【高三】安徽省亳州市蒙城县2018届高三数学上学期第五次月考试题文(含答案)
- 格式:doc
- 大小:494.50 KB
- 文档页数:10
2017-2018学年蒙城一中高三第五次月考数学试题(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】因为,,,所以,故选C.点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错.2. 已知复数,则复数的共轭复数()A. B. C. D.【答案】D【解析】因为,所以,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 已知则是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由得,因为是减函数,所以成立,当时,成立,因为正负不确定,不能推出,故是“”的充分不必要条件,故选A.4. 平面向量与的夹角为120°,,,则()A. 4B. 3C. 2D.【答案】C【解析】由得,,故选C.5. 设满足条件,则的最小值是()A. 14B. 10C. 6D. 4【答案】D【解析】作出可行域如下图:由可得:,平移直线,则当直线经过点时,直线的截距最小,此时z的最小值为4,故选D.6. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】作出立体图形为:故该几何体的体积为:7. 已知是定义在上的偶函数,且在上是增函数,设,,,则的大小关系是()A. B. C. D.【答案】B【解析】因为是定义在上的偶函数,且在上是增函数,所以在上是减函数,且,,,因为,,所以,根据函数的增减性知,,故选B.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.8. 设等比数列的前项和为,若,则()A. B. C. D.【答案】C则则则则故选C9. 在锐角中,角所对的边分别为,若,,,则的值为()A. B. C. D.【答案】A【解析】由三角形面积公式知,化简得:①,因为,所以是锐角),根据余弦定理得:,所以②联立①②解得,故选A.10. 若将函数的图象向左平移个单位,所得的图象关于轴对称,则的最小值是()A. B. C. D.【答案】B.....................11. 已知分别是双曲线的左右焦点,过的直线与双曲线的左、右两支分别交于点,若为等边三角形,则双曲线的离心率为()A. B. 4 C. D.【答案】A【解析】因为△ABF2为等边三角形,不妨设AB=BF2=AF2=m,A为双曲线上一点,F1A﹣F2A=F1A﹣AB=F1B=2a,B为双曲线上一点,则BF2﹣BF1=2a,BF2=4a,F1F2=2c,由∠ABF2=60°,则∠F1BF2=120°,在△F1BF2中应用余弦定理得:4c2=4a2+16a2﹣2•2a•4a•cos120°,得c2=7a2,则e2=7,解得e=.故答案选:A.点睛:这个题目考查的是双曲线的定义的应用,圆锥曲线中求离心率的题型中,常见的方法有定义法的应用,特殊三角形的三边关系的应用,图形中位线的应用,焦半径范围的应用,点在曲线上的应用。
蒙城县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称 2. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B.(,,)C.(,,)D.(,,)3. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .24. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12) 5. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣6. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+7. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或 8. 已知数列,则5是这个数列的( ) A .第12项 B .第13项 C .第14项D .第25项9. 正方体的内切球与外接球的半径之比为( )A .B .C .D .10.某程序框图如图所示,该程序运行后输出的S 的值是( )A .﹣3B .﹣C .D .211.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .12.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 2二、填空题13.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 14.抛物线y=4x 2的焦点坐标是 .15.i 是虚数单位,化简:= .16.已知椭圆中心在原点,一个焦点为F(﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.17.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为海里.18.已知(x2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是.三、解答题19.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.20.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM•ON为定值;②证明:A、Q、N三点共线.21.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.22.已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g(x )为f 1(x ),f 2(x )的“活动函数”.已知函数+2ax .若在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围.235(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.蒙城县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.2.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],3.【答案】A【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.4.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣. 故选:C .【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.6. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.7. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
安徽省亳州市蒙城第一中学2018年高三数学文测试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 集合,,若,则的值为()A.1 B.2 C.-4 D.4参考答案:C试题分析:由于,当,解得,符合题意;当,解之得无解,故答案为C.考点:1、集合中元素的性质;2、集合的并集.2. 设,则,,的大小关系是A. B. C.D.参考答案:A略3. 已知随机变量且则A. B. C.D.参考答案:D4. 已知等差数列的前项和为,若,则()A. B. C.D.参考答案:C5. 已知函数f(x)=ax+elnx与g(x)=的图象有三个不同的公共点,其中e为自然对数的底数,则实数a的取值范围为()A.a<﹣e B.a>1 C.a>e D.a<﹣3或a>1参考答案:B【考点】6D:利用导数研究函数的极值;54:根的存在性及根的个数判断.【分析】由题意可知:令f(x)=g(x),化简求得t2+(a﹣1)t﹣a+1=0,根据h(x)的单调性求得方程根所在的区间,根据二次函数的性质,即可求得a的取值范围.【解答】解:由ax+elnx=,整理得:a+=,令h(x)=,且t=h(x),则t2+(a﹣1)t﹣a+1=0,求导h′(x)==0,解得:x=e,∴h(x)在(0,e)上单调递增,在(e,+∞)单调递减,则当x→+∞时,h(x)→0,如图所示,由题意可知方程有一个根t1在(0,1)内,另一个根t2=1或t2=0或t2∈(﹣∞,0),当t2=1方程无意义,当t2=0时,a=1,t1=0不满足题意;则t2∈(﹣∞,0),由二次函数的性质可知:,即,解得:a>1,故选:B.【点评】本题考查函数零点与函数方程的关系,考查利用导数判断函数的极值,考查二次函数的性质,考查数形结合思想,属于难题.6. 已知矩形ABCD中,,BC=1,则=( )A.1 B.﹣1 C.D.参考答案:A【考点】平面向量数量积的运算.【专题】计算题;数形结合;向量法;平面向量及应用.【分析】法一、以A为坐标原点,AB为x轴,AD为y轴建立平面直角坐标系,得到点的坐标,进一步求得向量的坐标得答案;法二、以为基底,把用基底表示,则可求.【解答】解:法一、如图,以A为坐标原点,AB为x轴,AD为y轴建立平面直角坐标系,则A(0,0),,,D(0,1),∴,,则.故选:A.法二、记,,则,,,∴=.故选:A.【点评】本题考查平面向量的数量积运算,解答此类问题常用两种方法,即建系法或利用平面向量基本定理解决,建系法有时能使复杂的问题简单化,是中档题.7. 已知不等式对任意实数都成立,则常数的最小值为A.1B. 2C.3 D. 4参考答案:D略8. 对于原命题:“已知,若,则”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为A.0个 B.1个 C.2个 D.4个参考答案:C当时,不成立,所以原命题错误,即逆否命题错误。
蒙城县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.2. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣33. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞) 4.已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞--、),3()1,35(+∞--、),3[]1,35[+∞--、),3()1,2(+∞--、5. 执行如图的程序框图,若输出的值为,则①、②处可填入的条件分别为( )i 12A .S 384,2i i ≥=+C .S 3840,2i i ≥=+6.)A C .(0,1)D .(0,5)7. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣48. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .410.把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣)B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x11.某三棱锥的三视图如图所示,该三棱锥的表面积是A 、B 、 28+30+C 、D 、56+60+12.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( )A .4B .5C .6D .9二、填空题13.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .14.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)15. 设函数,.有下列四个命题:()xf x e =()lng x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22em <-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.16.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.17.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 18.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .三、解答题19.(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都C 022=++++F Ey Dx y x 2C 043=+y x y 相切.(1)求;F E D 、、(2)若直线与圆交于两点,求.022=+-y x C B A 、||AB 20.已知f (x )=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x ∈[1,3]时,f (x )>1﹣4c 2恒成立,求实数c 的取值范围.21.已知圆C 的圆心在射线3x ﹣y=0(x ≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ) 求圆C 的方程;(Ⅱ) 点A (1,1),B (﹣2,0),点P 在圆C 上运动,求|PA|2+|PB|2的最大值. 22.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x a -=)cos sin ,(cos x x x b +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆23.求曲线y=x3的过(1,1)的切线方程.24.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.蒙城县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】,故选B .(2016)(2016)(54031)(1)f f f f e -==⨯+==2. 【答案】B【解析】解:∵ =(2+3)(k ﹣4)=2k +(3k ﹣8)﹣12=0,又∵=0.∴2k ﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的 3. 【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g (﹣1)=﹣2﹣1=﹣3,故结合图象可知,a >﹣3时,方程a=2x ﹣有且只有一个解,即函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,故选:D . 4. 【答案】C【解析】由已知,圆的标准方程为,圆的标准方程为1O 222(1)()(4)x y a a ++-=+2O ,∵ ,要使两圆恒有公共点,则,即222()()(2)x a y a a ++-=+2->a 122||26O O a ≤≤+,解得或,故答案选C62|1|2+≤-≤a a 3≥a 135-≤≤-a 5. 【答案】D【解析】如果②处填入,2i i =+则,故选D .12468103840S =⨯⨯⨯⨯⨯=6. 【答案】A【解析】解:∵f (x )=x 3﹣3x 2+5,∴f ′(x )=3x 2﹣6x ,令f ′(x )<0,解得:0<x <2,【点评】本题考察了函数的单调性,导数的应用,是一道基础题. 7. 【答案】A【解析】解:∵点P (1,3)在α终边上,∴tan α=3,∴====﹣.故选:A . 8. 【答案】C【解析】解:∵对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y ),∴令x=n ,y=1,得f (n )•f (1)=f (n+1),即==f (1)=,∴数列{a n }是以为首项,以为等比的等比数列,∴a n =f (n )=()n ,∴S n ==1﹣()n ∈[,1).故选C .【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题. 9. 【答案】A 【解析】1111]试题分析:.故选A .111]199515539()9215()52a a S a a a S a +===+考点:等差数列的前项和.10.【答案】D【解析】解:把函数y=sin (2x ﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另一侧加与减. 11.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。
怀远一中 蒙城一中 淮南一中 涡阳一中2018届高三上学期“五校”联考数学(文)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1},{1,0,3}A B a ==-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .12.已知命题2:,10p x R x x ∀∈-+≥;命题:q 若33a b <,则a b <,下列命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∨⌝3. 已知{}na 是公差为1的等差数列,nS 为{}n a 的前n 项和,若85SS =,则10a=( )A .6-B .3-C .3D .04。
已知下列四个条件:①0b a >>;②0a b >>;③0a b >>;④0a b >>,能推出11a b <成立的有()A .1个B .2个C .3个D .4个 5.已知函数()3,02sin cos ,0x x x f x x x x ⎧+>=⎨≤⎩,则下列结论正确的是 ( )A .()f x 是奇函数B .()f x 是增函数C .()f x 是周期函数D .()f x 的值域为[1,)-+∞ 6。
在ABC ∆中,7,2,3AC BC B π===,则AC 边上的高等于( )A 321B 621C 36+D 339+7.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b-等于( )A .1 B . C D .38.将函数cos 2y x =的图象向左平移2π个单位,得到函数()y f x =的图象,则下列说法正确的是( )A .()y f x =是奇函数B .()y f x =的周期为2πC .()y f x =的图象关于直线2x π=对称 D .()y f x =的图象关于点(,0)2π-的对称9. 已知非零向量,,a b c 满足0a b c ++=,向量,a b 的夹角为0150,且23b a =,则向量a 与b 的夹角为( ) A .060 B .090 C .0120 D .015010。
蒙城县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+) B .f (x )=sin (2x+) C .f (x )=sin (x+) D .f (x )=sin (2x+)2. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.3. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )A .1 B. C .e ﹣1 D .e+14. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 5.若向量=(3,m),=(2,﹣1),∥,则实数m 的值为( ) A.﹣ B. C .2D .66.若椭圆+=1的离心率e=,则m 的值为( )A .1B.或C.D .3或7. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .368. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a > B.0a << C .02a << D .以上都不对9. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 10.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°11.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)12.设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤2二、填空题13.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________. 15.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .16.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .17.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 18.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .三、解答题19.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0 (1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.20.在中,,,.(1)求的值;(2)求的值。
蒙城县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.2. 设等比数列{}n a 的前项和为n S ,若633S S =,则96SS =( ) A .2 B .73 C.83D .3 3. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④4. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 5.设集合,则A ∩B 等于( ) A .{1,2,5} B .{l ,2,4,5} C .{1,4,5} D .{1,2,4}6. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.7. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 8. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )9. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±xB .y=±3xC .y=±xD .y=±x10.为了得到函数的图象,只需把函数y=sin3x 的图象( )A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度D .向左平移个单位长度11.复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.12.已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 14.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn是向量与i的夹角,则++…+= .15.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .16在这段时间内,该车每100千米平均耗油量为 升.三、解答题(本大共6小题,共70分。
2018届安徽省高三上学期12月月考试卷(文科数学)一、选择题(共12题,每小题5分)1.若集合P={x|2≤x <4},Q={x|x ≥3},则P∩Q 等于( )A .{x|3≤x <4}B .{x|3<x <4}C .{x|2≤x <3}D .{x|2≤x ≤3}2.复数(3+2i )i 等于( )A .﹣2﹣3iB .﹣2+3iC .2﹣3iD .2+3i3.以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A .2πB .πC .2D .14.设命题p :∀x ∈R ,x 2+1>0,则¬p 为( )A .∃x 0∈R ,x 02+1>0B .∃x 0∈R ,x 02+1≤0C .∃x 0∈R ,x 02+1<0D .∀x 0∈R ,x 02+1≤05.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,m ⊥n ,则n ∥αC .若m ∥α,m ⊥n ,则n ⊥αD .若m ⊥α,n ⊂α,则m ⊥n6.将函数y=sinx 的图象向左平移个单位,得到函数y=f (x )的函数图象,则下列说法正确的是( )A .y=f (x )是奇函数B .y=f (x )的周期为πC .y=f (x )的图象关于直线x=对称D .y=f (x )的图象关于点(﹣,0)对称 7.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)8.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .849.要制作一个容积为4m 3,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则等于( )A .B .2C .3D .411.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .12.已知圆C :(x ﹣a )2+(y ﹣b )2=1,设平面区域Ω=,若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .49B .37C .29D .5二.填空题(共4题,每题5分)13.在△ABC 中,A=60°,AC=2,BC=,则AB 等于 .14.函数f (x )=的零点个数是 .15.某几何体的三视图如图所示,则该几何体的体积为 .16.设正实数x ,y ,z 满足x 2﹣3xy+4y 2﹣z=0,则当取得最小值时,x+2y ﹣z 的最大值为 .三.解答题(共6题,17题10分,其它各题12分)17.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a=3,cosA=,B=A+.(Ⅰ)求b 的值;(Ⅱ)求△ABC 的面积.18.已知函数f (x )=cosx•sin(x+)﹣cos 2x+,x ∈R . (Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在闭区间[﹣,]上的最大值和最小值. 19.在等比数列{a n }中,a 2=3,a 5=81.(Ⅰ)求a n ;(Ⅱ)设b n =log 3a n ,求数列{b n }的前n 项和S n .20.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC=2,BC=1,E ,F 分别是A 1C 1,BC 的中点.(Ⅰ)求证:平面ABE ⊥B 1BCC 1;(Ⅱ)求证:C 1F ∥平面ABE ;(Ⅲ)求三棱锥E ﹣ABC 的体积.21.设函数f (x )=(x+a )lnx ,g (x )=.已知曲线y=f (x )在点(1,f (1))处的切线与直线2x ﹣y=0平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k+1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数m (x )=min{f (x ),g (x )}(min{p ,q}表示p ,q 中的较小值),求m (x )的最大值.22.已知函数f (x )=|2x+1|+|2x ﹣3|.(Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )<|a ﹣1|的解集非空,求实数a 的取值范围.2018届安徽省高三上学期12月月考试卷(文科数学)参考答案与试题解析一、选择题(共12题,每小题5分)1.若集合P={x|2≤x <4},Q={x|x ≥3},则P∩Q 等于( )A .{x|3≤x <4}B .{x|3<x <4}C .{x|2≤x <3}D .{x|2≤x ≤3}【考点】交集及其运算.【分析】由于两集合已是最简,直接求它们的交集即可选出正确答案【解答】解:∵P={x|2≤x <4},Q={x|x ≥3},∴P∩Q={x|3≤x <4}.故选A .2.复数(3+2i )i 等于( )A .﹣2﹣3iB .﹣2+3iC .2﹣3iD .2+3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简求值.【解答】解:(3+2i )i=3i+2i 2=﹣2+3i .故选:B .3.以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A .2πB .πC .2D .1【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的侧面积和表面积.【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:A .4.设命题p :∀x ∈R ,x 2+1>0,则¬p 为( )A .∃x 0∈R ,x 02+1>0B .∃x 0∈R ,x 02+1≤0C .∃x 0∈R ,x 02+1<0D .∀x 0∈R ,x 02+1≤0【考点】命题的否定.【分析】题设中的命题是一个特称命题,按命题否定的规则写出其否定即可找出正确选项【解答】解∵命题p :∀x ∈R ,x 2+1>0,是一个特称命题.∴¬p :∃x 0∈R ,x 02+1≤0.故选B .5.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,m ⊥n ,则n ∥αC .若m ∥α,m ⊥n ,则n ⊥αD .若m ⊥α,n ⊂α,则m ⊥n【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系.【分析】画一个正方体,利用正方体中的线线、线面关系说明ABC 都不对.【解答】解:在正方体ABCD ﹣A′B′C′D′中:令底面A′B′C′D′=αA、令m=AB,n=BC,满足m∥α,n∥α,但m∥n不成立,A错误;B、令m=AA′,n=A′B′,满足m⊥α,m⊥n,但n∥α不成立,B错误;C、令m=AB,n=AD,满足m∥α,m⊥n,但n⊥α不成立,C错误;故选:D.6.将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.【解答】解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.x,在下列区间中,包含f(x)零点的区间是()7.已知函数f(x)=﹣log2A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【考点】函数零点的判定定理.【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解:∵f (x )=﹣log 2x ,∴f (2)=2>0,f (4)=﹣<0,满足f (2)f (4)<0,∴f (x )在区间(2,4)内必有零点,故选:C8.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84【考点】等比数列的通项公式.【分析】由已知,a 1=3,a 1+a 3+a 5=21,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式即可求.【解答】解:∵a 1=3,a 1+a 3+a 5=21,∴,∴q 4+q 2+1=7,∴q 4+q 2﹣6=0,∴q 2=2,∴a 3+a 5+a 7==3×(2+4+8)=42. 故选:B9.要制作一个容积为4m 3,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】设池底长和宽分别为a ,b ,成本为y ,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a ,b ,成本为y ,则∵长方形容器的容器为4m 3,高为1m ,∴底面面积S=ab=4,y=20S+10[2(a+b )]=20(a+b )+80,∵a+b ≥2=4,∴当a=b=2时,y 取最小值160,即该容器的最低总造价是160元,故选:C .10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则等于( )A .B .2C .3D .4【考点】向量在几何中的应用.【分析】虑用特殊值法去做,因为O 为任意一点,不妨把O 看成是特殊点,再代入计算,结果满足哪一个选项,就选哪一个.【解答】解:∵O 为任意一点,不妨把A 点看成O 点,则=,∵M 是平行四边形ABCD 的对角线的交点,∴=2=4故选:D .11.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .【考点】平行向量与共线向量.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A .12.已知圆C :(x ﹣a )2+(y ﹣b )2=1,设平面区域Ω=,若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .49B .37C .29D .5【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用圆C 与x 轴相切,得到b=1为定值,此时利用数形结合确定a 的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a ,b ),半径为1∵圆心C ∈Ω,且圆C 与x 轴相切,∴b=1,则a 2+b 2=a 2+1,∴要使a 2+b 2的取得最大值,则只需a 最大即可,由图象可知当圆心C 位于B 点时,a 取值最大,由,解得,即B (6,1),∴当a=6,b=1时,a 2+b 2=36+1=37,即最大值为37,故选:C二.填空题(共4题,每题5分)13.在△ABC 中,A=60°,AC=2,BC=,则AB 等于 1 .【考点】余弦定理.【分析】利用余弦定理计算即可.【解答】解:由余弦定理可得:BC 2=AC 2+AB 2﹣2AB•ACcosA,即3=4+AB 2﹣2AB ,解得AB=1,故答案为:1.14.函数f (x )=的零点个数是 2 .【考点】根的存在性及根的个数判断.【分析】根据函数零点的定义,直接解方程即可得到结论.【解答】解:当x ≤0时,由f (x )=0得x 2﹣2=0,解得x=或x=(舍去),当x >0时,由f (x )=0得2x ﹣6+lnx=0,即lnx=6﹣2x ,作出函数y=lnx 和y=6﹣2x 在同一坐标系图象,由图象可知此时两个函数只有1个交点,故x >0时,函数有1个零点.故函数f (x )的零点个数为2,故答案为:215.某几何体的三视图如图所示,则该几何体的体积为.【考点】由三视图求面积、体积.【分析】由几何体的三视图得到该几何体是由底面直径为2,高为2的圆柱和底面直径为2高为1的半圆锥两部分组成,由此能求出该几何体的体积.【解答】解:由几何体的三视图得到该几何体是由底面直径为2,高为2的圆柱和底面直径为2高为1的半圆锥两部分组成,∴该几何体的体积为:V=×=.故答案为:.16.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为 2 .【考点】基本不等式.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可得到当取得最小值时的条件,用x,z表示y后利用配方法求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故答案为:2.三.解答题(共6题,17题10分,其它各题12分)17.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【考点】正弦定理.【分析】(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.18.已知函数f (x )=cosx•sin(x+)﹣cos 2x+,x ∈R . (Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在闭区间[﹣,]上的最大值和最小值.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x 的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f (x )=cosx•(sinxcosx )====所以,f (x )的最小正周期=π.(Ⅱ)由(Ⅰ)得f (x )=,由x ∈[﹣,]得,2x ∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f (x )取到最小值是:,当=时,即=时,f (x )取到最大值是:,所以,所求的最大值为,最小值为.19.在等比数列{a n }中,a 2=3,a 5=81.(Ⅰ)求a n ;(Ⅱ)设b n =log 3a n ,求数列{b n }的前n 项和S n .【考点】等比数列的通项公式;等差数列的前n 项和.【分析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求; (Ⅱ)把(Ⅰ)中求得的a n 代入b n =log 3a n ,得到数列{b n }的通项公式,由此得到数列{b n }是以0为首项,以1为公差的等差数列,由等差数列的前n 项和公式得答案.【解答】解:(Ⅰ)设等比数列{a n }的公比为q ,由a 2=3,a 5=81,得,解得.∴; (Ⅱ)∵,b n =log 3a n ,∴.则数列{b n }的首项为b 1=0,由b n ﹣b n ﹣1=n ﹣1﹣(n ﹣2)=1(n ≥2),可知数列{b n }是以1为公差的等差数列.∴.20.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC=2,BC=1,E ,F 分别是A 1C 1,BC 的中点.(Ⅰ)求证:平面ABE ⊥B 1BCC 1;(Ⅱ)求证:C 1F ∥平面ABE ;(Ⅲ)求三棱锥E ﹣ABC 的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)证明AB ⊥B 1BCC 1,可得平面ABE ⊥B 1BCC 1;(Ⅱ)证明C 1F ∥平面ABE ,只需证明四边形FGEC 1为平行四边形,可得C 1F ∥EG ;(Ⅲ)利用V E ﹣ABC =,可求三棱锥E ﹣ABC 的体积.【解答】(Ⅰ)证明:∵三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∴BB 1⊥AB ,∵AB ⊥BC ,BB 1∩BC=B,∴AB ⊥平面B 1BCC 1,∵AB ⊂平面ABE ,∴平面ABE ⊥B 1BCC 1;(Ⅱ)证明:取AB 中点G ,连接EG ,FG ,则,∵F 是BC 的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(Ⅲ)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴VE﹣ABC===.21.设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;(Ⅲ)由(Ⅱ)求得m(x)的解析式,通过g(x)的最大值,即可得到所求.【解答】解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+,曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2x﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f(x)=(x+1)lnx,f′(x)=lnx+1+,令h(x)=lnx+1+,h′(x)=﹣=,当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,当x>1时,h′(x)>0,h(x)在(1,+∞)递增.=h(1)=2>0,即f′(x)>0,当x=1时,h(x)minf(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,g(x)=的导数为g′(x)=,当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,当x>2时,g′(x)<0,g(x)在(2,+∞)递减.则x=2取得最大值,令T(x)=f(x)﹣g(x)=(x+1)lnx﹣,T(1)=﹣<0,T(2)=3ln2﹣>0,T(x)的导数为T′(x)=lnx+1+﹣,由1<x<2,通过导数可得lnx>1﹣,即有lnx+1+>2;e x>1+x,可得﹣>,可得lnx+1+﹣>2+=>0,即为T′(x)>0在(1,2)成立,则T(x)在(1,2)递增,由零点存在定理可得,存在自然数k=1,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根;(Ⅲ)由(Ⅱ)知,m(x)=,其中x∈(1,2),且x=2时,g(x)取得最大值,且为g(2)=,则有m(x)的最大值为m(2)=.22.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|a﹣1|的解集非空,求实数a的取值范围.【考点】带绝对值的函数;其他不等式的解法.【分析】(Ⅰ)不等式等价于①,或②,或③.分别求出这3个不等式组的解集,再取并集,即得所求.(Ⅱ)由绝对值不等式的性质求出f(x)的最小值等于4,故有|a﹣1|>4,解此不等式求得实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)≤6 即|2x+1|+|2x﹣3|≤6,∴①,或②,或③.解①得﹣1≤x<﹣,解②得﹣≤x≤,解③得<x≤2.故由不等式可得,即不等式的解集为{x|﹣1≤x≤2}.(Ⅱ)∵f(x)=|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,即f(x)的最小值等于4,∴|a﹣1|>4,解此不等式得a<﹣3或a>5.故实数a的取值范围为(﹣∞,﹣3)∪(5,+∞).。
安徽省蒙城县第一中学、淮南第一中学等2018届高三上学期“五校”联考数学试题(理科)1. 已知集合,,则()A. B. C. D.【答案】D【解析】由题意得,,所以,故选D.2. 函数的大致图象是()【答案】A【解析】函数是偶函数,所以选项C、D不正确,当时,函数是增函数,所以B不正确,故选A.请在此填写本题解析!3. 已知是公差为的等差数列,为的前项和,若,则()A. B. C. D.【答案】C【解析】因为,所以,根据等差数列的性质,可得,又数列的公差为,所以,故选C.4. 已知函数,,则“”是“函数的最小正周期为”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】,当时,函数的周期充分性成立,若函数的最小正周期为,则,解得,必要性不成立,故“”是“函数的最小正周期为”的充分不必要条件,故选B.5. 函数是定义在上的单调递增的奇函数,若,则满足的的取值范围是()A. B. C. D.【答案】A【解析】因为函数是定义在上单调递增的奇函数,由,则,又,则,所以,所以,故选A.6. 为了得到函数的图象,只需把函数的图象上所有的点()A. 向右平移移动个单位B. 向左平移移动个单位C. 向上平行移动个单位D. 向下平行移动个单位【答案】C【解析】由,所以只需把函数的图象向上平移1个单位,即可得到,故选C.7. 已知非零向量,,满足,向量,的夹角为,且,则向量与的夹角为()A. B. C. D.【答案】B【解析】因为,所以,所以与的夹角为,故选B.8. 若函数在其定义域的一个子区间内不是单调函数,则实数的取值范围是()A. B. C. D.【答案】D【解析】函数的定义域为,所以,即,又,令,解得或(舍去),由于函数在区间内不是单调函数,所以,即,解得,综上可得,故选D.9. 若函数,满足,则称,为区间上的一组正交函数.给出三组函数:①,;②,;③.其中为区间上的正交函数的组数是()A. 0B. 1C. 2D. 3【答案】B【解析】函数满足,则为奇函数,对于①:,所以为奇函数,所以在区间上是一组正交函数;对于②:,则为偶函数,所以在区间上不是一组正交函数;对于③:,,则为偶函数,所以在区间上不是一组正交函数,故选B.10. 已知正项等比数列()满足,若存在两项,使得,则的最小值为()A. B. C. D.【答案】C【解析】∵正项等比数列{a n}满足:,又q>0,解得,∵存在两项a m,a n使得,∴,即,∴,当且仅当=取等号,但此时m,n∉N*.又,所以只有当,取得最小值是.故选C.点睛:本题解题时要认真审题,注意正项等比数列的性质,利用等比数列的通项公式,解得,运用均值不等式求最值,一般运用均值定理需要要根据一正、二定、三取等的思路去思考,本题根据条件构造,研究的式子乘以1后变形,即可形成所需条件,应用均值不等式.11. 已知为上的可导函数,为的导函数且有,则对任意的,,当时,有()A. B. C. D.【答案】A【解析】不妨设,则,因为当,,即,则,所以函数为单调递减函数,又且,所以,故选A.点睛:本题主要考查了导数在函数中的应用问题,其中解答中涉及到导数四则运算公式的逆用,利用导数研究函数的单调性,以及利用函数的单调性比较大小等知识点的运用,试题比较基础,属于基础题,解答中根据题意构造新函数,利用新函数的单调性解答的关键.12. 已知函数,若对任意,总存在使得,则实数的取值范围是()A. B. C. D.【答案】D【解析】当时,为单调递增函数,且,当时,,又对任意,总存在使得,所以,所以,综上,实数的取值范围是,故选D.点睛:本题主要考查分段函数的应用,其中解答中涉及到指数函数的单调性与值域,基本不等式的应用求最值,以及命题的转化等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中根据题意转化为两段函数的最值之间的关系是解答本题的关键.13. 已知点,则向量在方向上的投影为__________.【答案】【解析】由题意得,所以,所以向量在方向上的投影为.........................【答案】【解析】由题意得,画出约束条件所表示的平面区域如图所示又,设,当取可行域内点时,此时取得最大值,由,得,此时,所以的最大值为.15. 若函数的图象上存在与直线平行的切线,则实数的取值范围是__________.【答案】【解析】函数的导数为,因为函数存在与直线平行的切线,所以方程在区间上有解,即在区间上有解,因为,则,所以.点睛:本题主要考查了导数的几何意义的应用问题,其中解答中涉及到函数的导数的求解,导数的几何意义的应用,以及存在性问题的转化等知识点的运用,试题有一定的难度,属于中档试题,解答中把存在性命题转化为方程的有解问题是解答的关键.16. 已知函数是定义域为的偶函数,当时,,若关于的方程有且仅有6个不同的实数根,则实数的取值范围是__________.【答案】【解析】作出函数的图象如图所示,令,则由图象可得:当时,方程只有1解;当或时,方程有2解;当时,方程有4解;因为,所以或,因为有解,所以又两解,所以或.点睛:本题主要考查了方程根的个数的判定与应用问题,其中解答中涉及到一元二次方程根的求解,函数的图象的应用等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中正确作出函数的图象和合理应用的根的个数的应用是解答的关键.17. 已知函数.(1)求的最小正周期及单调递增区间;(2)若在区间上的最大值与最小值的和为1,求的值.【答案】(1),().(2).【解析】试题分析: (Ⅰ)根据二倍角公式和两角和与差的正弦公式化简函数,求出函数的最小正周期及单调递增区间;(Ⅱ)由x的范围,求出的范围,画出正弦函数的图象,求出函数的最大值与最小值的和等于1,解出a的值.试题解析:(Ⅰ)所以.由,得.故,函数的单调递增区间是().(Ⅱ)因为,所以.所以.因为函数在上的最大值与最小值的和为,所以.18. 已知是等比数列,公比,前项和为,且,数列满足:.(1)求数列,的通项公式;(2)设数列的前项和为,求证:.【答案】(1)(2)【解析】试题分析:(1)由等比数列,利用等比数列的通项公式和前项和公式,求得,即可求出通项公式;(2)由(1)求得,利用裂项求和的方法,即可求解数列的和,由此可作出证明.试题解析:(1)故解得所以,.(2)设,,因为,所以,.19. 已知分别为角的对边,它的外接圆的半径为为常数),并且满足等式成立.(1)求;(2)求的面积的最大值.【答案】(1)(2)【解析】试题分析:(1)利用正弦定理,化简得,再由余弦定理,即可求得的值,从而求解的值;(2)由(1)知,,利用两角和与差的正弦,即可求解,从而求得三角形面积的最大值.试题解析:(1)由,∴,由正弦定理得,,,代入得,由余弦定理,∴.(2)由(1)知,,所以,当且仅当时,.20. 设数列的前项和为,且满足.(1)求数列的通项公式;(2)若数列满足,且,求数列的通项公式;(3)设,求数列的前项和.【答案】(1)(2)(3).【解析】试题分析:解:(1)当n=1时,,所以当n≥2时,,且所以得:则数列是以1为首项,为公比的等比数列,所以:数列的通项公式是。
2017-2018学年度高三第五次月考数学(文科)试卷注意事项:答题前填写好自己的姓名、班级、考号等信息,请将答案正确填写在答题卡上. 一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合}01{,-=A ,}10{,=B ,则集合)(B A C B A ( ) A .φ B .}0{ C .}1-1{, D .}10-1{,,2.已知为虚数单位,若1(,)1ia bi ab R i+=+∈-,则a b +=( ) A .0 B .1 C .1- D .23.命题p :在△ABC 中,∠C >∠B 是sinC >sinB 的充要条件;命题q :a >b 是ac 2>bc 2的充分不必要条件,则( )A .“p∨q”为假B .“p∧q”为真C .¬p 为假D .¬q 为假4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为A.9万件B.11万件C.12万件D.13万件 5.如图,格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱的长度等于( )A .B .C .5D .26.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A .B .C .10D .127.执行如图所示的算法,则输出的结果是( )A .1B .C .D .28.若1≤log 2(x ﹣y+1)≤2,|x ﹣3|≤1,则x ﹣2y 的最大值与最小值之和是( ) A .0B .﹣2C .2D .69.已知函数f (x )=sin (ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且函数f (x+)是偶函数,下列判断正确的是( )A .函数f (x )的最小正周期为2πB .函数f (x )的图象关于点(,0)d 对称C .函数f (x )的图象关于直线x=﹣对称 D .函数f (x )在[,π]上单调递增10.圆x 2+y 2=1与直线y=kx ﹣3有公共点的充分不必要条件是( ) A .B .C .k ≥2D .11.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-, 3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④若函数()323x f x x =--,则方程()0f x =有2个实数根,其中正确命题的个数为 ( )(A )1 (B )2 (C )3 (D )412.已知函数,若关于x 的方程f 2(x )﹣3f (x )+a=0(a ∈R )有8个不等的实数根,则a 的取值范围是( )A .B .C .(1,2)D .二、填空题(本题共4道小题,每小题5分,共20分)13.已知双曲线过点且渐近线方程为y=±x ,则该双曲线的标准方程是 .14.△ABC 的三个内角为A ,B ,C ,若,则2cosB+sin2C 的最大值为 .15.已知是(-∞,+∞)上的减函数,那么a 的取值16.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,又知f (x )的导函数y=f'(x )的图象如图所示:则下列关于f (x )的命题:①函数f (x )的极大值点为2; ②函数f (x )在[0,2]上是减函数; ③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2,函数y=f (x )﹣a 有4个零点.其中正确命题的序号是 .三、解答题(本题共5道题,第17题12分,第18题12分,第19题12分,第20题12分,第21题12分,共计60分)17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A=﹣,c=,sinA=sinC .(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及△ABC 的面积.18.已知数列{a n }的前n 项和为S n ,且满足2S n =3a n ﹣3,n ∈N *. (1)求数列{a n }的通项公式; (2)若数列{b n }的通项公式为b n=,求数列{b n }的前项和T n .19.第16届亚运会于2010年11月12日至27日在中国广州进行,为了做好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成2×2列联表:(2)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,则抽出的志愿者中2人都能胜任翻译工作的概率是多少?20.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.21.已知函数f(x)=x﹣﹣2alnx(a∈R)(Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.四.选做题(考生在22,23题选一题作答,共10分)22.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ2cos2θ=1.(1)求曲线C的普通方程;(2)求直线l被曲线C截得的弦长.23.已知函数f(x)=|2x﹣a|+5x,其中实数a>0.(Ⅰ)当a=3时,求不等式f(x)≥4x+6的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣2},求a的值.试卷答案1.C2.B3.C4.A5.C6.B7.A8.C9.D10.B11.C12.D13.x2﹣y2=114.15.16.②17.【解答】解:(Ⅰ)在△ABC中,因为,由正弦定理,得.… 6’(Ⅱ)由得,,由得,, 8’则,由余弦定理a2=b2+c2﹣2bccosA,化简得,b2﹣2b﹣15=0,解得b=5或b=﹣3(舍负). 10’所以.… 12’18.【解答】(本题满分12分)解:(1)依题意,当n=1时,2S1=2a1=3a1﹣3,故a1=3.当n≥2时,2S n=3a n﹣3,2S n﹣1=3a n﹣1﹣3,两式相减整理得a n=3a n﹣1,4’故… 6’(2)=. 9’故=… 12’19.【解答】解:(1)2×2 列联表如下: 3’(2)假设:是否喜爱运动与性别无关,由已知数据可求得:k=≈1.1575<2.706;因此,在犯错的概率不超过 0.10 的前提下不能判断喜爱运动与性别有关. 7’(3)喜欢运动的女志愿者有6 人,设分别为A,B,C,D,E,F,其中 A,B,C,D 会外语,则从这6人中任取2人有 AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF 共15种取法,其中两人都会外语的有AB,AC,AD,BC,BD,CD 共 6 种. 10’故抽出的志愿者中 2 人都能胜任翻译工作的概率是P==0.4. 12’20.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD, 4’∵AB⊂平面PAB,∴平面PAB⊥平面PAD. 6’解:(2)设PA=PD=AB=DC=a,取A D中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=, 8’∵四棱锥P﹣ABCD的体积为,∴V P﹣ABCD=====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=, 10’∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2. 12’21.【解答】解:(1)由抛物线定义知|MF|=x0+,则x0+=,解得x0=2p, 2’又点M(x0,1)在C上,代入y2=2px,整理得2px0=1,解得x0=1,p=,∴p的值; 5’(2)证明:由(1)得M(1,1),拋物线C:y2=x,当直线l经过点Q(3,﹣1)且垂直于x轴时,此时A(3,),B(3,﹣),则直线AM的斜率k AM=,直线BM的斜率k BM=,∴k AM•k BM=×=﹣. 7’当直线l不垂直于x轴时,设A(x1,y1),B(x2,y2),则直线AM的斜率k AM===,同理直线BM的斜率k BM=, 9’k AM•k BM=•=,设直线l的斜率为k(k≠0),且经过Q(3,﹣1),则直线l的方程为y+1=k(x﹣3),联立方程,消x得,ky2﹣y﹣3k﹣1=0,∴y1+y2=,y1•y2=﹣=﹣3﹣,11’故k AM•k BM===﹣,综上,直线AM与直线BM的斜率之积为﹣. 12’22.【解答】解:(Ⅰ)∵,依题意有:f'(2)=0,即,解得: 2’检验:当时,此时:函数f(x)在(1,2)上单调递减,在(2,+∞)上单调递增,满足在x=2时取得极值综上:. 4’(Ⅱ)依题意有:f min(x,)≥0,5’令f′(x)=0,得:x1=2a﹣1,x2=1,①当2a﹣1≤1即a≤1时,函数f'(x)≥0在[1,+∞)恒成立,则f(x)在[1,+∞)单调递增,于是f min(x)=f(1)=2﹣2a≥0,解得:a≤1;8’②当2a﹣1>1即a>1时,函数f(x)在[1,2a﹣1]单调递减,在[2a﹣1,+∞)单调递增,于是f min(x)=f(2a﹣1)<f(1)=2﹣2a<0,不合题意,此时:a∈Φ;11’综上所述:实数a的取值范围是a≤1. 12’23.【解答】解:(1)由曲线C:ρ2cos2θ=ρ2(cos2θ﹣sin2θ)=1,得ρ2cos2θ﹣ρ2sin2θ=1,化成普通方程x2﹣y2①5’(2)把直线参数方程(t为参数)②把②代入①得:整理,得t2﹣4t﹣6=0 8’设其两根为t1,t2,则t1+t2=4,t1•t2=﹣6从而弦长为. 10’24.【解答】解:(Ⅰ)当a=3时,f(x)≥4x+6可化为|2x﹣3|≥﹣x+6,2x﹣3≥﹣x+6或2x ﹣3≤x﹣6.由此可得x≥3或x≤﹣3.故不等式f(x)≥4x+6的解集为{x|x≥3或x≤﹣3}.… 5’(Ⅱ)法一:(从去绝对值的角度考虑)由f(x)≤0,得|2x﹣a|≤﹣5x,此不等式化等价于或解之得或因为a>0,所以不等式组的解集为,由题设可得,故a=6.… 10’法二:(从等价转化角度考虑)由f(x)≤0,得|2x﹣a|≤﹣5x,此不等式化等价于5x≤2x﹣a≤﹣5x,即为不等式组解得因为a>0,所以不等式组的解集为,由题设可得,故a=6.… 10’。