)主视图、俯视图、左视图;5、互相垂直;6、140°、40°。
图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。
第三章?图形认识初步?复习测试姓名学号一、填空题:1、如图〔1〕共有线段条。
2、把三角板绕着一条直角边旋转一圈,那么所围成的几何体是。
3、在如图〔3〕的3×3的方格图案中,正方形的个数共有个。
4、把长、宽分别为4cm、9cm的长方形纸片围成一个圆柱,那么圆柱的底面半径为。
5、AC是∠AOB的平分线,∠AOB=68°,那么∠AOC=6、27.24°=度分秒7、A看B的方向为北偏西50°,那么B看A的方向是8、吊扇绕轴至少旋转度,才能与起始位置重合。
9、一个角为35°39′,那么这个角的余角为,补角为10、把一个直角纸片对折后再对折,每次对折时使角的两边重合,那么所形成的角的度数是。
二、选择题:12、3点整,钟表的时针与分针所成的角的度数为〔〕A.60°B.90°C.120°D.150°13、如果一个角的余角与它的补角互补,那么这个角为〔〕A.30°B.60°C.45°D.90°14、如图〔4〕,把一根角钢弯成150°,那么截去∠α的度数应该是〔〕A.120°B.60°C.80°D.30°15、以∠AOB的顶点O为射线端点,在∠AOB的内部画出3条射线,在所成的图形中角的总个数是〔〕A.4B.6C.8D.1016、在放大镜下看一个角,结果这个角的度数为〔〕A.变大B.变小C.不变D.无法确定18、用一副三角板,可以画出锐角的个数是〔〕A.4B.5C.6D.719、钟表上,8点30分时,时针与分针的夹角是〔〕A.60°B.75°C.85°D.90°20、如果∠1与∠2互补,∠2为锐角,那么以下表示∠2余角的式子是〔〕A.90°-∠1B.∠1-90°C.∠1+90° D、90°-∠1三、计算题:21、计算:30°25′×3〔结果用“度〞表示〕22、48°39′+67°31′ 23. 90°-78°19′23″24、一个角是34°43′,求它的补角和余角。
第四章《图形认识初步》综合测试题
一、选择题(每小题3分,共30分) 1.下列空间图形中是圆柱的为( )
2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的( )
A
.①②③④
B .①③②④
C .②④①③
D .④③①②
3.将如图2所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图3中( )
4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的
5.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定
出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用事实 “两点之间,线段最短”来解释的现象有( )
A.①② B.①③ C.②④ D.③④ 6.已知∠α=35°19′,则∠α的余角等于( )
A .144°41′
B .144°81′ C. 54°41′ D . 54°81′ 7.线段12A B cm =,点
C 在AB 上,且13
A C
B
C =
,M 为B C 的中点,则AM 的长为( )
A
第2题图
A.
B.
C.
D.
A.4.5cm
B. 6.5cm
C. 7.5cm
D. 8
8.如图,下列说法中错误的是(
)
A.OA 方向是北偏东30º B.OB 方向是北偏西15º C.OC 方向是南偏西25º D.OD 方向是东南方向
二、填空题(每小题2分,共20分)
1.长方体由 个面, 条棱, 个顶点.
2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.
3.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线_________条。
4.(1)=0
48
.32 度 分 秒。
(2)//
/
422372= 度。
5.如图,OB 平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD 的度数为_______.
6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______. 7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.
8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...
涂色的小立方体共有 个.
三、解答题 1.计算:
(1)22°18′×5;(2)90°-57°23′27″.
2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-3
1∠β的值
3. 一个角的补角加上0
10后等于这个角的余角的3倍,求这个角.
4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。
⑵根据⑴的计算过程与结果,设AC +BC =a ,其它条件不变,你能猜想出MN 的长度吗?请用一句简洁的语言表达你发现的规律.
⑶若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论又如何?请说明理由。
5.如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC,
∠DOE=90°
(1)请你数一数,图中有多少个小于平角的角; (2)求出∠BOD 的度数;
(3)请通过计算说明OE 是否平分∠B OC.
6.下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的图形。
仔细观察图形可知:
图1中有1块黑色的瓷砖,可表示为1=
2
1)11(⨯+; 图2中有3块黑色的瓷砖,可表示为1+2=
2
2
)21(⨯+;
图3中有6块黑色的瓷砖,可表示为1+2+3=
2
3
)31(⨯+;
实践与探索:
(1)请在图4中的虚线框内画出第4个图形
(2)第10个图形有 块黑色的瓷砖;第n 个图形有 块黑色的瓷砖.
参考答案
一、选择题
1.A 2.A 3.D 4.A 5.D 6.C 7.C 8.A 二、填空题
1. 6,12,8 2.四棱锥,圆柱,三楞柱 3.4 4.\
\\
482832,0
395.72 5.38° 6.35° 7.5 8.8n -4 三、解答题
1.(1)111°30′;(2)32°36′33″.
2. 45°.
3. 这个角为40度。
(提示:设这个角为0
x ,则它的余角为0)90(x -,补角为0
)180(x -,根据题意,得)90(310)180(x x -=+-,解得40=x )
图
1 图
2 图
3 图
4
4.⑴8.(提示:因为点M 、N 分别是AC 、BC 的中点,所以12
M C A C =
,12
C N B C =
,
MN MC CN =+538=+=)
⑵12
M N a =
.若点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,则12
M N A B =
;⑶若
把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论不成立.因为射线CA 、CB 没有中点. 5.(1)图中有9个小于平角的角;
(2)155°(提示:因为OD 平分∠AOC,∠AOC =50°,所以∠AOD =
AOC ∠2
1=25°,所以
∠BOD=180°-25°=155°)
(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠C OE = 90°-25°=65 ,所以 ∠BOE =∠COE,即OE 平分∠BOE. 6.(1)略,(2)55,2
1n (n+1),(n 为正整数).。