人教版九年级上学期数学《圆》单元测试题
- 格式:doc
- 大小:224.50 KB
- 文档页数:10
第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 308.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 311.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.参考答案一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对【答案】C【解析】【分析】根据直线与圆的位置关系的判定方法,分OA⊥l和圆心O到直线l的距离小于AO两种情况判断即可解答. 【详解】已知⊙O的直径为12cm,则半径为6cm,又已知AO=6cm,所以AO为半径,则A在⊙O上.当AO⊥l时,有1个公共点,即相切.当圆心O到直线l的距离小于AO时,有2个公共点,即相交.故选C.【点睛】本题考查了直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED【答案】C【解析】【分析】根据垂径定理解答即可.【详解】∵AB是直径,AB⊥CD,∴,,EC=DE,选项A,B,D正确,不能判断EO=EB,选项C错误.故选C.【点睛】本题考查了垂径定理,熟知垂直于弦的直径平分弦,并且平分弦所对的两条弧是解决问题的关键.3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.【答案】C【解析】【分析】分针1小时(60分钟)转1周,扫过的面积是一个圆的面积,40分钟分针扫过的面积是圆面积的,根据圆的面积公式s=πr2,把数据代入公式进行求解即可.【详解】依题意,得×π×22=π(cm2);答:分针所扫过的面积是πcm2.故选C.【点睛】本题考查了扇形面积的计算和旋转的性质.解答本题的关键是明确分针的尖端40分钟扫过的面积是圆面积的.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°【答案】D【解析】【分析】根据圆周角定理即可解答.【详解】由圆周角定理得,∠AOC=2∠ABC=102°,故选D.【点睛】本题考查了圆周角定理,熟知圆周角定理的内容是解决问题的关键.5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°【答案】B【解析】【分析】根据三角形的内角和定理求得∠ABC+∠ACB=140°,由内心的定义可求得∠IBC+∠ICB=70°,再由三角形的内角和定理即可求得∠BIC的度数.【详解】∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ABC+∠ACB=140°,∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=×140°=70°,∴∠BIC=180°﹣(∠IBC+∠ICB)=110°.故选B.【点睛】本题考查了三角形的内心,熟知三角形的内心是三角形三个角的角平分线的交点是解决问题的关键.6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°【答案】D【解析】【分析】根据等弧所对的圆周角相等可知∠B=∠C,故根据三角形的一个外角等于与它不相邻的两个内角和可以求出∠APD的大小.【详解】由于∠C和∠B所对应的弧都是,故∠C=∠B=40°,∴∠APD=∠C+∠A=75°,故答案选D.【点睛】本题主要考查了等弧所对应的圆周角相等以及三角形的外角等于与它不相邻的两个内角之和,灵活应用这些是解答本题的关键.7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 30【答案】A【解析】【分析】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,即可得△ODE的面积=×△ADE的面积,由此求得△ODE的面积,再由圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成,即可求得正八边形ABCDEFGH的面积.【详解】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选A.【点睛】本题考查了正多边形和圆的知识,一般的,任何一个正n边形都有一个外接圆,分别经过各顶点的这些半径将这个正n边形分成n个全等的等腰三角形.8.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°【答案】C【解析】【分析】根据圆内接四边形的性质、圆周角定理即可求得∠A=60°,∠BOD=120°,由此即可求得的度数.【详解】∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选C.【点睛】本题考查了圆内接四边形的性质及圆周角定理,正确求得∠BOD=120°是解决问题的关键.9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°【答案】C【解析】【分析】连接OD,已知CD与⊙O相切,根据切线的性质定理可得∠ODC=90 °,由OA=OD,根据等腰三角形的性质可得∠A=∠ODA,由三角形外角的性质可得∠COD=∠A+∠ODA=2∠A=56°,由此即可求得∠C=34°.【详解】如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90 °,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠A+∠ODA=2∠A=56°,∴∠C=90°﹣56°=34°,故选C.【点睛】本题考查了切线的性质定理、等腰三角形的性质及三角形外角的性质,熟练运用相关知识是解决问题的关键.10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 3【答案】B【解析】【分析】由直径所对的圆周角为直角可得∠ACB=∠ADB=90°,再利用特殊角的三角函数值求出AB的值,再根据等弧所对的弦相等结合勾股定理可得出结果.【详解】∵AB是⊙O的直径, ∴∠ACB=∠ADB=90°, ∵∠CBA=30°,BC=,∴AB==6,∵CD平分∠ACB,∴∠BCD=∠ACD, ∴AD=BD,∴AD=,∴2AD²=72, ∴AD=6.故选B.【点睛】本题考查了圆周角的性质,直径所对的圆周角为直角,在同圆或等圆中,相等的圆周角所对的弧相等,解题的关键是得出AD=BD.11.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°【答案】B【解析】【分析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8【答案】B【解析】【分析】作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,为C′D的长,求得C′D的长即可求得PC+PD的最小值.【详解】解:作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,连接OC,OD,由勾股定理得,OE==3,OF=4,∴EF=EO+OF=7,作C′H⊥DF交DF的延长线于H,则四边形EC′HF为矩形,∴FH=C′E=CE=4,C′H=EF=7,∴DH=DF+FH=7,∴PC+PD=C′D=.故选B.【点睛】本题考查了轴对称-线路最短的问题,确定使PC+PD的值最小时动点P的位置是解题的关键.二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.【答案】.【解析】【分析】先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长;再在Rt△ACM中,根据勾股定理可求出AM的长,然后再由AD=2AM即可得出结论.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵且AC=3,BC=4,AB=5,∴在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即解得:∴故答案为:【点睛】考查勾股定理,垂径定理及推论,掌握垂径定理是解题的关键.注意辅助线的作法.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.【答案】【解析】【详解】如图,设AC交BD于点E,当A,B,C,D四点在同一个圆上时,∵AB=AD=5,CB=CD,∴AC垂直平分线段BD,AC为圆的直径,设该圆的半径为r,圆心为O.连接OD.∴BE=DE=4,AE==3,在Rt△ODE中,则有r2=(r﹣3)2+42,得r=.故答案为:.【点睛】本题考查了线段垂直平分线的性质、垂径定理及勾股定理,求得BE =4,AE=3是解决问题的关键.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.【答案】65【解析】【分析】连接OA、OC、OB,根据切线的性质定理可得∠DAO=∠EBO=90°,由是必须的内角和为360°可得∠P+∠AOB=180°,由此求得∠AOB=130°,由切线长定理可得∠AOD=∠DOC,∠COE=∠BOE,从而得∠DOE=∠AOB=65°.【详解】连接OA、OC、OB,∵OA⊥PA,OB⊥PB,OC⊥DE,∴∠DAO=∠EBO=90°,∴∠P+∠AOB=180°,∴∠AOB=180°﹣50°=130°;∵∠AOD=∠DOC,∠COE=∠BOE,∴∠DOE=∠AOB=×130°=65°.故答案为:65.【点睛】本题考查了切线的性质定理及切线长定理,求得∠AOB=130°是解决问题的关键.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】【解析】试题解析:∵直线与x轴、y轴分别交于两点,∴A点的坐标为(4,0),B点的坐标为(0,−3),∴OA=4,OB=3,过C作CM⊥AB于M,连接AC,MC的延长线交C于N,则由三角形面积公式得,圆C上点到直线的最小距离是∴△P AB面积的最小值是故答案为:17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.【答案】2【解析】【分析】作OH⊥MN于H,连接ON,由已知条件可得OA=OB=ON=4,OP =2,再求得OH=;在Rt△OHN中,利用勾股定理求得NH=,再利用垂径定理即可求得MNN=2cm.【详解】解:作OH⊥MN于H,连接ON,AB=AP+PB=8,∴OA=OB=ON=4,∴OP=OA﹣AP=2,∵∠NPB=45°,∴OH=OP=,在Rt△OHN中,NH=,∵OH⊥MN,∴MN=2HN=2(cm),故答案为:2.【点睛】本题考查了垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解决问题的关键.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.【答案】2﹣4【解析】【分析】由∠AFD=90°可得点F的运动轨迹是以AD为直径的⊙O,连接OB,OF,根据勾股定理求得OB=2,由BF≥OB﹣OF即可求得BF的最小值为2﹣4.【详解】如图,∵AE⊥DF,∴∠AFD=90°,∴点F的运动轨迹是以AD为直径的⊙O,连接OB,OF.∵四边形ABCD是矩形,∴∠BAO=90°,∵AB=6,AO=4,∴OB==2,FO=AD=4,∵BF≥OB﹣OF,∴BF的最小值为2﹣4,故答案为2﹣4.【点睛】本题考查了圆周角定理的推论及勾股定理,明确点O、B、F在一条直线上时BF的值最小是解决问题的关键.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.【答案】22【解析】【分析】根据圆周角定理即可求解.【详解】由圆周角定理可得:∠C= ∠O=×44°=22°;故答案为:22;【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决本题的关键.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】5【解析】【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最小距离,根据面积公式求出即可.【详解】∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x ﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5.过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×2+3×4,∴CM=4,∴圆C上点到直线y=x﹣3的最小距离是:4-2=2,∴△P AB面积的最小值是×5×2=5.故答案为:5.【点睛】本题考查了三角形的面积,点到直线的距离公式的应用,解答此题的关键是求出圆上的点到直线AB的最小距离.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.【答案】(1)证明见解析;(2)CE=.【解析】【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C是的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)由C是的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∴∠A+∠ABC=90°.又∵CE⊥AB,∴∠CEB=90°.∴∠BCE+∠ABC=90°.∴∠BCE=∠A,∵C是的中点,∴=.∴∠DBC=∠A,∴∠DBC=∠BCE.∴CF=BF;(2)∵=,CD=5,∴BC=CD=5,∴AB==13,∴⊙O的半径为6.5,∵CE•AB=AC•BC,∴CE===.【点睛】本题考查了圆周角定理、勾股定理及直角三角形的面积求法,熟练运用相关知识是解决本题的关键.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.【答案】(1)见解析;(2)四边形ABCD的面积为.【解析】【分析】(1)据已知条件和圆周角定理即可得到结论;(2)过点A作AE⊥CD,过点B作BF⊥AC,得∠AED=90°,∠ADE=60°,∠DAE=30°,DE =1,,CE= 5,从而求出,再求出,即可求出结论.【详解】解:(1)∵ 四边形ABCD内接于⊙O∴∠ABC+∠ADC=180°∵∠ABC=60°,∴∠ADC=120°∵ DB平分∠ADC,∴∠ADB=∠CDB=60°∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°∴∠ABC=∠BCA=∠BAC∴△ABC是等边三角形⑵ 过点A作AE⊥CD,垂足为点E;过点B作BF⊥AC,垂足为点F.∴∠AED=90°∵∠ADC=120°∴∠ADE=60°∴∠DAE=30°∴ DE==1,∵ CD=4∴ CE=CD+DE=1+4=5∴Rt△AEC中,∠AED=90°∴ AC=∵ △ABC是等边三角形∴ AB=BC=AC=∴ AF=FC=∴∴∴ 四边形ABCD的面积=.【点睛】本题考查勾股定理、圆周角定理、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.【答案】(1)证明见解析;(2)∠BDF=116°.【解析】【分析】(1)连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;由CD=BD 可得AD垂直平分BC,根据线段垂直平分线的性质可得AB=AC,所以∠B=∠C;根据同弧所对的圆周角相等可得∠B=∠E,由此即可证得∠E=∠C;(2)已知四边形AEDF是⊙O的内接四边形,根据圆内接四边形对角互补可得∠AFD=180°﹣∠E,由邻补角的定义可得∠CFD=180°﹣∠AFD,从而求得∠CFD=∠E=58°,再由∠BDF=∠C+∠CFD即可求得∠BDF的度数.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=58°,又∵∠E=∠C=58°,∴∠BDF=∠C+∠CFD=116°.【点睛】本题考查了圆周角定理及圆内接四边形对角互补的性质,熟知圆周角定理及圆内接四边形对角互补的性质是解决问题的关键.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)首先连接OD,由在△ABC中,∠B=90°,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,易证得Rt△ODC≌Rt△OBC(HL),然后由等腰三角形与三角形外角的性质,证得∠OED=∠BOC,继而证得DE∥OC;(2)由AD、DC的长可得AC、BC的长,再根据勾股定理即可得AB的长,再根据AD2=AE•AB,从而可得AE的长,继而得到OB的长,问题得以解答.试题解析:(1)连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°,在Rt△OCD和Rt△OCB中, ,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC,∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,∴∠BOC=∠OED,∴DE∥OC;(2)由AD=2,DC=3得:BC=3,AC=5,由勾股定理得AB= =4,又∵AD2=AE·AB,∴AE=1,∴BE=3,OB=BE=,∴=.【点睛】本题考查了切线的性质、全等三角形的判定与性质、勾股定理等.解题的关键是恰当添加辅助线,解题过程中要注意掌握数形结合思想的应用.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.【答案】(1)①证明见解析;②直线DE与⊙O相切,理由见解析;(2)AF=3.【解析】【分析】(1)①连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;再由等腰三角形三线合一的性质即可证得结论;(2)直线DE与⊙O相切,连接OD,已知AB=AC、OB=OD,根据等腰三角形的性质可得∠ODB=∠B=∠C,即可判定OD∥BC,由DE⊥AC可得DE⊥OD,由此即可判定DE 与⊙O相切;(2)根据已知条件易证四边形ODEF是矩形,即可得OD=EF=4;设AF=x,则AB=AC=x+6,AO =x+2,在Rt△AOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的长.【详解】(1)①连接AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,AD⊥BC,∴BD=CD;②直线DE与⊙O相切,理由:连接OD,∵AB=AC,OB=OD,∴∠ODB=∠B=∠C,∴OD∥BC,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)同理得,DE与⊙O相切,连接OF,∵EF与⊙O相切,DE⊥AC,∴∠ODE=∠OFE=∠EDF=90°,即四边形ODEF是矩形,∴OD=EF=4,设AF=x,则AB=AC=x+6,AO=x+6﹣4=x+2,在Rt△AOF中,(x+2)2=x2+42,解得,x=3,即AF=3.【点睛】本题考查了切线的判定与性质,解决第(2)问构造直角三角形利用勾股定理作为相等关系列方程是解决问题的关键.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.【答案】(1)详见解析;(2)2;(3)4﹣π.【解析】【分析】(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;(3)根据正方形的面积公式和扇形面积公式计算.【详解】(1)证明:连接OD、OE、OF、OA,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,∴四边形OFCE为正方形,∴OF=CF,∵AF=AD,OF=OD,∴OA⊥DF,又∠AFD=∠GFC,∴∠G=∠OAF,在△GFC和△AOF中,,∴△GFC≌△AOF(AAS),∴AF=GC;(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,则AB=AD+BD=10,由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102,解得,CF=2,即⊙O的半径为2;(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22﹣=4﹣π.【点睛】本题考查的是三角形的内切圆与内心,扇形面积计算,掌握切线长定理,扇形面积公式,全等三角形的判定和性质是解题的关键.。
人教版九年级上学期数学《圆》单元测试一、选择题(本大题共12小题,每小题3分,共计36分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140°第3题第4题第5题4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5 5.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O 的直径是( )A.2cmB.4cmC.6cmD.8cm 6.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有相等实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定第8题第7题7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( ) A.内含 B.外切 C.相交 D.外离8.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( )A. B. C. D.9.等边三角形的周长为18,则它的内切圆半径是( )A. 6B. )3C.D.10.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )A.130°B.120°C.110°D.100°第11题13题14题11.如图,在平面直角坐标系中,点P在第一象限,⊙P与轴相切于点Q,与轴交于M(0,2),N(0,8) 两点,则点P的坐标是( )A.B.C.D.12.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2B.1 C.1.5D.0.5二、填空题(本大题共9小题,每小3分,共计27分)13.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.14.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.第13题第14题第15题第16题15.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于____.16.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC ∥OA,连结AC,则图中阴影部分的面积为_________.17.如图,已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=_______.18.如图,为的直径,点在上,,则________.第19题第21题第17题第18题19.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是______. .20.已知扇形半径为2cm,面积是,扇形的圆心角为_____°,扇形的弧长是______cm.21.如图,是⊙O的直径,点在的延长线上,过点作⊙O的切线,切点为,若,则______.三、解答题(22-25题,,37分)22.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内半径是多少cm的管道.23.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE的长.24.有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.(1)证明:RP=RQ.(2)请探究下列变化:A、变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ. 证明:RQ为⊙O的切线.B、变化二:运动探求.(1)如图2,若OA向上平移,变化一中结论还成立吗?(只交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?25.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.九年级上学期数学--圆单元测试题答案一、选择题01.B 02.C 03.D 04.A 05.B 06.C 07.C 08.D 09.B10.B11.B 12.B 13.D 14.C 15.A 16.B 17.C 18.C 19.C20.B21.D 22.D 23.C 24.D 25.B 26.C 27.C 28.C 29.B 30.D二、填空题31.【答案】12000 32.【答案】第二种33.【答案】6cm 34.【答案】(2,0)35.【答案】24(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)36.【答案】200 37.【答案】 38.【答案】90° 39.【答案】40.【答案】100 41.【答案】40° 42.【答案】30° 43.【答案】2±44.【答案】5. 45.【答案】厘米 46. 【答案】2 47. 【答案】40cm248.【答案】16cm. 49.【答案】4:9. 50. 【答案】51 . 【答案】2cm52. 【答案】45°,53. 【答案】354. 【答案】55 . 【答案】,;56. 【答案】130cm257. 【答案】158.458. 【答案】7.5 59. 【答案】40°60. 【答案】三、解答题61.解:(1)证明:连接AD∵AB是⊙O的直径∴∠ADB=90°又BD=CD∴AD是BC的垂直平分线∴AB=AC(2)连接OD∵点O、D分别是AB、BC的中点∴OD∥AC又DE⊥AC∴OD⊥DE∴DE为⊙O的切线(3)由AB=AC,∠BAC=60°知△ABC是等边三角形∵⊙O的半径为5∴AB=BC=10,CD=BC=5又∠C=60°∴.62.解:(1)∠BFG=∠BGF连接OD,∵OD=OF(⊙O的半径),∴∠ODF=∠OFD.∵⊙O与AC相切于点D,∴OD⊥AC又∵∠C=90°,即GC⊥AC,∴OD∥GC,∴∠BGF=∠ODF.又∵∠BFG=∠OFD,∴∠BFG=∠BGF.(2)如图所示,连接OE,则ODCE为正方形且边长为3.∵∠BFG=∠BGF,∴BG=BF=OB-OF=,从而CG=CB+BG=,∴阴影部分的面积=△DCG的面积-(正方形ODCE的面积- 扇形ODE的面积)63.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).64.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.65.扇形OAB的圆心角为45°,纸杯的表面积为44.解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长:可列方程组,解得所以扇形OAB的圆心角为45°,OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积==66.连接OP、CP,则∠OPC=∠OCP.由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.67.解:连接OQ,∵OQ=OB,∴∠OBP=∠OQP又∵QR为⊙O的切线,∴OQ⊥QR即∠OQP+∠PQR=90°而∠OBP+∠OPB=90°故∠PQR=∠OPB又∵∠OPB与∠QPR为对顶角∴∠OPB=∠QPR,∴∠PQR=∠QPR∴RP=RQ变化一、连接OQ,证明OQ⊥QR;变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR.68.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2在⊙O′中,∵ O′O= O′D ∴∠1=∠3∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.(3)不同意. 理由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5∴AH=4,∴OH =1求得点P1(1,3) 同理可得:P4(9,3)②当OA=OP时,同上可求得:P2(4,3),P3(4,3)因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.69.【提示】(1)过B作⊙O2的直径BH,连结AB、AH,证∠EBH=90°.(2)用类似的方法去探求.【证明】(1)连结AB,作⊙O2的直径BH,连结AH.则∠ABH+∠H=90°,∠H=∠ADB,∠EBA=∠ECA.∵EC∥BD,∴∠ADB=∠ACE=∠EBA.∴∠EBA+∠ABH=90°.即∠EBH=90°.∴BE是⊙O2的切线.(2)同理可知,BE仍是⊙O2的切线.【点评】证明一与圆有公共点的直线是圆的切线的一般方法是过公共点作半径(或直径),再证直径与半径垂直,但此题已知条件中无90°的角,故作直径构造90°的角,再进行角的转换.同时两圆相交,通常作它们的公共弦,这样把两圆中的角都联系起来了.另外,当问题进行了变式时,要学会借鉴已有的思路解题.。