初三上学期数学期末考试经典复习题11(共十一套 有答案)
- 格式:doc
- 大小:1.01 MB
- 文档页数:8
初三上学期数学期末考试经典复习题四第一卷 〔机读卷 共32分〕一、选择题〔共8个小题,每题4分,共32分.〕 1.12-的倒数是A .2-B .12C .12-D .22. 截止到2007年6月底,北京市户籍人口已到达12040000人,将数据12040000用科学记数法表示为A .×106B .×108C .×107D .×108 3.以下计算正确的选项是A2=± B=3= D .3= 4.在函数y =,自变量x 的取值范围是A. 1x >B. 1x ≥C. 1x <D. 1x ≠5.如图,AB 是⊙O 的直径,点C 在⊙O 上,假设40BOC ∠=,那么∠C 的度数等于A .20B .40C .60D .80第5题图A6.有5张扑克牌如下图,它们的反面都一样, 将它们反面朝上洗匀后摆放,从中随意翻开一张,牌面上数字为“8”的概率是A.15B.25C.23D.127.在实数范围内定义一种新运算“¤〞,其规那么为a¤b=a2-b2,依据这个规那么,方程〔x+2〕¤3=0的解为A.x = -5或x = -1 B.x = 5或x = 1 C.x = 5 或x = -1 D.x = -5或x = 18.如图,魔幻嬉戏中的小精灵〔灰色扇形OAB〕的面积为30 ,OA的长度为6,初始位置时OA与地面垂直,在没有滑动的状况下,将小精灵在平坦的程度地面上沿直线向右滚动至终止位置,此时OB与地面垂直,那么点O挪动的间隔是A.52π B.5π C.10π D.15π二、填空题终止初始BAO O A9.关于x 的方程250x x m -+=的一个根是1,那么m 的值是.10.假设|y -1|=0,那么〔x+y 〕2021=.11.如图,在12×6的网格图中〔每个小正方形的边长均为1〕,⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切..,那么⊙A 由图示位置沿直线AB 需向右平移的间隔 是 .12.如图,直线443y x =-与x 轴、y 轴分别交于A 、B 两点,把AOB △以x 轴为对称轴翻折,再将翻折后的三角形绕点A 顺时针旋转90°,得到''AO B '△,那么点"B 的坐标是 .三、解答题13.计算:0231)(2)-+-14215.解方程:x ( x - 3 ) = 4 16.用配方法解方程:2620x x -+=17.x 2-2=0,求代数式(x -1)2+x (x +2)的值.18.ABC △和点S 在平面直角坐标系中的位置如下图:〔1〕画出ABC △向右平移4个单位后得到的111A B C △,点A 的对称点A 1的坐标是 ,点1B 的坐标是 ;〔2〕画出222A B C △,使222A B C △与ABC △关于点S 成中心对称.19.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均一样.〔1〕假如从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?〔2〕小王和小李玩摸球嬉戏,嬉戏规那么如下:先由小王随机摸出一个小球,登记颜色后放回,小李再随机摸出一个小球,登记颜色.当2个小球的颜色一样时,小王赢;当2个小球的颜色不同时,小李赢.请你分析这个嬉戏规那么对双方是否公允?并用列表法或画树状图法加以说明.20.如下图的拱桥,用AB表示桥拱.(1)假设AB所在圆的圆心为O,EF是弦CD的垂直平分线,请你利用尺规作图,找出圆心O.〔不写作法,但要保存作图痕迹〕(2) 假设拱桥的跨度〔弦AB的长〕为16m,拱高〔AB的中点到弦AB的间隔〕为4m,求拱桥的半径R.BCD E FA21.昌平某运动衣专卖店,为支持奥运,从自身做起,将某种品牌的运动衣经过两次降价,价格由原来的300元降至如今的192元.问两次降价的平均降低率是多少?22.如图,AB 是⊙O 的直径, AC 的中点D 在⊙O 上,DE ⊥BC 于E . (1)求证: DE 是⊙O 的切线;(2)假设CE =3,∠A =30°,求⊙O 的半径.图123. 阅读下面的例题:解方程: x 22=0. 解:〔1〕当x ≥0x =,原方程化为 x 2-x -2=0,解得 x =2或x =-1〔不合题意,舍去〕.〔2〕当x <0时,-x >0x ==-,原方程化为 x 2+x -2=0,解得 x =1〔不合题意,舍去〕或x =-2. 综合〔1〕〔2〕可得原方程的根是:1x =2,2x =-2.请参按例题解方程:x 22=0.24.关于x 的方程2(2)(1)0m x m x m ---+=.(1) 请你选取一个相宜的整数m ,使方程有两个有理数根,并求出这两个根; (2) 当m >0,且23m m -<0时,探讨方程的实数根的状况.25.如图:△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC 上的随意一点,在射线EF上截取EN,使EN=FM,连结DM、MN、DN.〔1〕如图①,当点M在点B左侧时,请你按要求补全图形,并推断△DMN是怎样的特别三角形〔不要求证明〕;〔2〕请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,〔1〕中的结论是否依旧成立?假设成立,请证明;假设不成立,请说明理由;〔3〕请借助图③解答:当点M在射线FC上〔与点F不重合〕,其它条件不变时,〔1〕中的结论是否仍旧成立?不要求证明.图③图②数学试卷答案与评分标准一、选择题〔共4个小题,每题4分,共16分.〕二、填空题〔共4个小题,每题4分,共16分.〕 9.4; 10.1; 11.4或6; 12.〔7,3〕.三、解答题〔共6个小题,13-17小题各5分,18小题4分,共29分.〕 13.解:原式=3+1-2+4 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 =6 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分14.解:原式=4+32222+-﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 =2237+﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 15.解:2340x x --= ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分(4)(1)0x x -+= ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 ∴14x = , 21x =- ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 16.解:262x x -=- ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 26929x x -+=-+ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 2(3)7x -= ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分3x -=﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分3x =±﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分∴13x =,23x =17.解:原式=22212x x x x -+++ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分=221x + ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 ∵x 2-2=0∴x 2=2 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 ∴221x +=5 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 ∴代数式(x -1)2+x (x +2)的值为5.18.解:〔1〕如图;1(10,8)A ,1(8,5)B ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分〔2〕如图.4分四、解答题〔本大题共2个小题, 19小题6分;20小题5分,共11分.〕19.解:〔1〕P 〔摸到蓝色小球〕=31. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 〔2〕列表:蓝黄红蓝黄红红黄蓝蓝黄红小李小王树状图: ﹍﹍﹍﹍﹍﹍3分∴ P 〔小王赢〕=39=31, P 〔小李赢〕=69=32 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 ∵ 31≠32∴此嬉戏规那么对双方是不公允的. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6分图1图220.〔1〕作弦AB 的垂直平分线,交 于G ,交AB 于点H ,交CD 的垂直平分线EF 于点O ,那么点O 即为所求作的圆心.〔如图1 〕﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 〔2〕连结OA .〔如图2〕由〔1〕中的作图可知:△AOH 为直角三角形,H 是AB 的中点,GH =4,∴AH =21AB=8 . ∵GH =4, ∴ OH =R -4.在Rt △AOH 中,由勾股定理得,OA 2=AH 2+OH 2,∴()22284R R =+- .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4解得:R =10 ∴拱桥的半径R 为10m .五、应用题〔本大题6分.〕21.解:设两次降价的平均降低率为x .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 依据题意得:()23001192x -= . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 解得:115x =,295x = . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分AB∵295x =不符题意,舍去.∴15x = . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6分 答:两次降价的平均降低率为20%.六、证明与计算〔本大题6分.〕 22.〔1〕证明:连结OD .〔如图1〕∵D 为AC 中点,O 为AB 中点,∴OD 为△ABC 的中位线.∴OD ∥BC .∴∠ODE =∠DEC.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∵DE ⊥BC , ∴∠DEC=90°.∴∠ODE =90°. ∴DE ⊥OD. ∵点D 在⊙O 上,∴DE 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分〔2〕连结BD .〔如图2〕图2图1∵AB 是⊙O 的直径,∴∠ADB =∠CDB=90°. ∴BD ⊥AC ,∠CDE +∠BDE=90°. ∵点D 是AC 的中点,∴AB =BC.∴∠A=∠C =30°. ∵DE ⊥BC ,∴∠C +∠CDE =90°.∴∠C =∠BDE =30°. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分11,.22BE BD BD BC ∴== 4.3,34.1.52.30,2 4.12.226BC BE CE BE BE BE BD A AB BD OA OB AB O ∴==∴+=∴=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∴=∠=︒∴==∴===∴⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分的半径为分七、解答题〔本大题6分.〕23.解:〔1〕当x-2≥0,即x≥2时,2)2(2-=-xx,﹍﹍﹍﹍﹍﹍﹍﹍﹍1分原方程可化为x2-(x-2)-2=0x 2-x=0x (x-1)=0解得:x=0或x2=1 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分因为x≥2,所以x=0,x2〔2〕当x-2<0,即x<2时,xx-=-2)2(2,﹍﹍﹍﹍﹍﹍﹍﹍﹍4分原方程可化为x2-(2-x)-2=0x 2+x-4=0∵a=1, b=1, c=-4∴ b2-4ac=1-4×1×(-4)=17.∴2171±-=x.∴x=或x= . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6分∴综合〔1〕〔2〕可得原方程的根是:2171 1+-=x,2171 2--=x.八、解答题〔本大题7分.〕24.解:〔1〕当m = 0时,方程为:-2x 2+x =0 ﹍﹍﹍﹍﹍﹍﹍﹍1分解得:x 1=0, x 2=21 . ﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴当m =0时,方程的两个有理根为:x 1=0, x 2=21. 〔此题答案不唯一〕 〔2〕分类:①当m =2时,m >0,且23m m -<0,原方程化为一元一次方程-x +2=0,此时,原方程只有一个实数根. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 ②当m ≠2时,原方程为一元二次方程. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分b 2-4ac =〔-(m -1)〕2-4m (m -2)= m 2+2m +1-4m 2+8m= -3 m 2+10m +1 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分= -3(m 2-3m ) + m +1 ∵ m >0, ∴ m +1>0. ∵23m m -<0,∴-3(m 2-3m ) >0 .∴b 2-4ac >0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6分∴此时原方程有两个不相等的实数根. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分综合①②得,当m =2时,原方程只有一个实数根;当m >0,m ≠2,且23m m <0时, 原方程有两个不相等的实数根.九、解答题〔本大题7分.〕 25.解:〔1〕如图① ,△DMN 是等边三角形. ﹍﹍﹍﹍﹍﹍1分〔2〕如图②,当M 在线段BF 上〔与点B 、F 重合〕时,△DMN 仍是等边三角形. 证明:连结DF . ﹍﹍﹍2分∵△ABC 是等边三角形, ∴∠ABC =60°,AB =AC =BC .∵ D 、E 、F 分别是△ABC 三边的中点,∴ DE 、DF 、EF 是等边三角形的中位线.∴DF 21AC , BD =21AB , EF 21AB , BF = 21BC . ∴∠BDF = ∠A =∠DFE = 60°, DF =BF =EF . ∴∠ABC =∠DFE . ∵ FM =EN , ∴BM =NF∴ △BDM ≌△FDN . ﹍﹍﹍4分 ∴ ∠BDM =∠FDN ,MD =ND . ﹍﹍﹍5分 ∴∠BDM +∠MDF =∠FDN+∠MDF =∠MDN= 60° △DMN 是等边三角形. .﹍﹍﹍6分=∥=∥〔3〕如图③或图④,当点M在射线FC上〔与点F不重合〕时,〔1〕中的结论不成立,即△DMN不是等边三角形﹍﹍﹍7分。
初三上册数学期末考试题附答案初三上册数学期末考试题一、选择题:(本大题共10题,每小题3分,满分30分.)1.下列计算中,正确的是………………………………………………………… ( )A.3+2=5B.3×2=6C. 8÷2=4D.12-3=32.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是…………………………………………………………………………( )A. 9B. 11C. 13D.11或133.下列说法中,正确的是……………………………………………………………( )A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数和中位数都是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为………………………………………………………… ( )A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=2005.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是…… ( )A.60°B.90°C.120°D.180°6.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为……………………( )A.4cmB.6cmC.8cmD.10cm7.顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是………………………………………………………………………………… ( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形8.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,则下列判断中,错误的是……………………………………………… ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1和3D.当-19.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为…… ( )A. B. C. D.10.如图,直线y=33x+3与x轴、y轴分别相交于A、B 两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左移动,当⊙P与该直线相交时,满足横坐标为整数的点P的个数是………………………………………( )A.3B.4C.5D.6二、填空题(本大题共8小题,共11空,每空2分,共22分.)11.若二次根式2-x在实数范围内有意义,则实数x的取值范围是 .12.若关于x的方程x2-5x+k=0的一个根是0,则另一个根是 .13.已知一个矩形的对角线的长为4,它们的夹角是60°,则这个矩形的较短的边长为,面积为 .14.一组数据1,1,x,3,4的平均数为3,则x表示的数为________,这组数据的极差为_______.15.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是_________cm,面积是_________cm2.16.一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“1(单位:cm),那么该光盘的直径为_________cm.17.如图,四边形OABC为菱形,点B、C在以点O为圆心的⌒EF上,若OA=1cm,∠1=∠2,则⌒EF的长为____________cm.18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=x23(x≥0)于B、C两点,过点C作y 轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB= .三、解答题(本大题共有9小题,共78分)19.计算(每小题4分,共8分)(1)(27-12+45)×13; (2)(2-3)2+18÷3.20.解方程(每小题4分,共8分)(1) x2-4x+2=0; (2)2(x-3)=3x(x-3).21.(本题满分6分)将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.22.(本题6分)已知⊙O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.(1)在右边的平面直角坐标系中画出直线l,则直线l与⊙O1的交点坐标为 ;(2)若⊙O1上存在点P,使得△APD为等腰三角形,则这样的点P有个,试写出其中一个点P坐标为 .23.(本题8分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,过C作CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.24.(本题10分)如图,AB是⊙O的直径,C、D在⊙O上,连结BC,过D作PF∥AC交AB于E,交⊙O于F,交BC于点G,且∠BPF=∠ADC.(1)判断直线BP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AC=2,BE=1,求BP的长.25.(本题10分)某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.(1)试求y与x之间的函数关系式.(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?(3)若要使某月的毛利润为1800元,售价应定为多少元?26.(本题10分) 如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.(1)求点D的坐标;(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.27.(本题12分)如图,抛物线y=49x2-83x-12与x轴交于A、C两点,与y轴交于B点.(1)求△AOB的外接圆的面积;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA 方向运动,当点P到达点C处时,两点同时停止运动。
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
人教版九年级上册数学期末考试试题一、单选题1.下列4个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A .(3,4)B .(-3,-4)C .(3,-4)D .(4,-3)3.如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于()A .40°B .50°C .80°D .120°4.抛物线y =﹣2(x ﹣3)2﹣4的对称轴是()A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣45.连续抛掷两次骰子,它们的点都是奇数的概率是()A .136B .19C .14D .126.二次函数y =ax 2+bx+c 的图象如图所示,则一次函数y =﹣bx+c 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 绕点A 顺时针旋转α,得到△ADE ,若点D 恰好在CB 的延长线上,则∠CDE 等于()A .ΑB .90°+2αC .90°﹣2αD .180°﹣2α8.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的()A .①②B .①②③C .①②④D .②③④9.已知平面直角坐标系中有点A (﹣4,﹣4),点B (a ,0),二次函数y =x 2+(k ﹣3)x ﹣2k 的图象必过一定点C ,则AB+BC 的最小值是()A .B .C .D .10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°二、填空题11.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________ 12.为了估计池塘里有多少条鱼,先从池溏里捕捞100条鱼做上记号,然后放回池塘里去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞300条鱼,若其中有15条有标记,那么估计池塘里大约有鱼________条._____.13.如图,扇形AOB的圆心角为120°,弦AB=14.已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是_____.15.已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是_____.16.如图,已知Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是_____.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题18.解方程:(x+3)2﹣2x(x+3)=0.19.如图,四边形ABCD内接于⊙O,E为BC延长线上的一点,点C为 BD的中点.若∠DCE =110°,求∠BAC的度数.20.如图,已知△ABC 中,BD 是中线.(1)尺规作图:作出以D 为对称中心,与△BCD 成中心对称的△EAD .(2)猜想AB+BC 与2BD 的大小关系,并说明理由.21.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,又放回.小明摸取了60次,结果统计如下:标号1234次数16142010(1)上述试验中,小明摸取到“2”号小球的频率是;小明下一次在袋中摸取小球,摸到“2”号小球的概率是;(2)若小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,请用列举法求小明两次摸取到小球的标号相同的概率.(3)若小明一次在袋中摸出两个小球,求小明摸出两个小球标号的和为5的概率.22.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.23.在平面直角坐标系中,以坐标原点为圆心的⊙O 半径为3.(1)试判断点A (3,3)与⊙O 的位置关系,并加以说明.(2)若直线y =x+b 与⊙O 相交,求b 的取值范围.(3)若直线y =x+3与⊙O 相交于点A ,B .点P 是x 轴正半轴上的一个动点,以A ,B ,P 三点为顶点的三角形是等腰三角形,求点P 的坐标.24.已知关于x 的一元二次方程﹣212x +ax+a+3=0.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y =﹣212x +ax+a+3与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C ,连结BC ,BC 与对称轴交于点D .①求抛物线的解析式及点B 的坐标;②若点P 是抛物线上的一点,且点P 位于直线BC 的上方,连接PC ,PD ,过点P 作PN ⊥x 轴,交BC 于点M ,求△PCD 的面积的最大值及此时点P 的坐标.25.已知关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0.(1)若方程有两个实数根,求a 的取值范围.(2)若x=2是方程的一个根,求另一个根.(3)在(1)的条件下,试判断直线y=(2a﹣3)x﹣a+5能否过点A(﹣1,3),并说明理由.26.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.参考答案1.B【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选B.2.C【详解】∵P(-3,4),∴关于原点对称点的坐标是(3,-4),故选:C.3.B【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.4.A【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.5.C【详解】解:列表如下:123456 1()1,1()1,2()1,3()1,4()1,5()1,6 2()2,1()2,2()2,3()2,4()2,5()2,6 3()3,1()3,2()3,3()3,4()3,5()3,6 4()4,1()4,2()4,3()4,4()4,5()4,6 5()5,1()5,2()5,3()5,4()5,5()5,6 6()6,1()6,2()6,3()6,4()6,5()6,6由表格信息可得:所有的等可能的结果数有36个,符合条件的结果数有91=. 364故选C6.D【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-2ba<0,得b<0.∴0b ->所以一次函数y =﹣bx+c 的图象经过第一、二、三象限,不经过第四象限.故选:D .7.A【详解】解:由旋转的性质可得:∠ABC=∠ADE ,∵∠ABC+∠ABD=180°,∴∠ABD+∠ADE=180°,即∠ABD+∠ADB+∠CDE=180°,∵∠ABD+∠ADB+∠BAD=180°,∴∠CDE=∠BAD ,∵∠BAD=α,∴∠CDE=α.故选:A .8.B【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确的是①②③,故选:B .9.C【详解】解:二次函数y =x 2+(k ﹣3)x ﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C (2,-2)点C 关于x 轴对称的点C '的坐标为(2,2),连接AC ',如图,∵()4,4A --∴AC '==故选:C 10.B【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.11.3m ≠【详解】解:mx 2+3x-4=3x 2,可变形为2(3)340m x x -+-=,∵2(3)340m xx -+-=是一元二次方程,∴30m -≠,∴3m ≠.故答案为:3m ≠.12.2000100条,由此即可解答.【详解】设该池塘里现有鱼x 条,由题意知,15100300x=,∴x=2000.∴估计池塘里大约有鱼2000条.故答案为2000.13.4π3【详解】解:由题意知:∵OA OB=∴△OAB 为等腰三角形∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA =∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯=∴4π3AOB S S S =-=- 阴扇故答案为:4π314.相切或相交【详解】设直线AB 上与圆心距离为4cm 的点为C ,当OC ⊥AB 时,OC=⊙O 的半径,所以直线AB 与⊙O 相切,当OC 与AB 不垂直时,圆心O 到直线AB 的距离小于OC ,所以圆心O 到直线AB 的距离小于⊙O 的半径,所以直线AB 与⊙O 相交,综上所述直线AB 与⊙O 的位置关系为相切或相交,故答案为:相切或相交.15.26x -<<【详解】解:如图,∵两函数图象相交于点A (-2,4),B (6,-2),∴不等式﹣x 2+bx+c >mx+n 的解集是26x -<<.故答案为:26x -<<.16.【分析】将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N .证明△PBH 是等边三角形,得PH BP =,所以PA PB PC PA PH HG ++=++,推出当A ,P ,G ,H′共线时,PA+PB+PC 的值最小,最小值=AG 的长,再运用勾股定理求出AG 的长即可.【详解】解:将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N ,如图,∵∠90,30ABC ACB ︒︒=∠=,4AC =2,AB ∴=由勾股定理得:BC ==∵将△BCP 绕点B 顺时针旋转60°得到△BHG ,∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,,HG PC BC BG ===,∠PBC GBH=∠∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,PA PH HG ++有最小值,最小值为AG ,∵∠150ABP PBH GBH ABP PBC CBH ︒+∠+∠=∠+∠+∠=∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1122GN BG ==⨯=由勾股定理得,3BN ===∴235AN AB BN =+=+=∴AG ===∴PA PB PC ++最小值为故答案为:17【详解】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1BA 1=2,∠A 1BB 1=90°,∴BD=DB 1∴A 1=18.123,3x x ==-【详解】解:(x+3)2﹣2x (x+3)=0()()3320x x x ++-=()()330x x +-=解得123,3x x ==-19.55°【分析】由圆内接四边形的性质可得110BAD ∠=︒,根据“点C 为 BD的中点”可得AC 是BAD ∠平分线,从而可得结论.【详解】解:∵四边形ABCD 内接于⊙O ,∴DCE BAD∠=∠∵110DCE ∠=︒∴110BAD ∠=︒∵点C 为 BD的中点∴ BC D C=∴111105522BAC DAC BAD ∠=∠=∠=⨯︒=︒20.(1)见详解;(2)AB+BC >2BD .证明见详解.【分析】(1)延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,根据点D 为AC 中点,得出AD=CD ,再证△ADE ≌△CDB (SAS ),根据∠CDB+∠ADB=180°,得出△BCD 绕点D 旋转180°得到△EAD ,(2)根据△ADE ≌△CDB (SAS ),得出AE=BC ,BD=ED ,得出BE=2BD ,在△ABE 中,AB+AE >BE 即可.(1)解:延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,∵点D 为AC 中点,∴AD=CD ,在△ADE 和△CDB 中,AD CD ADE CDB ED BD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDB (SAS ),∵∠CDB+∠ADB=180°,∴△BCD 绕点D 旋转180°得到△EAD,(2)AB+BC >2BD .证明:∵△ADE ≌△CDB (SAS ),∴AE=BC ,BD=ED ,∴BE=2BD ,在△ABE中,AB+AE>BE,即AB+BC>2BD.【点睛】本题考查尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系,掌握尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系是解题关键.21.(1)7 30,14(2)1 4(3)1 3【分析】(1)摸取到“2”号小球的频率为1460,摸到“2”号小球的概率是14;(2)小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况,进而可求概率;(3)列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况,进而可求概率.(1)解:摸取到“2”号小球的频率为147 6030=摸到“2”号小球的概率是1 4故答案为:71 304,.(2)解:列举法求小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况∵41 164=∴小明两次摸取到小球的标号相同的概率为1 4.(3)解:列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况∵2163=∴小明摸出两个小球标号的和为5的概率为13.【点睛】本题考查了频率,列举法求概率.解题的关键在于正确的列举所有事件.22.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23.(1)点A 在O 外(2)b -<<(3)(3-+或(3,0)【分析】(1)由勾股定理求出AO 的长,再与圆的半径比较即可得出结论;(2)求出直线y x b =+与O 相切时OB 的长度即可得到b 的取值;(3)分BA BP =,AB AP =和PB PA =三种情况求解即可.(1)∵(3,3)A∴OA ==∵3>∴点A 在O 外(2)如图,当直线y x b =+与O 相切于点C 时,连接OC ,则OC=3∵∠45CBO ︒=∴OB =∴直线y x b =+与O 相交时,b -<(3)∵直线3y x =+与O 相交于点A ,B ,∴(0,3)A ,(3,0)B -∴AB =当BA BP ==P 坐标为:1(3P -+,2(3P--(舍去)当AB AP =时,∵AO x ⊥轴∴BO OP=∴3(3,0)P 当PB PA =时,点P 与点O 重合,∴4()0,0P (舍去)综上,点P 的坐标为:(3-+或(3,0)24.(1)见解析;(2)①y=2142x x -++,点B (4,0);②△PCD 的面积的最大值为1,点P (2,4).【分析】(1)判断方程的判别式大于零即可;(2)①把A (-2,0)代入解析式,确定a 值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B 的坐标;②设点P 的坐标为(x ,2142x x -++),确定直线BC 的解析式y=kx+b ,确定M 的坐标(x ,kx+b ),求得PM=2142x x -++-(kx+b ),从而利用C ,D 的坐标表示=-PCD PCM CDM S S S △△△构造新的二次函数,利用配方法计算最值即可.(1)∵21-+302x ax a ++=,∴△=214(-)(3)2a a -⨯+=2226(1)5a a a ++=++>0,∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)①把A (-2,0)代入解析式21=-+32y x ax a ++,得1-4-2302a a ⨯++=,解得a=1,∴抛物线的解析式为2142y x x =-++,令y=0,得21402x x -++=,解得x=-2(A 点的横坐标)或x=4,∴点B (4,0);②设直线BC 的解析式y=kx+b ,根据题意,得4=0=4k b b +⎧⎨⎩,解得=-1=4k b ⎧⎨⎩,∴直线BC 的解析式为y=-x+4;∵抛物线的解析式为2142y x x =-++,直线BC 的解析式为y=-x+4;∴设点P 的坐标为(x ,2142x x -++),则M (x ,4x -+),点N (x ,0),∴PM=2142x x -++-(4x -+)=2122x x -+,∵219(1)22y x =--+,∴抛物线的对称轴为直线x=1,∴点D (1,3),∵=-PCD PCM CDMS S S △△△=11-(1)22PM x PM x - =21124PM x x =-+=21(2)14x --+,∴当x=2时,y 有最大值1,此时2142y x x =-++=4,∴△PCD 的面积的最大值为1,此时点P (2,4).25.(1)112a ≥-且0a ≠(2)14x =(3)能,理由见解析【分析】(1)根据一元二次方程的定义,以及根的判别式进行判断即可(2)根据方程的解的定义求得a ,进而根据一元二次方程根与系数的关系求解即可;(1)关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0有两个实数根,则0a ≠,()()2242142b ac a a a ∆=-=-+--⎡⎤⎣⎦2244148a a a a=++-+121a =+0≥a 的取值范围为:112a ≥-且0a ≠(2) x =2是方程的一个根,4(21)220a a a ∴-+⨯+-=解得4a =设另一根为2x ,则2212419244a x a +⨯++===214x ∴=∴另一个根为14x =(3)若y =(2a ﹣3)x ﹣a+5过点A (﹣1,3),则()3235a a =---+解得53a = 112a ≥-且0a ≠∴y =(2a ﹣3)x ﹣a+5能经过点A (﹣1,3),26.(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.【详解】解:(1)直线PD 为⊙O 的切线,理由如下:如图1,连接OD ,∵AB 是圆O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO ,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴tan30OD PD︒=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2+2x=0的根是()A .x=0或x=﹣2B .x=0或x=2C .x=0D .x=﹣23.抛物线y=2(x+3)2+5的顶点坐标是()A .(3,5)B .(﹣3,5)C .(3,﹣5)D .(﹣3,﹣5)4.关于x 的方程kx2+2x ﹣1=0有实数根,则k 的取值范围是()A .k≥﹣1B .k≥﹣1且k≠0C .k≤﹣1D .k≤1且k≠05.下列说法正确的是()A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次6.下列函数中,变量y 是x 的反比例函数的是()A .21y x =B .1y x -=-C .23y x =+D .11y x=-7.将抛物线2y x =向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A .()223y x =++B .()223y x =-+C .()223y x =+-D .()223y x =--8.如图,△ABC 内接于⊙O ,∠BAC =30°,BC =6,则⊙O 的直径等于()A .10B .C .D .129.方程()()135x x +-=的解是()A .121,3x x ==-B .124,2x x ==-C .121,3x x =-=D .124,2=-=x x 10.正六边形的半径为6cm ,则该正六边形的内切圆面积为()A .248cm πB .236cm πC .224cm πD .227cm π二、填空题11.反比例函数3y x=-中,在每个象限内y 随x 的增大而_______________.12.圆的内接四边形ABCD ,已知∠D=95°,∠B=__________.13.关于x 的一元二次方程220x x a ++=的一个根为1,则方程的另一根为______.14.写出点(-1,3)关于原点对称的点的坐标______________15.反比例函数6y x=当自变量2x =-时,函数值是________.16.若(m-2)22m x --mx+1=0是一元二次方程,则m 的值为______.17.已知点P 在半径为5的⊙O 外,如果设OP =x ,那么x 的取值范围是___________.18.写出经过点(-1,1)的反比例函数的解析式________.19.若二次函数y =x 2﹣2x+k 的部分图象如图所示,则关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,则方程x 2﹣2x+k =0另一个解x 2=_____.三、解答题20.(1)23(1)9x -=(2)2320x x -+=21.如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD .(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)22.如图所示,在⊙O 中直径AB 垂直于弦CD ,垂足为E ,若BE=2cm ,CD=6cm .求⊙O 的半径.23.y 是x 的反比例函数,且当2x =时,13y =-,请你确定该反比例函数的解析式,并求当6y =时,自变量x 的值.24.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式;25.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.26.如图,已知抛物线2y ax bx c =++(0a ≠)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,且OC OB =.求此抛物线的解析式.27.已知:如图,在△ABC 中,BC=AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE与⊙O的位置关系,并证明你的结论;⑶若⊙O的直径为18,cosB=13,求DE的长.28.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求出反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)根据图象,直接写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.参考答案1.C2.A3.B4.A 5.C 6.B 7.A 8.D 9.B 10.D 11.增大12.85°13.-314.(1,-3)15.3-【详解】当2x =-时,632y ==--,故答案为:3-.16.﹣2【分析】一元二次方程是指:只含有一个未知数,且未知数最高次数为2次的整式方程,据此即可得答案.【详解】根据定义可得:22220m m ⎧-=⎨-≠⎩,解得:m=-2.17.x >5【详解】解:根据点在圆外的判断方法,由点P 在半径为5的⊙O 外,可得OP >5,即x >5.故答案为:x >5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.18.1y x=-【详解】解:设反比例函数的解析式为()0ky k x=≠,把点(-1,1)代入反比例函数的解析式,可得k=-1,所以反比例函数的解析式为1y x =-,故答案为:1y x=-.19.-1【分析】利用抛物线与x 轴的交点问题,利用关于x 的一元二次方程x 2-2x+k=0的解一个为x 1=3得到二次函数y=x 2-2x+k 与x 轴的一个交点坐标为(3,0),然后利用抛物线的对称性得到二次函数y=x 2-2x+k 与x 轴的另一个交点坐标为(-1,0),从而得到方程x 2-2x+k=0另一个解.【详解】解:∵关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,∴二次函数y =x 2﹣2x+k 与x 轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x =1,∴二次函数y =x 2﹣2x+k 与x 轴的另一个交点坐标为(﹣1,0),∴方程x 2﹣2x+k =0另一个解x 2=﹣1.故答案为﹣1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)121,1x x ==;(2)121,2x x ==【详解】试题分析:(1)利用直接开平方法解方程即可;(2)利用因式分解法解方程即可.试题解析:(1)()2319,x -=()213x -=,()1x -=,121,1x x ==;(2)2320,x x -+=()()120x x --=,121,2x x ==.21.答案见解析.【详解】试题分析:画圆的一条直径AC ,作这条直径的中垂线交⊙O 于点BD ,连结ABCD 就是圆内接正四边形ABCD .试题解析:如图所示,四边形ABCD 即为所求:考点:正多边形和圆;作图—复杂作图.22.134cm 【分析】连接OD ,设半径为r ,由垂径定理求得DE 的长,在RT △OED 中,根据勾股定理列出方程,解方程求得r 即可.【详解】解:连接OD ,设半径为r ,∵AB ⊥CD ,CD=6cm ,∴CE=DE=3cm ,∵BE=2cm ,∴OE=r-2,∴在Rt △OED 中,r²=3²+(r-2)²,解得:r=134,即⊙O 的半径为134cm .【点睛】本题考查垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.23.23y x =-,19x =-【详解】解:设反比例函数的解析式为k y x=,∵当2x =时,13y =-,2.3k ∴=-∴该反比例函数的解析式为2.3y x=-当6y =时,则有263x-=,解得:1.9x =-24.(1)2180y x =-+(2)222607200w x x =-+-【分析】(1)根据题意易得:平均每天销售量(y )与销售价x (元/箱)之间的函数关系式为()80250y x =--,化简即可;(2)根据销售利润w (元)=每箱的销售利润×每天的销售量,得到函数解析式即可.(1)(1)由题意得:()80250y x =--,化简得:2180y x =-+;(2)由题(1)可知:()40w x y =- ()()402180x x =--+化简得:222607200w x x =-+-.【点睛】本题考查了二次函数的简单应用.解题的关键是正确理解题意,确定变量,明确其中的数量关系,建立函数模型.25.不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.【详解】解:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P (姐姐参加)=416=14,P (弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断及利用列表法或树状图法求概率,理解题意,利用列表法或树状图法求解是解题关键.26.223y x x =--+【分析】根据题意易得点C 坐标,利用待定系数法求解析式将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++即可求解.【详解】解:∵点B (﹣3,0),∴3OB =,∵OC OB =,∴3OC =,即点C (0,3),将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++,得:00933a b c a b c c =++⎧⎪=-+⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为:223y x x =--+.27.(1)见解析;(2)相切,证明见解析;(3)42【详解】(1)证明:连接CD ,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,又∵AC=BC,∴AD=BD,∴点D是AB的中点.(2)DE是⊙O的切线.证明:连接OD,∵OB=OC,AD=BD∴DO是△ABC的中位线,∴DO//AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(3)∵AC=BC,∴∠B=∠A,∴cosB=cosA=1 3,在Rt△BDC中,∵cosB=13BDBC=,BC=18,∴BD=6,∴AD=6,在Rt△ADE中∵cosA=13AEAD=,∴AE=2,∴=28.(1)2 yx =(2)P的坐标为(﹣2,0)或(8,0)(3)1<x<211【分析】(1)先把点A (1,a )代入y=-x+3中求出a 得到A (1,2)然后把A 点坐标代入y=k x中求出k 得到反比例函数的表达式;(2)先确定C (3,0),设P (x ,0),利用三角形面积公式得到12×|3-x|×2=5,解方程可得到P 的坐标;(3)先解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得B (2,1),然后在第一象限内写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =k x ,∴k =1×2=2;∴反比例函数的表达式为2y x=;(2)当y =0时,﹣x+3=0,解得x =3,∴C (3,0),设P (x ,0),∴PC =|3﹣x|,∴S △APC =12×|3﹣x|×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴当x >0时,一次函数的值大于反比例函数的值的x 的取值范围为:1<x <2.。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。
初三上学期数学期末考试试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三上学期数学期末考试试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三上学期数学期末考试试卷及答案的全部内容。
初三数学第一学期期末考试试卷考生须知1.本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷从第1页到第2页,共2页;第Ⅱ卷从第3页到第10页,共8页.全卷共八道大题,25道小题.2.本试卷满分120分,考试时间120分钟.3.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔或签字笔.题号一二三四五六七八总分分数第Ⅰ卷(共32分)一、选择题(本题共8道小题,每小题4分,共32分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母填在下面的表格中. 题号12345678答案1.如果,那么的值是532x =x A . B .C .D .1522151033102.在△ABC 中,∠C =90°,,则等于Rt 1sin 3A =B cos A . B .C . D13233.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A .B .C .D .121319494.已知点与点都在反比例函数的图象上,则m 与n 的关系是(1,)A m B (3,)n xy 3=(0)x >A . B . C . D .不能确定m n >m n <m n =5.如图,⊙C 过原点,与轴、y 轴分别交于A 、D 两点.已知∠OBA =30°,点D 的坐标为(0,2),x 则⊙C 半径是 ABC .D .26.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①因为a >0,所以函数y 有最大值;②该函数的图象关于直线对称;1x =-③当时,函数y 的值等于0;2x =-④当时,函数y 的值都等于0。
九年级数学上册全册期末复习试卷专题练习(解析版)—、选择题1.如图是一个圆柱形输水管横截而的示意图,阴影部分为有水部分,如果水面的宽为8cm,水而最深的地方高度为2cm∙则该输水管的半径为(2.有一组数据5, 3, 5, 6,7,这组数据的众数为(3.如图,已知点D在ΔABC的BC边上,若ΛCAD = ABCD:BD=()B D CB. 5cmC. 6cmD. 8cmA. 3B. 6C. 5D. 7且CD.AC = ∖.2,则A. 1:2B. 2:3C. 1:4D. 1:34.如图,在"BC 中,DEW BC t若DF二2 t BC=6 t则△ADE 的面积△ ABC的面积A. —B. —C. —3 4 65.二次函数y=3(x→)2-l的图像顶点坐标是()A. (一2, 1)B. (-2, -1) C・(2, 1)D. (2, -1)6.在Rt∆ABC 中,ZC=90°, B84, AC=3, CD丄AB 于D,设ZACD=α,则COSa的值为B. D.)537. 若- = |,则丄上丄的值为()J 5 y 2 7 5 7 A. —B. —C. —D.—52758. 如图.小正方形边长均为1,则下列图形中三角形(阴影部分)与AABC 相似的是于点A ■点B ( - 1 # 0),则①二次函数的最大值为a÷b÷c ;@a - b+c < 0 ; ③b?・ 4ac v 0 ;1A.—2 B.-31C. 一4 D. 15 11. sin60c的值是() 1 A ・*2C 迟 L- 2D・ 护12.若两个相似三角形的相似比是 2,则它们的面积比等于()A. 1: √2B ・ 1: 2C. 1: 3D ・1: 4 13.用配方法解方程X 2+8X + 9 = 0, 变形后的结果正确的是()A. (X + 4)2=-9B. (x + 4)2=- -7 C. (Λ+4)2=25 D. (x + 4)2=714.有一组数据:4, I 6, 6, 6, 8, 9,12, 13,这组数据的中位数为() A. 6 B. 7 C. 8 D. 915.若二次函数y=x 2∙2x+c 的图象与坐标轴只有两个公共点,则 C 应满足的条件是 A. C=OB. C=IC. C=O 或 C=ID ・C=O 或 c=- 10・10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是() 二填空题() 19.如图,若二次函数y=ax 2÷bx÷c ( a≠0 )图彖的对称轴为x=l, 与y 轴交于点C,与 轴交C. 3D. 4其中正确的个数是(16・平而直角坐标系内的三个点A (1, -3) . B (0, -3)、C (2, -3),—确定一个圆.(填"能”或"不能")17.如图,在平而直角坐标系中,将AABO绕点A顺指针旋转到△人虽G的位置,点8、O 分别落在点际CI处,点8】在X轴上,再将"BC绕点弘顺时针旋转到∆4181C2的位置点C2⅛x轴上,将LA I B I C2绕点C?顺时针旋转到∆A2B2C2的位萱,点&2在X轴上,依次进18.如图,已知菱形ABCD中,AB = 4, ZC为钝角,AM丄BC于点M,N为AB 的中点・连接DN, MN•若ZDNM=90。
九年级(上)期末数学试卷一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=23.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>48.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.410.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【解答】解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.3.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【考点】由三视图判断几何体.【分析】根据几何体的俯视图是从上面看,所得到的图形分别写出各个几何体的俯视图判断即可.【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.【点评】本题考查了三视图的概念,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.【考点】几何概率.【分析】利用指针落在阴影区域内的概率是:,分别求出概率比较即可.【解答】解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.【点评】此题考查了几何概率,计算阴影区域的面积在总面积中占的比例是解题关键.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【专题】压轴题;网格型.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】根据圆周角得出圆心角为90°,再利用弧长公式计算即可.【解答】解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长==π,故选B.【点评】此题考查弧长公式,关键是根据圆周角得出圆心角为90°.7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4【考点】抛物线与x轴的交点.【分析】利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.【解答】解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.【点评】此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【考点】反比例函数与一次函数的交点问题;关于原点对称的点的坐标.【专题】计算题;压轴题.【分析】设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.10.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7【考点】抛物线与x轴的交点.【分析】根据y=﹣x2+4x+5可以求得此抛物线与x轴的交点A和点B的坐标,与y轴交点C的坐标,从而可以求得点D的坐标,进而可以求得CD的长.【解答】解:∵y=﹣x2+4x+5=﹣(x﹣5)(x+1),∴点A的坐标为(3,0),点B的坐标为(﹣1,0),点C的坐标为(0,5).又∵D为AB的中点,∴点D的坐标为(1,0).∴CD==.故选:C.【点评】本题主要考查了抛物线与x轴的交点坐标,此题利用抛物线的三种形式间的相互转换得到点A、B的坐标,求出线段AB中点D的坐标是解决问题的关键.二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是y=x2+2x+2.【考点】二次函数图象与几何变换.【分析】直接根据抛物线向上平移的规律求解.【解答】解:抛物线y=x2+2x﹣1向上平移3个单位得到y=x2+2x﹣1+3=x2+2x+2.故答案为y=x2+2x+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.【解答】解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为4.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;【解答】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4;故答案为﹣4.【点评】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是5.【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【解答】解:由题意得,sinα=0,tanβ﹣1=0,则sinα=,tanβ=1,解得α=30°,β=45°,则α+β=75°.【点评】本题考查的是特殊角的三角函数值、非负数的性质,熟记特殊角的三角函数值、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.【考点】切线的判定与性质.【分析】(1)如图,连接OD,欲证明直线BD与⊙O相切,只需证明OD⊥BD即可;(2)连接DE.利用圆周角定理和三角形中位线定理易求DE的长度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的长度;最后利用切割线定理来求切线BD的长度.【解答】(1)证明:∵OA=OD,∴∠A=∠ADO(等边对等角).又∵∠A+∠CDB=90°(已知),∴∠ADO+∠CDB=90°(等量代换),∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.又∵OD是圆O的半径.∴BD是⊙O切线;(2)解:连接DE,则∠ADE=90°(圆周角定理).∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,又∵D是AC中点,∴DE是△ABC的中位线,∴DE=BC=3,AE=BE.∵AD:AE=,在直角△ADE中,利用勾股定理求得AE=3,则AB=6.∴BD2=AB•BE=6×3=54,∴BD=3.【点评】本题主要考查了切线的判定与性质.其中要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围;(2)把a=1代入,原方程化为x2+2x﹣1=0,根据公式法即可得到结论.【解答】解:(1)∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且△=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1;(2)当a=1时,原方程化为x2+2x﹣1=0,∴x==﹣1,∴该方程的解为:x1=﹣1+,x2=﹣1﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形△DBA、△ADC,应利用其公共边AD构造等量关系,借助BC=DB﹣DC构造方程关系式,进而可求出答案.【解答】解:设山高CD=x(米),∵∠CAD=∠β=45°,∠BAD=∠α=60°,∠ADB=90°,∴AD=CD=x,BD=AD•tan60°=x.∵BD﹣CD=BC=60,∴x﹣x=60.∴x==30(+1).∴CD=30×(1.732+1)≈82(米).答:山高CD约为82米.【点评】本题考查了学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:3 4 5 6第二次第一次3 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.(5分)∴P(甲获胜)=,P(乙获胜)=.(7分)∵,∴这个游戏不公平.(8分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)由S△AOC=xy=2,设反比例函数的解析式y=,则k=xy=4;(2)连接AB,过点B作BE⊥x轴,交x轴于E点,通过分割面积法S△AOB=S△AOC+S梯形﹣S△BOE 求得.【解答】解:(1)∵S△AOC=2,∴k=2S△AOC=4;∴y=;(2)连接AB,过点B作BE⊥x轴,S△AOC=S△BOE=2,∴A(a,),B(2a,);S梯形ACEB=(+)×(2a﹣a)=3,∴S△AOB=S△AOC+S梯形ACEB﹣S△BOE=3.【点评】此题重点考查了函数性质的应用和图形的分割转化思想.同学们要熟练掌握这类题型.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.【考点】作图-旋转变换;弧长的计算.【分析】(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;(2)根据图形即可得出点A的坐标;(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.【解答】解:(1)△AB′C′如图所示;(2)点B′的坐标为(3,2),点C′的坐标为(3,5);(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,∵AC=4,∴弧长为:==2π,即点C经过的路径长为2π.【点评】本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.【考点】二次函数综合题.【分析】(1)直接将(﹣1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,再求△ACM周长最小值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为y=x2﹣x﹣2.y=(x﹣)2﹣,∴顶点D的坐标为:(,﹣);(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,解得:x1=﹣1,x2=4,∴B (4,0),∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣2,当x=时,y=﹣,∴M(,﹣),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.【点评】此题主要考查了二次函数综合以及利用轴对称求最短路线和勾股定理的逆定理等知识,得出M点位置是解题关键.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题可得DC=DE=8,则有BC=10﹣8=2.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t 的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(3)解:如下图,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,∴AE=BE=6∴DE==8,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10﹣8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=12﹣t,∴t(12﹣t)=10×2,∴t=2或t=10,∴t的值为2秒或10秒.【点评】本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识,以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.。
人教版九年级上册数学期末考试试题一、单选题1.以下关于垃圾分类的图标中是中心对称图形的是()A .B .C .D .2.如图,在平面直角坐标系中,已知ABC 与DEF 位似图形,原点O 是它们的位似中心.且3OF OC =,则ABC 与DEF 的面积之比是()A .1:2B .1:4C .1:3D .1:93.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A .65πB .60πC .75πD .70π4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A .()16x x -=B .()16x x +=C .()1162x x -=D .()1162x x +=5.如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为()A .π6B .π3C .π2D .2π36.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A .相离B .相切C .相交D .相交或相切7.如图,在△ABC 中,∠CAB =70°,∠B =30°,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A .10°B .15°C .20°D .30°8.若关于x 的一元二次方程()22120m x x m m +-+--=有一根为0,则m 的值为()A .2B .1-C .2或1-D .1或2-9.已知两点()()126,,2,A y B y -均在抛物线2(0)y ax bx c a =++>上,若12y y >,则抛物线的顶点横坐标m 的值可以是()A .6-B .5-C .2-D .1-10.如图,在ABC ∆中,90ACB ∠=︒,4AC =,3BC =,P 是AB 边上一动点,PD AC ⊥于点D ,点E 在P 的右侧,且1PE =,连接CE ,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,阴影部分面积12S S +的大小变化的情况是()A .一直减小B .一直增大C .先增大后减小D .先减小后增大二、填空题11.坐标平面内的点P(m ,﹣2)与点Q(3,n)关于原点对称,则m +n =__.12.已知,1x ,2x 是方程232x x -=的两根,则12x x ⋅的值为______.13.已知正三角形ABC ,则正三角形的边长为______cm.14.如图,PA 、PB 是O 的切线,其中A 、B 为切点,点C 在O 上,52ACB ∠=︒,则APB ∠=______︒.15.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为__.16.如图,将△ABC 绕点C 逆时针旋转得到△A′B′C ,其中点A′与A 是对应点,点B′与B 是对应点,点A′落在直线BC 上,连接AB′,若∠ACB =45°,AC =3,BC =2,则AB′的长为_____.17.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数1y x =上,顶点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是_____.18.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0b >;②0a b c -+=;③一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;④当1x <-或3x >时,0y >.上述结论中正确的是__________.(填上所有正确结论的序号)三、解答题19.解方程:2670x x --=20.如图,已知ABO ,点A 、B 坐标分别为()2,4、()2,1.(1)把ABO 绕着原点O 顺时针旋转90︒得11A B O ,画出旋转后的11A B O ;(2)在(1)的条件下,点B 旋转到点1B 经过的路径的长为______.(结果保留π)21.如图,AC 平分∠BAD ,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)若AB =2,AC =3,求AD 的长.22.如图,抛物线2y x mx =-+的对称轴为直线2x =(1)求抛物线解析式;(2)若关于x 的一元二次方程20x mx t -+-=(t 为实数)在13x <<的范围内有解,则t 的取值范围是______.23.脱贫攻坚取得重大胜利,是中国在2020年取得的最重要成就之一.家庭养猪是农村精准扶贫的重要措施之一.如图所示,修建一个矩形猪舍,猪舍一面靠墙,墙长13m ,另外三面用27m 长的建筑材料围成,其中一边开有一扇1m 宽的门(不包括建筑材料).(1)所围矩形猪舍的AB 边为多少时,猪舍面积为290m ?(2)所围矩形猪舍的AB 边为多少时(AB 为整数),猪舍面积最大,最大面积是多少?24.如图,四边形ABCD 内接于O ,4OC =,42AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.25.如图,反比例函数2m y x=和一次函数y=kx-1的图象相交于A (m ,2m ),B 两点.(1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式21m kx x<-的x 的取值范围.26.如图,在Rt △ABC 中,∠C =90°,以AC 为直径作⊙O 交AB 于点D ,线段BC 上有一点P .(1)当点P 在什么位置时,直线DP 与⊙O 有且只有一个公共点,补全图形并说明理由.(2)在(1)的条件下,当BP =2,AD =3时,求⊙O 半径.27.已知抛物线23y ax bx =++与x 轴分别交于点()30A -,,()10B ,,与y 轴交于点C ,对称轴DE 与x 轴交于点D ,顶点为E .(1)求抛物线的解析式;(2)若点P 为对称轴右侧且位于x 轴上方的抛物线上一动点(点P 与顶点E 不重合),PQ AE ⊥于点Q ,当PQE V 与ADE 相似时,求点P 的坐标;(3)对称轴DE 上是否存在一点M 使得2ACB AMD ∠=∠,若存在求出点M 的坐标,若不存在请说明理由.参考答案1.C【分析】根据中心对称图形的概念逐项判断即可.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意,故选:C.【点睛】本题考查中心对称图形,理解概念是解答的关键.2.D【分析】根据位似图形的概念得到AB∥DE,进而得到△OAB与△ODE相似,根据相似三角形的性质计算即可.【详解】解:∵△ABC与△DEF是位似图形,∴AB∥DE,∴△OAB∽△ODE,∴13 AB OADE OD==,∴221139 ABCDEFS ABS DE⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】本题考查的是位似图形的概念和性质,掌握位似图形的对应边平行、相似三角形的性质是解题的关键.3.A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A .【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.4.C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.5.C【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒AD ∴===S 扇形AEF226060(3)3603602r πππ⨯===故选C .【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式,求出等边三角形的高是解题的关键.6.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.7.A【分析】根据旋转的性质找到对应点、对应角进行解答.【详解】解:∵在△ABC 中,∠CAB =70°,∠B =30°,∴∠ACB =180°﹣70°﹣30°=80°,∵△ABC 绕点A 逆时针旋转40°得到△AB′C′,∴∠CAC′=40°,∠AC′B′=∠ACB =80°,AC =AC′,∴∠AC′C =12(180°﹣40°)=70°,∴∠CC′B′=∠AC′B′﹣∠AC′C =10°,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质,以及三角形的内角和是解题的关键8.A【分析】根据一元二次方程和根的定义,可得10m +≠,将0x =代入求解m 即可.【详解】解:由题意可得,10m +≠,解得1m ≠-将0x =代入得:220m m --=解得2m =或1m =-(舍去)故选A【点睛】此题考查了一元二次方程的定义和根的定义,解题的关键是掌握一元二次方程的定义和根的定义,易错点为容易忽略二次项系数不为0.9.D【分析】根据题意假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,则此时该抛物线的对称轴为直线6222x -+==-,然后由12y y >,开口向上离对称轴越近y 的值越小,进而问题可求解.【详解】解:∵点()()126,,2,A y B y -均在抛物线()20y ax bx c a =++>上,∴假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,∴此时该抛物线的对称轴为直线6222x -+==-,∵12y y >,开口向上,抛物线上的点离对称轴越近,则y 的值越小,∴该抛物线的顶点横坐标2m >-,所以选项中符合题意的只有D 选项;故选D .【点睛】本题主要考查二次函数图象与性质,熟练掌握二次函数的图象与性质是解题的关键.10.D【分析】设PD=x ,AB 边上的高为h ,想办法求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒ ,4AC =,3BC =,5AB ∴===,设PD x =,AB 边上的高为h ,125AC BC h AB == ,//PD BC ,ADP ACB ∆∆∽∴,∴PD AD BC AC=,43AD x ∴=,53PA x =22121415122242333(4)2()23235353210S S x x x x x x ∴+=+-=-+=-+ ∴当302x <<时,12S S +的值随x 的增大而减小,当14x时,12S S +的值随x 的增大而增大.故选D .【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.11.1-【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】解:∵点P(m ,-2)与点Q(3,n)关于原点对称,∴m =﹣3,n =2,∴m +n =﹣3+2=﹣1.故答案为:﹣1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.-2【分析】先将方程化为一般形式,再根据一元二次方程根与系数的关系求解即可.【详解】解:∵232x x -=∴2320x x --=∵1x ,2x 是方程232x x -=的两根,∴12=2x x ⋅-故答案为:-2.【点睛】本题主要考查了一元二次方程根与系数的关系,熟练掌握一元二次方程极好与系数的关系是解答本题的关键.13.6【分析】直接利用正三角形的性质得出,再由勾股定理求出BD 的长即可解决问题.【详解】解:如图所示:连接BO ,由题意可得,OD ⊥BC ,,∠OBD=30°,故.BC=2BD由勾股定理得,3BD ===∴6cmBC =故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.14.76【分析】连接OA 、OB ,根据圆周角定理求得∠AOB ,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA 、OB ,52ACB ∠=︒,∴∠AOB=104°∵PA 、PB 是⊙O 的两条切线,点A 、B 为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°故答案为:76151【分析】将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,根据圆的性质,可知:'B O C 、、三点共线时,BD 最大,根据勾股定理可得结论.【详解】解:如图,将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,即'B O C 、、三点共线时,BD 最大,过'B 作'B E AB ⊥于点E ,由题意得:'2,'120AB AB BAB ==∠=︒,∴'60EAB ∠=︒,'Rt AEB △中,'30AB E ∠=︒,∴1'1,'2AE AB EB ==,由勾股定理得:'OB =,∴''1B C OB OC =+=.1.16【分析】证明90ACB ∠'=︒,利用勾股定理求出AB '即可.【详解】解:如图,由旋转的性质可知,2CB CB ='=,45ABC BCB ∠=∠'=︒,90ACB ∴'=︒,AB ∴'===17.3【分析】过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,结合反比例系数k 的几何意义表达出矩形OFAG 和矩形OEBG 的面积,再结合平行四边形的性质求出平行四边形OABC 的面积.【详解】解:如图,过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,则四边形OFAG 和四边形OEBG 是矩形,∵点A 在反比例函数y =1x 上,点B 在反比例函数y =4x上,∴S 矩形OFAG =1,S 矩形OEBG =4,∴S ▱OABC =S 矩形ABEF =S 矩形OEBG ﹣S 矩形OFAG =4﹣1=3.故答案为:3.18.②③④.【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图可知,对称轴1x =,与x 轴的一个交点为()3,0,∴2b a =-,与x 轴另一个交点()1,0-,①∵0a >,∴0b <;∴①错误;②当1x =-时,0y =,∴0a b c -+=;②正确;③一元二次方程210ax bx c +++=可以看作函数2y ax bx c =++与1y =-的交点,由图象可知函数2y ax bx c =++与1y =-有两个不同的交点,∴一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;∴③正确;④由图象可知,0y >时,1x <-或3x >∴④正确;故答案为②③④.19.x 1=7,x 2=1-【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.20.(1)见解析2【分析】(1)分别作出A ,B 的对应点1A ,1B 即可.(2)利用弧长公式计算即可.(1)如图,△11A B O即为所求作.(2)∵OB=∴点B旋转到点1B经过的路径的长==..21.(1)证明见解析;(2)92.【分析】(1)根据角平分线的性质可知∠BAC=∠CAD,再根据题意∠B=∠ACD,即可证明△ABC∽△ACD.(2)利用三角形相似的性质,可知AC ADAB AC=,再根据题意AB和AC的长,即可求出AD.【详解】(1)∵AC分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD,∴△ABC∽△ACD.(2)∵△ABC∽△ACD,∴AC AD AB AC=,∵AB=2,AC=3,∴AD=92.22.(1)y=-x 2+4x(2)3<t≤4【分析】(1)先利用抛物线的对称轴方程求出即可得到抛物线解析式为y=-x 2+4x ;(2)配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点可确定t 的范围.(1)∵抛物线y=-x 2+mx 的对称轴为直线x=2,∴22(1)m -=⨯-,解得m=4,∴抛物线解析式为y=-x 2+4x ,(2)∵y=-x 2+4x=2(2)4x --+,∴抛物线的顶点坐标为(2,4),当x=1时,y=-x 2+4x=3;当x=3时,y=-x 2+4x=3,∵关于x 的一元二次方程-x 2+mx-t=0(t 为实数)在1<x<3的范围内有解,∴抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点,如图,∴3<t≤4.故答案为:3<t≤4【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.23.(1)9m(2)AB 为8m 时,面积最大,最大面积是296m .【分析】(1)设m AB x =,则()2721m AD x =-+,根据题意列式即可;(2)设m AB x =,所围矩形猪圈的面积为2m y ,列出二次函数解析式,根据二次函数性质和猪舍的AB 边的取值范围即可得出结论.(1)解:(1)设m AB x =,则()2721m AD x =-+.根据题意可得:()272190x x -+=,解得:15=x ,29x =.当5x =时,27211813x -+=>,不符合题意,舍去;当9x =时,27211013x -+=<,符合题意.答:AB 为9m 时,猪舍的面积为290m .(2)(2)设m AB x =,所围矩形猪圈的面积为2m y .()()2227212282798y x x x x x =-+=-+=--+028213x <-≤ ,7.514x ∴≤<.∵()22798y x =--+,图像开口向下,在对称轴7x =的右侧随x 增大而减小,∴当AB 为整数时,8x =,272112x -+=时,96y =最大值.答:AB 为8m 时,面积最大,最大面积是296m .【点睛】本题主要考查了二次函数与一元二次方程的应用,找准等量关系,正确列出二次函数解析式和一元二次方程是解题的关键.24.(1)(2)∠B =45°,∠D=135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =∴22224432OA OC +=+=,232AC ==,∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC ∠=︒又∵OH AC ⊥,∴AH CH =,∴OH=12AC=O 到AC 的距离为(2)90,AOC Ð=°Q ∴∠B=12∠AOC=45°,∵四边形ABCD 内接于⊙O ,∴∠D=180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D=135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.25.(1)y=3x-1;(2)203x -<<或x >1.【分析】(1)把A (m ,2m )代入2m y x =,求得A 的坐标为(1,2),然后代入一次函数y=kx-1中即可得出其解析式;(2)联立方程求得交点B 的坐标,然后根据函数图象即可得出结论.【详解】(1)∵A(m ,2m)在反比例函数图象上,∴22m m m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx-1的图象上,∴2=k-1,即k=3,∴一次函数的表达式为:y=3x-1.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得B(23-,-3)∴由图象知满足21m kx x<-的x 取值范围为203x -<<或x >1.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,根据题意利用数形结合求出不等式的解集是解答此题的关键.26.(1)补图见解析;理由见解析;(2)2.【分析】(1)根据题意补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,根据切线的定义即可得到结论;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,连接CD ,OD ,根据圆周角定理得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DP=CP ,根据切线的判定定理即可得到结论;(2)由题意可知在Rt △BCD 中,根据直角三角形的性质得到BC=2BP ,求得,根据相似三角形的性质和勾股定理即可得到结论.【详解】解:(1)补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,理由:经过半径外端,并且垂直于这条半径的直线是圆的切线;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,证明:连接CD ,OD ,如上图,∵AC 是⊙O 的直径,∴∠ADC =∠BDC =90°,∵点P 是BC 的中点,∴DP =CP ,∴∠PDC =∠PCD ,∵∠ACB =90°,∴∠PCD+∠DCO =90°,∵OD =OC ,∴∠DCO =∠ODC ,∴∠PDC+∠ODC =90°,∴∠ODP =90°,∴DP ⊥OD ,∴直线DP 与⊙O 相切;(2)在Rt △BCD 中,∵∠BDC =90°,P 是BC 的中点,∴BC =2BP ,∵BP =2,∴BC ,∵∠ACB =∠BDC =90°,∠B =∠B ,∴△ACB ∽△CDB ,∴AB BC BC BD=,∴2BC AB BD = ,设AB =x ,∵AD =3,∴BD =x ﹣3,∴x (x ﹣3)2,∴x =5(负值舍去),∴AB =5,∵∠BDC =90°,∴AC∴OC =12AC即⊙O27.(1)223y x x =--+;(2)12039P ⎛⎫ ⎪⎝⎭,;(3)存在,点M 的坐标为()11M -,或()11--,【分析】(1)利用待定系数法求出抛物线的解析式;(2)由P 的位置分析得只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,则AF EF =,设()0F m ,,由两点间距离公式可列方程得到F 点的坐标,用待定系数法求直线EF 的解析式,于抛物线联立即可求得P 点坐标;(3)当点M 在x 轴上方时,连接MA ,MB ,由抛物线的对称性可知MA=MB ,则2=AMB AMD ACB ∠=∠∠,利用圆中同弧所对圆周角相等的性质得圆心O '在对称轴上,设O '的坐标为()1,m -,根据AO CO BO MO ''''===,可列方程求得O '的坐标,从而求得M 的坐标,最后由轴对称性质可知另一点M '的坐标.【详解】解:(1)把()30A -,,()10B ,,点坐标分别代入抛物线解析式,得:933030a b a b -+=⎧⎨++=⎩解得:1a =-,2b =-∴抛物线的解析式:223y x x =--+(2)如图,只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,∴AF EF =,∴22AF EF =设()0F m ,,则()()222341m m +=++∴2m =,即()20F ,.设直线EF 的解析式为11y k x b =+,则1111420k b k b -+=⎧⎨+=⎩,解之得114383k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线EF 的解析式4833y x =-+.联立2483323y x y x x ⎧=-+⎪⎨⎪=--+⎩,解得13209x y ⎧=⎪⎪⎨⎪=⎪⎩或14x y =-⎧⎨=⎩(舍去)∴12039P ⎛⎫⎪⎝⎭,.(3)如图2,当点M 在x 轴上方时,连接MA ,MB ,设O '的坐标为()1,m -,若AO CO BO MO ''''===,则点A ,B ,C ,M 四点在以O '为圆心的圆上∴ACB AMB∠=∠∵DE 是抛物线的对称轴,∴AMD BMD ∠=∠,∴2AMB AMD ∠=∠,∴2ACB AMD ∠=∠,∵()30A -,,()03C ,,AO CO ''=,∴AO '=CO '=∴()22413m m +=+-,∴1m =,∴()11O '-,,CO AO ''=∴1MD =,∴()11M -+,当点M 在x 轴下方时,由对称知,()11M --,,即:点M 的坐标为()11M -+,或()11-,.。
初三上学期数学期末考试经典复习题十一一、选择题(本大题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算正确的是( ) A .2a 3+5a 2=7a 5B .3223-=C .235()()x x x -⋅-=-D .22111()()339m n m n n m ---=-2.反比例函数ky x=和一次函数y kx k =-在同一直角坐标系中的图像大致是( )3.已知分式2133x x -+的值等于零,则x 的值为( )A .1B .±1C .-1D .124.如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则ABCD 的面积是( )A .30B .36C .54D .725.在边长为a 的正方形内有4个等圆,每相邻两个互相外切,它们中每一个至少与正方形的一边相切,那么此等圆的半径可能是( )A .4aB .212a - C .212a + D .21124a a -或 二、填空题(每空3分,共24分.)6.21()2-=___________,|3.14|π-=___________,22=_____________.DCB AM7.分解因式2x y y -=_____________. 8.化简2441(2)11x x x x x -+÷-+=--__________. 9.计算xy x 313⋅结果为______________. 10.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打__________折出售此商品. 11.如图,Rt △ABC 的边AB 在直线L 上,AC =1, AB=2,∠ACB =90°,将Rt △ABC 绕点B 在平面内按顺时针方向旋转,使BC 边落在直线L 上,得到△A 1BC 1; 再将△A 1BC 1绕点C 1在平面内按顺时针方向旋转,使边A 1C 1落在直线L 上,得到△A 2B 1C 1,则点A 所经过的两条弧211,A A AA 弧弧的长度之和为_____________. 三、解答下列各题:12.(本题6分)如图,已知矩形ABCD 中,E 、F 是AB 上两点,且AF=DE ,求证:∠DEB =∠CFA .13.(本题7分)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)CA 1B 1 lA 2 C 1BA D CBA E F314.(本题10分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少. 例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?15.(本题10分)梯形ABCD 中,AB ∥DC ,AD =BC ,以AD 为直径的⊙O 交AB 于E ,⊙O 的切线EF 交BC 于F ,求证: (1)EF ⊥BC ; (2)BF ·BC =BE ·AE .16.(本题10分)甲、乙两队在比赛时,路程y (米)与时间x (分钟)的函数图像如图所示,根据函数图像填空和解答问题:(1)最先到达终点的是____________队,比另一队领先__________分钟到达. (2)在比赛过程中,乙队在_____分钟和_____分钟时两次加速.(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.17.(本题12分)某种贺卡原售价每张1元,甲商店这种贺卡七折优惠,而在乙商店这种贺卡除了八折优惠外,购买30张以上(含30张)免费送5张. 设一次买这种贺卡x张(x是正整数且30≤x≤50),若选择在甲商店购买需用y1元,若选择在乙商店购买需用y2元.(1)假定你代购买45张这种贺卡,请确定应在哪一个商店买花钱较少;(2)请分别写出y1(元)与x(张)、y2(元)与x(张)之间的函数关系式;(3)在x的取值范围内,试讨论在哪一个商店买花钱较少.518.(本题12分)在直角坐标系XOY 中,二次函数图像的顶点坐标为(4,3)C ,且与x 轴的两个交点间的距离为6. (1)求二次函数解析式;(2)在x 轴上方的抛物线上,是否存在点Q ,使得以点Q 、A 、B 为顶点的三角形与△ABC 相似?如果存在,请求出Q 点的坐标,如果不存在,请说明理由.19.(本题14分)如图,在△ABC 中,已知AB=BC=CA =4cm ,AD ⊥BC 于D . 点P 、Q分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点Q 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x (s). (1)当x =__________时,PQ ⊥AC , x =__________时,PQ ⊥AB .(2)设△PQD 的面积为y (cm 2),当0<x <2时,求y 与x 的函数关系式为__________. (3)当0<x <2时,求证:AD 平分△PQD 的面积;(4)探索以PQ 为直径的圆与AC 的位置关系,请写出相应位置关系的x 的取值范围(不要求写出过程).yxABCO数学参考答案1.14, 3.14π-, 2 2.y (x +1)(x -1) 3.14x y5.57,(750500500)710100x x ⨯-⨯≥≥6.136π 7.D 8.C 9.A 10.D 11.D 12.证:ABE DCF ∆≅∆13.设三、四月份平均每月增长的百分率为x ,则260(110%)(1)96x -+=∴33.3%x ≈14.这个游戏不公平,我们可以用列举法求每种情况的概率.指针指向的数字最后跳到的数字1 32 53 14 35 5 61因为转盘是6等分的,因此指针指向每个数字的机会均等,但最后跳到的数字只有1、3、5. 因此,本问题中,最终得到“1”“3”“5”奖的概率各为13,而最终得到“2”“4”“6”奖的概率全部为0. “1”“3”“5”奖都是低于1的低额奖金,“4”“6”奖金额数高,但根本无法得到,因此这是一个骗局. 15.ABC16.ABC17.AB18.(1)先证:∠DEF =∠A =∠B ,∵∠DEF +∠BEF =90°, ∴∠BEF +∠B =90°,∴EF ⊥BC (2)证△ADE ∽△BEF ,∴AD AE BEBF= ∵AD=BC ,∴BC AE BEBF=, ∴BF ·BC=BE ·AE19.(1)乙,0.6(2)1和37(3)设AB 所在直线的解析式为y=kx+b ,则10017517575345075k b k y x k b b +==∴∴=-+==-⎧⎧⎨⎨⎩⎩当y =800米时,800=175x -75, ∴x =5,∴甲、乙两队同时到达终点.20.解:(1)当在甲商店购买45张贺卡时,用31.5元(0.7×45);当在乙商店购买45张贺卡时,用32元[0.8×(45-5)]. ∵31.5<32,∴应选择在甲商店买贺卡花钱较少. (2)根据题意,y 1(元)与x (元)之间的函数关系式为y 1=0.7x (30≤x ≤50); y 2(元)与x (张)之间的函数关系式为y 2=24(30≤x ≤34)或y 2=0.8(x -5)即y 2=0.8x -4(35≤x ≤50).(3)根据题意,①当30≤x <35时,显然y 1<y 2;②当35≤x ≤50时,令y 1>y 2;得0.70.84,3550.x x x >-⎧⎨⎩≤≤ 解得:35≤x <40. 令y 1=y 2,得0.70.84,3550.x x x =-⎧⎨⎩≤≤ 解得:x =40. 令y 1<y 2,得0.70.84,3550.x x x <-⎧⎨⎩≤≤ 解得:40<x ≤50.答:当30≤x <35时,选择在甲商店买贺卡花钱较少;当35≤x <40时,选择在乙商店买贺卡花钱较少;当x =40时,甲乙商店任选一个;当40<x ≤50时,选择在甲商店买贺卡花钱较少.21.(1)所求解析式为383732999y x x =-+ (2)在x 轴上方的抛物线上存在点Q ,使得以点Q 、A 、B 为顶点的三角形与△ABC 相似,因为△ABC 为等腰三角形,∴当AB=BQ ,∵AB =6, ∴BQ=6,过点O 作CD ⊥x 轴于D ,则AD =3,CD =3,∴∠BAC =∠ABC =30°,∴∠ACB =120°,∴∠ABQ =120°,过点Q 作QE ⊥x 轴于E ,则∠QBE =60°,∴QE =BQ sin60°=36332⨯=,∴BE =3, ∴E (10, 0),(10,33)Q .当x =10时,33(101)(107)93399y =--=⨯⨯= ∴点Q 在抛物线上,由抛物线的对称性,还存在一点(2,33)Q '-,使△AB Q ′∽△CAB 故存在点(10,33)Q 或(2,33)-.22.(1)416,55解:当Q 在AB 上时,显然PQ 不垂直于AC . 当Q 在AC 上时,由题意得,BP=x ,CQ =2x ,PC =4-x ,∵AB=BC=CA =4 ∴∠C =60°;若PQ ⊥AC ,则有∠QPC =30°,∴PC =2CQ ,∴4-x =2×2x , ∴45x =,当45x =(Q 在AC 上)时,PQ ⊥AC ,如图:①当PQ ⊥AB 时,BP=x ,BQ =12x ,AC+AQ=2x ,∵AC =4,∴AQ =2x -4,∴12442x x -+=∴165x =,故165x =时PQ ⊥AB .(2)3232y x x =-+ 解:如图②,当0<x <2时,P 在BD 上,Q 在AC 上,过点Q 作QH ⊥BC 于H , ∵∠C =60°,QC =2x ,∴QH=QC ×sin60°=3x ,∵AB=AC ,AD ⊥BC ,∴122BD CD BC ===∴DP=2-x ,∴1132(2)33222y PD QH x x x x ==-=-+ (3)当0<x <2时,在Rt △QHC 中,QC =2x ,∠C =60°, ∴HC=x ,∴BP=HC ,∴BD=CD , ∴DP=DH∵AD ⊥BC ,QH ⊥BC ∴AD ∥QH , ∴OP=OQ ∴PDO DQO S S ∆∆= ∴AD 平分△PQD 的面积(4)显然,不存在x 的值,使得以PQ 为直径的圆与AC 相离. 当41655x =或时,以PQ 为直径的圆与AC 相切. 当441616045555x x x <<<<或或≤≤时,以PQ 为直径的圆与AC 相交.②①。