功放的工作原理
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
功放的工作原理引言概述:功放(Power Amplifier)是一种电子设备,用于放大音频信号,使其具备足够的功率驱动扬声器,以产生高质量的音频输出。
功放的工作原理是通过增加信号的幅度,使其能够推动扬声器产生更大的声音。
本文将详细阐述功放的工作原理,包括信号放大、功率放大、失真和保护等方面。
正文内容:1. 信号放大1.1 输入信号功放的工作原理首先涉及到输入信号。
输入信号可以来自各种音频源,如麦克风、CD播放器或其他音频设备。
输入信号通常是低电平的,需要经过放大才能驱动扬声器。
1.2 输入级输入信号通过输入级进入功放。
输入级通常由一个或多个晶体管组成,它们具有高输入阻抗,可以接受低电平的输入信号。
输入级的作用是将输入信号放大到足够的幅度,以供后续的功率放大级使用。
1.3 预放大级在输入级之后,通常还会有一个或多个预放大级。
预放大级进一步放大输入信号,并对其进行一些调整,如频率响应和相位校正。
预放大级的输出信号将进一步传递给功率放大级。
2. 功率放大2.1 功率放大级功率放大级是功放的核心部分。
它通常由一个或多个功率晶体管或功率管组成,这些器件可以承受较高的电流和电压,以实现对输入信号的高功率放大。
功率放大级的输出信号将驱动扬声器。
2.2 输出级输出级是功放的最后一个放大级。
它的主要作用是将功率放大级的输出信号转换为足够的电流和电压,以驱动扬声器。
输出级通常由一个或多个输出晶体管组成,这些晶体管具有低输出阻抗,可以提供足够的电流给扬声器。
2.3 反馈回路为了提高功放的性能和稳定性,通常会添加一个反馈回路。
反馈回路将输出信号与输入信号进行比较,并校正任何失真或偏差。
通过反馈回路,功放可以更准确地放大输入信号,并提供更高质量的音频输出。
3. 失真3.1 线性失真功放的工作原理中存在一些失真问题。
其中最常见的是线性失真,它是由于功放在放大信号时,无法完全保持输入信号的精确形状和幅度,导致输出信号与输入信号存在差异。
功放的工作原理功放,即功率放大器,是一种电子设备,用于放大音频信号的功率,以便驱动扬声器或者其他负载。
功放的工作原理涉及信号放大、电流放大和电压放大等过程。
下面将详细介绍功放的工作原理。
一、信号放大功放的主要功能是将输入的音频信号放大到足够的功率,以便驱动扬声器。
在功放电路中,音频信号被输入到放大器的输入端。
放大器内部的前置放大电路会对输入信号进行放大,增加信号的幅度。
这样可以保证音频信号能够顺利通过后续的放大电路。
二、电流放大信号放大后,功放会将放大后的信号转换成足够的电流,以便驱动扬声器。
在功放电路中,放大后的信号经过驱动级放大器,该放大器会将信号的电流放大到足够的水平。
这样可以确保扬声器能够获得足够的电流,从而产生较大的声音。
三、电压放大除了电流放大外,功放还需要将电压进行放大,以便提供给扬声器。
在功放电路中,电流放大后的信号经过输出级放大器,该放大器会将信号的电压放大到足够的水平。
这样可以确保扬声器能够获得足够的电压,从而产生较大的声音。
四、负反馈为了提高功放的性能和稳定性,功放电路中通常会采用负反馈。
负反馈是指将输出信号的一部份反馈到输入端,与输入信号进行比较,并对放大电路进行调整。
通过负反馈,可以降低功放的失真、提高频率响应和减小输出阻抗。
这样可以使功放更加稳定和可靠。
五、保护电路为了保护功放和扬声器,功放电路中通常会设置一些保护电路。
这些保护电路可以监测功放的工作状态,一旦浮现异常情况,如过热、过载或者短路等,保护电路会自动切断功放电路,以避免损坏功放和扬声器。
六、功放类型根据不同的应用需求,功放可以分为多种类型,如A类、B类、AB类、D类等。
这些类型的功放有不同的工作原理和特点。
例如,A类功放具有高保真度和线性度,但效率较低;D类功放则具有高效率和小尺寸,但对信号质量要求较高。
根据实际需求选择适合的功放类型,可以获得更好的音频效果。
总结:功放的工作原理涉及信号放大、电流放大和电压放大等过程。
功放的工作原理功放(Power Amplifier)是一种电子设备,用于将低功率信号放大到较高功率的输出信号。
它在音频、视频和通信系统中起到关键作用,可以提供足够的功率驱动扬声器、显示器和天线等设备。
功放的工作原理涉及到电子器件的工作特性和电路设计的原理。
一、功放的基本原理功放的基本原理是将输入信号放大,并通过输出电路将放大后的信号传递给负载。
在功放电路中,通常使用晶体管或管子作为放大器元件。
晶体管功放使用晶体管作为放大器,而管子功放则使用真空管或半导体管作为放大器。
二、晶体管功放的工作原理晶体管功放的工作原理是通过控制基极电流来控制集电极电流,从而实现信号的放大。
晶体管功放通常由三个极端组成:基极(Base)、发射极(Emitter)和集电极(Collector)。
其中,基极是输入端,发射极是输出端,集电极是电源端。
当输入信号施加到基极时,基极电流会发生变化。
这个变化会导致晶体管内部的电流和电压也发生相应的变化。
晶体管的放大特性使得输入信号的变化在输出端得到放大。
晶体管功放的放大倍数由晶体管的参数决定,可以通过调整电路中的元件值来实现不同的放大倍数。
三、管子功放的工作原理管子功放的工作原理与晶体管功放类似,但是使用的放大器元件不同。
管子功放使用真空管或半导体管作为放大器。
真空管功放通过控制阴极电流来实现信号的放大,而半导体管功放则通过控制栅极电压来实现信号的放大。
在管子功放中,输入信号施加到栅极或网格极,控制栅极电流或栅极电压的变化,从而控制管子内部的电流和电压的变化。
管子的放大特性使得输入信号的变化在输出端得到放大。
四、功放的分类根据功放的工作原理和应用领域的不同,功放可以分为多种类型。
常见的功放类型包括:1. A类功放:适用于音频放大器,具有简单的电路结构和低功耗,但效率较低。
2. B类功放:适用于音频放大器和功率放大器,具有较高的效率和功率输出,但可能存在失真问题。
3. AB类功放:结合了A类和B类功放的优点,适用于音频放大器和功率放大器,具有较高的效率和较低的失真。
功放的工作原理
功放是指放大器。
功放的工作原理是将输入信号经过放大电路放大后经过输出电路输出。
具体来说,其工作原理包括以下几个关键步骤:
1. 输入信号传输:首先,输入信号通过输入电路传输到功放的输入端。
输入电路通常由耦合电容和电阻组成,起到隔离和匹配输入信号的作用。
2. 放大电路:输入信号到达功放后,会经过放大电路进行放大处理。
放大电路由一系列的晶体管、真空管或场效应管等元件组成。
这些管子会将输入信号的电流或电压进行放大,从而增大信号的幅度。
3. 负反馈控制:功放通常采用负反馈控制来提高放大的稳定性和精准度。
负反馈通过将一部分输出信号与输入信号进行比较,并将差异信号通过反馈回路传回放大电路,从而调节放大倍数,使输出信号更加稳定和准确。
4. 输出电路:放大后的信号经过输出电路输出。
输出电路通常由输出变压器或直接耦合电路组成,将放大后的信号匹配到所需的负载上,使其得以正确驱动。
总结起来,功放的工作原理是通过将输入信号经过放大电路进行放大处理,并通过负反馈控制以提高稳定性和准确性,最终将放大后的信号经过输出电路输出到负载上。
功放的工作原理功放(Power Amplifier)是一种电子设备,用于将音频信号或者其他低功率信号放大到较高功率,以驱动扬声器或者其他负载。
功放的工作原理涉及信号放大、功率放大和电流放大等过程。
下面将详细介绍功放的工作原理。
一、信号放大功放的第一步是信号放大,它接收来自音频源或者其他低功率信号源的输入信号。
输入信号经过放大电路,通常使用放大器芯片(如运放)来放大信号的幅度。
放大电路根据输入信号的幅度变化,输出一个放大后的信号。
这个过程通常被称为电压放大。
二、功率放大信号放大之后,功放需要将信号的电压放大为足够的功率,以驱动负载(如扬声器)。
功率放大的过程通常使用功率放大器来实现。
功率放大器将低功率信号转换为高功率信号,以便输出给负载。
功率放大器通常采用晶体管或者场效应管等器件,它们具有较高的功率放大能力。
三、电流放大功放的最后一个步骤是电流放大。
电流放大器接收功率放大器输出的高功率信号,并将其转换为足够的电流,以驱动负载。
电流放大器通常使用功率放大器的输出信号来驱动一个或者多个功率放大级,以提供所需的电流放大。
功放的工作原理可以简单概括为:信号放大、功率放大和电流放大。
通过这些步骤,功放能够将低功率信号放大为足够的功率,以驱动扬声器或者其他负载。
值得注意的是,功放在工作过程中会产生一定的热量。
为了确保功放的正常工作,通常需要设计散热系统来散发热量,以避免过热损坏设备。
此外,功放还可能具有一些额外的功能和特性,如音调控制、音量控制、保护电路等。
这些功能可以提供更好的音频体验和保护功放免受损坏。
总结:功放的工作原理包括信号放大、功率放大和电流放大三个主要步骤。
通过这些步骤,功放能够将低功率信号放大为足够的功率,以驱动扬声器或者其他负载。
在设计功放时,还需要考虑散热系统和其他功能,以确保功放的正常工作和提供更好的音频体验。
功放的工作原理功放(Power Amplifier)是一种电子设备,用于放大音频信号或电视信号。
它起到放大信号的作用,将输入信号放大到一定的功率级别,以驱动扬声器或其他负载设备。
功放广泛应用于音响系统、影音设备、通信设备等领域。
功放的工作原理可以简单地描述为将输入信号经过放大电路放大后输出。
下面将详细介绍功放的工作原理。
1. 输入信号功放的输入信号通常是音频信号或电视信号。
音频信号可以是来自麦克风、CD播放器、MP3播放器等音频源的电压信号,电视信号可以是来自电视机、DVD 播放器等视频源的电压信号。
这些输入信号的幅度通常较小,需要通过功放进行放大。
2. 放大电路功放的核心部分是放大电路。
放大电路通常由一个或多个放大器组成。
放大器使用晶体管、真空管或集成电路等器件来放大输入信号。
放大器的工作原理是根据输入信号的变化,调整电流或电压,使输出信号的幅度相应地放大。
3. 反馈电路为了提高功放的性能和稳定性,通常会在放大电路中加入反馈电路。
反馈电路将输出信号与输入信号进行比较,并根据比较结果对放大电路进行调整。
反馈电路可以减小非线性失真、提高频率响应和稳定性。
4. 输出信号放大电路将输入信号放大后,输出到负载设备,如扬声器或其他音频设备。
输出信号的幅度较大,可以驱动扬声器产生音频声音或驱动其他负载设备工作。
5. 控制和保护电路功放通常还包括控制和保护电路。
控制电路用于调节功放的工作状态,如音量控制、音调控制等。
保护电路用于保护功放和负载设备,如过载保护、温度保护等。
这些电路可以提高功放的可靠性和安全性。
总结:功放的工作原理是通过放大电路将输入信号放大后输出到负载设备。
放大电路使用放大器进行信号放大,反馈电路进行信号比较和调整,控制和保护电路用于控制功放的工作状态和保护功放和负载设备。
功放在音响系统、影音设备、通信设备等领域起到重要的作用,提供高品质的音频和视频体验。
功放的工作原理是什么的
功放(功率放大器)是一种电子元件,用于将低功率的输入信号放大为高功率的输出信号。
它的工作原理主要涉及以下几个方面:
1. 电流放大:功放通过控制电流的大小来放大输入信号。
输入信号经过功放的放大器,控制器调节放大器的电流大小,进而调节输出信号的功率。
2. 放大器阶段:功放通常由一个或多个放大器级联组成。
每个放大器负责放大信号的不同部分,形成完整的放大过程。
不同级放大器可采用不同的放大技术,如BJT(双极型晶体管)、
FET (场效应管)或MOSFET (金属-氧化物-半导体场效应管)等。
3. 微观控制:功放可以根据输入信号的微小变化,通过微观的放大器控制电路来实现对输出信号的精确控制。
这些微观控制电路通常由电容、电阻、复杂的电路网络等元件组成。
4. 负反馈:为了提高功放的稳定性和线性度,功放通常采用负反馈电路。
负反馈电路通过将输出信号的一部分与输入信号进行比较,并将差值反馈给放大器,来实现对输出信号进行精确控制。
5. 电源:功放通常需要较高的电源电压和电流。
电源负责为功放提供电能,以驱动放大器的工作。
通常,功放电源使用稳压电源或者大容量滤波器来保证电源的稳定性和纹波的最小化。
通过以上工作原理,功放能够实现输入信号的放大,并将其转化为高功率的输出信号,用于驱动扬声器、喇叭等负载设备。
功放的工作原理功放,即功率放大器,是一种电子设备,用于将音频信号或其他低功率信号放大到足够大的功率,以驱动扬声器或其他负载。
功放是音响系统中重要的组成部分,它能够增强音频信号的强度,使其能够在扬声器中产生高质量的声音。
功放的工作原理可以分为两个主要方面:信号放大和功率放大。
1. 信号放大信号放大是功放的第一步,它主要通过放大器电路来实现。
放大器电路通常由一个或多个晶体管、管子或集成电路组成。
当输入的音频信号进入功放时,它会经过放大器电路,其中的晶体管或其他放大器组件会将信号放大到更高的电平。
这样做的目的是为了增加信号的幅度,使其能够更好地驱动扬声器。
2. 功率放大功率放大是功放的第二步,它主要通过功率放大器电路来实现。
功率放大器电路通常由一个或多个功率晶体管、管子或集成电路组成。
当经过信号放大之后的音频信号进入功率放大器电路时,功率晶体管或其他功率放大器组件会将信号的功率进一步放大。
功率放大的目的是为了使信号能够驱动扬声器并产生足够的音量。
功放的工作原理可以进一步细分为以下几个步骤:1. 输入信号功放的工作是基于输入的音频信号。
这个信号可以来自于音频源设备,如CD播放器、电视机、收音机等。
输入信号的大小和频率范围会对功放的工作产生影响,因此功放需要适应不同的输入信号。
2. 信号放大一旦输入信号进入功放,它会经过放大器电路进行信号放大。
放大器电路中的晶体管或其他放大器组件会将输入信号的幅度放大到更高的电平。
这样做的目的是为了增加信号的强度,使其能够更好地驱动扬声器。
3. 频率响应调整功放还可以通过频率响应调整来改善音频信号的质量。
频率响应调整是通过使用电容、电感和电阻等元件来调整不同频率范围的信号。
这样可以使功放能够更好地处理不同频率范围的音频信号,并提供更平衡和清晰的声音。
4. 功率放大经过信号放大后的音频信号进入功率放大器电路,功率晶体管或其他功率放大器组件会进一步放大信号的功率。
功率放大的目的是为了使信号能够驱动扬声器并产生足够的音量。
功放的工作原理功放,即功率放大器,是一种电子设备,用于将输入信号的功率放大到更高的水平。
它在音频和无线通信系统中起着重要的作用。
功放的工作原理是将输入信号经过放大电路放大后输出,从而实现信号的放大功能。
一、功放的基本组成部分功放一般由输入端、放大电路和输出端组成。
1. 输入端:功放的输入端接收来自音频设备或其他信号源的输入信号。
输入端通常包括输入接口和输入电路,用于接收和处理输入信号。
2. 放大电路:放大电路是功放的核心部分,它负责将输入信号放大到更高的功率水平。
放大电路一般由放大器管或晶体管、电容器、电阻器等元件组成,通过这些元件的组合和控制,实现信号的放大。
3. 输出端:功放的输出端将放大后的信号输出到负载上,如扬声器或其他设备。
输出端通常包括输出接口和输出电路,用于将放大后的信号传送给负载。
二、功放的工作原理可以简单描述为输入信号经过放大电路放大后输出到负载上。
1. 输入信号处理:输入信号首先经过输入端的接口和电路,进行初步的处理。
这些处理可能包括信号的滤波、放大、调节等操作,以使信号适合进入放大电路。
2. 放大电路工作:经过输入信号处理后,信号进入放大电路。
放大电路中的放大器管或晶体管根据输入信号的特性进行工作,将输入信号的功率放大到更高的水平。
放大器管或晶体管的工作状态由电路中的电源、电容器、电阻器等元件的组合和控制来实现。
3. 输出信号传送:放大后的信号从放大电路输出,经过输出端的接口和电路传送给负载。
输出端的电路可能包括匹配电路、保护电路等,以确保信号能够有效地传送到负载上,并保护功放和负载免受损坏。
三、功放的工作特点1. 放大增益:功放的主要功能是放大输入信号的功率。
放大增益是衡量功放放大能力的重要指标,通常以分贝(dB)为单位表示。
放大增益越高,功放的放大能力越强。
2. 频率响应:功放的频率响应指的是功放对不同频率信号的放大能力。
功放应具有宽频带特性,能够放大从低频到高频的各种信号。
功放的工作原理功放(Power Amplifier)是一种电子设备,用于将低功率的音频信号或者其他信号增大到足够的功率,以驱动扬声器或者其他负载。
功放在音响设备、无线电通信、电视广播、汽车音响等领域广泛应用。
下面将详细介绍功放的工作原理。
一、功放的基本原理功放的核心原理是利用半导体器件(如晶体管或者场效应管)的放大特性,将输入信号的电流或者电压增大,从而得到输出信号。
功放的工作原理可以简单概括为三个步骤:放大、线性处理和驱动。
1. 放大:输入信号经过放大电路,通过晶体管或者场效应管等放大器件,使信号的电流或者电压增大。
放大电路通常由多个级联的放大器组成,每一个级别都负责放大特定的频率范围。
2. 线性处理:放大后的信号经过线性处理电路,对信号进行调整和修正,以保持信号的准确性和稳定性。
线性处理电路通常包括滤波器、均衡器和反馈电路等。
3. 驱动:经过线性处理的信号被发送到输出级,通过输出级将信号驱动到扬声器或者其他负载。
输出级通常由功率晶体管或者功率场效应管等高功率放大器件组成,能够提供足够的功率以驱动负载。
二、功放的工作模式功放根据输入信号的类型和工作方式,可以分为A类、AB类、B类、C类和D类等不同的工作模式。
1. A类功放:A类功放是最常见的功放工作模式。
它的特点是在整个信号周期内都有电流流过输出级,但在没有输入信号时,输出级也会有一定的静态电流。
A 类功放具有较好的线性度和音质,但效率较低。
2. AB类功放:AB类功放是A类功放的改进版本。
它在没有输入信号时,输出级的静态电流较小,从而提高了效率。
AB类功放在音质和效率上都有较好的平衡,因此被广泛应用于音响设备中。
3. B类功放:B类功放惟独在输入信号正弦波的一个半周期内才有电流流过输出级。
由于惟独一半的周期需要放大,B类功放具有较高的效率,但存在交叉失真问题。
因此,在B类功放中通常会采用两个输出级,一个负责放大正半周期,另一个负责放大负半周期,以减少交叉失真。
功放的工作原理一个最简单的音响系统包括音源、功放和音箱,缺一不可,这几件器材的质量基本决定了整个系统的质量。
其中,功放作为音响系统的动力,在音源和音箱之间起着桥梁的作用。
功放的工作原理其实很简单,直观来说就是将音源播放的各种声音信号进行放大以推动音箱发出声音。
从技术角度看,功放好比一台电流的调制器,它将交流电转变为直流电,然后受音源播放的声音信号控制,将不同大小的电流,按照不同的频率传输给音箱,这样音箱就发出相应大小、相应频率的声音了。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计、生产工艺上也各不相同。
传统的功放经历了几十年的发展,一直没有特别的分类,直到近年来随着音视频播放设备的发展和影视软件的丰富,使得许多音响生产厂家在传统功放的基础上,参照真正电影院的声音播放特点,设计生产出了不同类型不同技术特点的综合型的功放,人们将它称为AV功放,相应地就将单纯用来欣赏音乐的功放称为纯音乐功放。
按当前音响消费的需求,民用音响中的功放已基本定型为两大类,即纯音乐功放和家庭影院AV功放。
纯音乐功放纯音乐功放在设计上强调最低的信号失真,忠实地表现出音乐的场面、细节和演奏、录制技巧,以满足人们对音乐的最佳欣赏要求,这就是人们常说的Hi-Fi。
在设计和生产上,纯音乐功放的要求极其严格。
搭配合理的高品质纯音乐功放和音箱具有极高的音乐保真度,能让许多人受到音乐的感染,这就是为什么在家庭影院热火朝天的今天,仍然有不少文化修养较高的人士醉心于纯音乐音响的原因,甚至有不少最初追求AV潮流的人对音响有了一定了解后,又重新开始欣赏Hi-Fi音乐,就更说明Hi-Fi的魅力了。
纯音乐功放品质的高低并不完全由它的技术指标所决定,不能简单地看它标注的功率多么高,频响多么宽,失真多么低,而应该特别注重其设计生产工艺和音乐的解晰力。
比如技术指标并不太高的胆机就要比很多晶体管功放声音好听。
此外,纯音乐功放还尤其讲究与音箱的合理搭配,推甲音箱很好的功放不一定能推好乙音箱,在实际搭配时应该参照它们的工作类型、阻抗特点、灵敏度以及输出电流,并需要实际试听。
下面向大家介绍两款性价比很高的纯音乐功放,供大家参考。
雅骏(ARCAM)ALPHA 5功放。
对发烧音响稍微熟悉的人一定不会对产自英国的“雅骏”感到陌生,虽然它又小又薄貌不惊人,甚至有些平淡和小气,以至在几年前的一次展览会上大家都对这么小的功放能否推动发烧音箱表示怀疑,更不敢奢望它的音质表现,但当它镇定自若神气活现地推动天朗音箱时,大家都为它小小的身躯竟有如此之好的性能所折服,“雅骏”的名气也随之越来越大。
其ALPHA系列功放是在原来的DELTA系列的基础上经过一定改进后推出的机型,设计上采用纯甲类结构,为了使信号失真降低,内部电路也十分简单,元件型号也没有什么特殊的地方,但是由于制作工艺和材料质量要求十分严格,所以即便貌似简单,雅骏的ALPHA系列功放却有着非凡的音质。
在实际试听时,雅骏ALPHA5和产自同一公司的天朗607音箱配合(音源用的是雅骏的ALPHA1 CD机),音质简直可以说近乎完美,尤其是在欣赏弦乐和人声时,ALPHA5的解析力使得天朗音箱的优点尽显无遗,在播放维瓦尔第的《四季》时,小提琴的每一个音符丝丝入扣,清晰悦耳,丝毫没有某些功放的那种很“炸”的味道;用《蔡琴老歌》试听,歌手的每一个换气和吐字都非常清晰地表现出来,亲切感人,与这张CD的风格相当吻合。
虽然ALPHA5在8Ω时每声道只有40W的输出功率,但是作为工艺地道的英国甲类功放,推好多数高水平的音箱是绝对没有问题的,在音乐高潮时也能做到干净利落,绝对不拖泥带水。
同时ALPHA5仅仅3000元左右的价格,却综合了晶体管机和胆机的优点,真可以说是超值的器材了。
天龙(DENON)PMA-890DG功放。
在日本生产的几种名牌功放中,天龙功放以功率充足、音质醇厚见长,其中PMA-890DG功放是一款发烧味十足的产品。
在设计上,DENON PMA-890 DG成功地解决了甲类放大器高效率和大功率的难题,将每声道输出功率在8Ω时做到110W,实实在在是技术上的突破;同时,PMA-890DG设置了数码输入端子,内部也相应设计了20Bit的解码器,这点足以看出DENON在音质表现上的良苦用心;另外,它那重达20公斤的体重也让你不得不相信它的用料质量。
在外观上,DENON PMA-890DG让你第一眼见到它就会喜欢:落落大方,气派非凡,无论摆放在什么样的家庭,都算是一件装饰品,它沉稳的机身给人以稳重的感觉。
在试听时,用它来推意力的一款平价音箱EL80,在播放著名的TELARC录制的柴可夫斯基的《1812序曲》时,无论是在乐曲开始部分描述和平生活的舒缓章节,还是在中间部分交错出现的俄罗斯民族音乐和《马赛曲》旋律所描述的战争残酷场面,DENON PMA-890DG的表现都有张有弛,需要温柔时它温柔,需要猛烈时它猛烈,尤其在乐曲结尾表现战争胜利的宏大庆祝场面时,DENON PMA-890DG更加显示出它的高人之处,那令人难忘的炮声和钟声真实有力。
一曲终了,在感叹柴氏音乐魅力的同时,也不禁感叹DENON 功放十足的底气。
虽然相对于工薪阶层4000元的价格稍微贵了一些,但对喜欢音乐的人来说,DE NON PMA-890DG还是物有所值的。
AV功放AV功放是随着视频播放设备和软件的发展,在传统功放的基础上而形成的一种独立的影音控制器材,一般它包括功放部分和信号控制处理部分。
其功放部分原理上与传统功放没有什么区别,只不过增加了几个声道,也就是将几个功放合在一起了;其信号控制处理部分涉及信号的音、视频选择,信号解码处理,信号声场处理以及收音、监听等功能。
可见,与传统功放相比,AV功放在功能上已经发生了质的变化,所以严格讲现在多数的AV功放应该叫AV中心。
AV中心的形成满足了现代家庭在音视频多种媒体播放、显示及处理的要求,确实是更加符合人们在娱乐、欣赏方面的需要,但是也恰恰因为它是一个具有多种功能的“中心”,所以不容易在各部分的性能上都能达到很高的水平,尤其是AV中心的功放部分,多数产品的音质表现差强人意,或许这是AV功放亟待改进的地方吧。
作为AV用的功放,其声道功率的设置、信号解码处理部分的质量和作为音乐欣赏时的音乐表现力、音质情况,以及操作的方便性都能在一定程度上反映了它的性能。
一般一台高品质的AV功放首先应该在影视节目的信号处理上有较好的声场还原,声道隔离度要高,气氛渲染也不能太夸张;其次在功放部分的音质表现上,尤其是主声道的音质应该要求尽量接近较好的纯音乐功放。
当然,AV功放的定位与纯音乐功放是有区别的,不能不切实际地要求它的音质表现有多高。
下面向大家介绍两款性能不错的产品,仅供参考。
YAMAHA RX-V692 AV功放。
提起YAMAHA 的AV功放,熟悉AV的人以及对家庭影院有一定研究的人一定会立刻想到YAMAHA 在AV领域里独特的CINEMA DSP技术(Digital Sound Profeesor)。
凭借YAMAHA 将DSP和DOLBY Pro-Logic、AC-3完美的结合兼容,YAMAHA的代表机型DSP-A1000、DSP-A2070、DSP-A3090在高档AV功放里独占鳌头。
新近推出的具有收音功能的RX-V692 AV功放是一款被称为DOLBY DIGITAL(即原来称的AC-3)预备型5声道的AV功放,它在保持了YAMAHA AV功放具有杜比定向、数字声场处理这些传统特点的基础上,克服了以往产品在环绕声道功率上设置较小的缺点,将环绕声道功率提高到40W,使得它对影片的细节表现得更加清楚。
同时它还在功能上有独特之处:10个DSP影院程序供选择;4组音频和4组AV输入,中央声道有两路音箱接口,以方便大面积房间或大屏幕显示下使用;所有声道都有信号输出端子,以便用户能连接功率更大的功放;40个电台预置,FM电台还可以被编组储存,以便用户按照自己的喜好随时调用;5个声道都预备了信号输入口,可以配合相应的解码器接收其处理DOLBY DIGITAL(AC-3)后输出的信号,这个设置为今后DVD播放和数字电视的收看提供了升级的余地。
在实际组合中,选用先锋LD机和音质很好但公认难推的BOSE AM-10音箱组合来播放正版的《空中大掼篮》电影,YAMAHA RX-V6 92 AV功放工作得轻松自如,当影片播放到美国NBA的现场时,那种热烈刺激的气氛让你宛如置身于赛场,当迈克尔.乔丹被精灵侵入后动作出现异常时,现场观众全体轻轻地一声“呕”,不轻不重处理得非常自然。
如果选择不同的DSP模式来观看,你的周围就会变成不同的影院、剧场和体育场。
另外,最令人欣慰的是:凭借YAMAHA在AV领域的先进技术,尤其是对音质和功率的重视,使得4000元不到的RX-V692 AV功放不仅能出色地营造影院的气氛,而且在播放音乐时也有不俗的表现。
HARMAN/KARDON(哈曼卡顿)AVR25Ⅱ AV功放。
美国哈曼集团是一家非常有名的国际音响公司,它在专业舞台音响灯光和民用音响方面都有许多优秀的产品。
尤其是JBL在电影院的成就几乎是无人能敌,世界各国有70%的电影院都选用了JBL音箱!显然,HARMAN在电影技术上的优势肯定能使其家庭影院设备胜人一筹。
AVR25Ⅱ AV功放在技术上着重强调的是它对宏大刺激场面的表现能力,它在各声道的功率设置上相当充足;在功能设置上,AVR 25Ⅱ去除了一些它认为多余的部分,而将成本集中在重要的结构上;在外观上,AVR25Ⅱ是一件地道的欧美风格产品,简洁大方甚至有些简单,但它各个部件的工艺水平却是一流的。
在实际组合中,选用DENON的LD机和JBL的JM家庭影院系列音箱播放正版影片《真实的谎言》。
在播放过程中,你一定会被该组合营造气氛所感染,完全忘记你所处的环境,特别是在惊险打斗场面,你会真正认识到什么是美国式的声音;当影片播放到“鹞式”战斗机向正在跨海大桥上行驶的汽车发射导弹的情节时,你会真切地感受到导弹从左后方向右前方由近而远的整个飞行过程,非常形象;在表现电影的对话方面,HARMAN AVR25Ⅱ同样非常出色,因为它是完全按照电影院的声场特点设计的。
总之,不到4000元的价格,HARMAN AVR25Ⅱ AV功放却有如此的AV影音效果,这是不少AV功放望尘莫及的。
介绍完纯音乐功放和AV功放后,这里需要附带说一句,由于家庭影院设备的宣传被一些媒介和商家炒作得非常红火,受其影响,现在不少刚对音响入门的消费者,在购买功放是已经逐渐形成了功放应该有多声道、环绕声等功能的标准,这不能不说是一种误区。
而对音乐表现更好的Hi-Fi器材却几乎没有了市场,也就使得不少喜欢音乐的人很难寻觅到高质量的纯音乐功放,这种现象着实令人遗憾。