专题三 第3讲 推理与证明
- 格式:ppt
- 大小:1.10 MB
- 文档页数:43
第三讲 推理与证明(推荐时间:50分钟)一、选择题1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1B .a n =3nC .a n =3n -2nD .a n =3n -1+2n -32.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为 ( )A.n n -4+8-n 8-n -4=2 B.n +1n +1-4+n +1+5n +1-4=2 C.n n -4+n +4n +1-4=2 D.n +1n +1-4+n +5n +5-4=2 3. “因为指数函数y =a x是增函数(大前提),而y =⎝⎛⎭⎫13x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错4.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .45.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x ,且f ′(x )g (x )<f (x )g ′(x ),f 1g 1+f -1g -1=52,若有穷数列⎩⎨⎧⎭⎬⎫f n g n (n ∈N *)的前n 项和等于3132,则n 等于( )A.4 B.5 C.6 D.76.对于不等式n2+n<n+1(n∈N*),某同学应用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,k+12+k+1=k2+3k+2<k2+3k+2+k+2=k+22=(k+1)+1,∴当n=k+1时,不等式成立.则上述证法( ) A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确7.已知a>b>0,且ab=1,若0<c<1,p=log a2+b22,q=log c(1a+b)2,则p,q的大小关系是( ) A.p>q B.p<qC.p=q D.p≥q8.已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下三个结论:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.其中正确结论的个数为( ) A.3 B.2 C.1 D.0二、填空题9.已知数列{a n},a i∈{-1,0,1} (i=1,2,3,…,2 011),若a1+a2+…+a2 011=11,且(a1+1)2+(a2+1)2+…+(a2 011+1)2=2 088,则a1,a2,…,a2 011中是1的个数为________.10.给出下列不等式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+1 31>52,…,则按此规律可猜想第n个不等式为____________________________________.11.用数学归纳法证明-1+3-5+…+(-1)n(2n-1)=(-1)n n,当n=1时,左边应为________.12.在平面几何中,△ABC的内角平分线CE分AB所成线段的比AEEB=ACBC,把这个结论类比到空间:在三棱锥A—BCD中(如图所示),面DEC平分二面角A—CD—B且与AB相交于E,则得到的类比的结论是____________.三、解答题13.若数列{a n }的前n 项和S n 是(1+x )n 二项展开式中各项系数的和(n =1,2,3,…).(1)求{a n }的通项公式;(2)若数列{b n }满足b 1=-1,b n +1=b n +(2n -1),且c n =a n ·b nn{c n }的通项及其前n 项和T n ;(3)求证:T n ·T n +2<T n +12.14.(2012·大纲全国)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.答案1.A 2.A 3.A 4.B 5.B 6.D 7.B 8.A 9.3310.1+12+13+…+12n +1-1>n +1211.-1 12.AE EB =S △ACD S △BCD13.(1)解 由题意S n =2n,S n -1=2n -1(n ≥2),两式相减得a n =2n -2n -1=2n -1(n ≥2). 当n =1时,21-1=1≠S 1=a 1=2,∴a n =⎩⎪⎨⎪⎧2 n =12n -1n ≥2.(2)解 ∵b n +1=b n +(2n -1),∴b 2-b 1=1,b 3-b 2=3,b 4-b 3=5,…,b n -b n -1=2n -3.以上各式相加得b n -b 1=1+3+5+…+(2n -3) =n -11+2n -32=(n -1)2.∵b 1=-1,∴b n =n 2-2n .c n =⎩⎪⎨⎪⎧-2, n =1n -2×2n -1, n ≥2.∴T n =-2+0×21+1×22+2×23+…+(n -2)×2n -1,① ∴2T n =-4+0×22+1×23+2×24+…+(n -2)×2n .② ①-②得,-T n =2+22+23+…+2n -1-(n -2)×2n . =21-2n -11-2-(n -2)×2n =2n -2-(n -2)×2n=-2-(n -3)×2n. ∴T n =2+(n -3)×2n .(3)证明 T n ·T n +2-T n +12=[2+(n -3)×2n ]·[2+(n -1)×2n +2]-[2+(n -2)×2n +1]2 =4+2·(n -1)·2n +2+2×(n -3)×2n +(n -3)·(n -1)×22n +2-[4+4×(n -2)×2n +1+(n -2)2×22n +2]=2n +3+(n -3)×2n +1-22n +2 =2n +1·[(n +1)-2n +1].∵2n +1>0,∴需证明n +1<2n +1,用数学归纳法证明如下: ①当n =1时,1+1<21+1成立. ②假设n =k 时,命题成立即k +1<2k +1,那么,当n =k +1时,(k +1)+1<2k +1+1<2k +1+2k +1=2·2k +1=2(k +1)+1成立.由①、②可得,对于n ∈N *都有n +1<2n +1成立. ∴2n +1·[(n +1)-2n +1]<0.∴T n ·T n +2<T n +12. 14.(1)证明 用数学归纳法证明:2≤x n <x n +1<3.①当n =1时,x 1=2,直线PQ 1的方程为y -5=f 2-52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k (k ∈N *时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f x k +1-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3;x k +2-x k +1=3-x k +11+x k +12+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.(2)解 由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝⎛⎭⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.。
题型一:数学归纳法基础【例1】已知n 为正偶数,用数学归纳法证明111111112()2341242n n n n-+-++=+++-++时,若已假设(2n k k =≥为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1n k =+时等式成立 B .2n k =+时等式成立 C .22n k =+时等式成立D .2(2)n k =+时等式成立【考点】数学归纳法基础 【难度】2星【题型】选择【关键词】无【解析】当k 为偶数时,其后继偶数应是2k +。
【答案】B 。
【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n k =(2k ≥且为偶数)时命题为真,,则还需证明( )A.1n k =+时命题成立B. 2n k =+时命题成立C. 22n k =+时命题成立D. ()22n k =+时命题成立【考点】数学归纳法基础 【难度】2星 【题型】选择【关键词】无【解析】因n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是2k +,故选B用数学归纳法证明时,要注意观察几个方面:(1)n 的范围以及递推的起点(2)观察首末两项的次数(或其它),确定n k =时命题的形式()f k (3)从(1)f k +和()f k 的差异,寻找由k 到1k +递推中,左边要加(乘)上的式子【答案】B典例分析板块三.数学归纳法【例3】某个命题与正整数n 有关,如果当()n k k *=∈N 时命题成立,那么可推得当1n k =+时命题也成立. 现已知当7n =时该命题不成立,那么可推得( )A .当6n =时该命题不成立B .当6n =时该命题成立C .当8n =时该命题不成立D .当8n =时该命题成立【考点】数学归纳法基础 【难度】2星 【题型】选择【关键词】无【解析】若6n =成立,则根据假设知7n =成立,与已知矛盾。
【答案】A 。
【例4】利用数学归纳法证明“(1)(2)()213(21)n n n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-,*n ∈N ”时,从“n k =”变到“1n k =+”时,左边应增乘的因式是 ( ) A 21k + B211k k ++ C (21)(22)1k k k +++ D 231k k ++ 【考点】数学归纳法基础 【难度】2星 【题型】选择【关键词】无 【解析】 【答案】C 。
1.1 归纳推理【学习要求】1.了解归纳推理的含义,能利用归纳推理进行简单的推理.2.了解归纳推理在数学发展中的作用.【学法指导】一,基础知识回顾:归纳是推理常用的思维方法,其结论不一定正确,但具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养1.归纳推理定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为归纳推理.2.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.3.归纳推理具有如下的特点:(1)归纳推理是由部分到整体,由个别到一般 的推理;(2)由归纳推理得到的结论不一定 正确;(3)归纳推理是一种具有创造性的推理.二,问题探究探究点一:归纳推理的定义例1:在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?答:根据一个或几个已知的命题得出另一个新的命题的思维过程就叫作推理.变式迁移1:观察下面两个推理,回答后面的两个问题:(1)哥德巴赫猜想:6=3+3 8=3+5 10=5+5 12=5+7 14=7+7 16=5+11…… 1 000=29+971 1 002=139+863……猜想:任何一个不小于6的偶数都等于两个奇质数之和.(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.回答 ①以上两个推理在思维方式上有什么共同特点?②其结论一定正确吗?答:①共同特点:部分推出整体,个别推出一般.(这种推理称为归纳推理) ②其结论不一定正确.小结 归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). 探究点二:归纳推理在数列中的应用例2:在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.解:在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n =1+(n -1)×12=12n +12,所以通项公式a n =2n +1变式迁移2:已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…)(1)求a 2,a 3,a 4,a 5;(2)归纳猜想通项公式a n .解:(1)当n =1时,知a 1=1,由a n +1=2a n +1得a 2=3,a 3=7,a 4=15,a 5=31. (2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1,可归纳猜想出a n =2n -1(n ∈N *).探究点三:归纳推理在图形变化中的应用例3:在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,则f(3)=10_;f(n)=n n +1n +26(答案用含n 的代数式表示). 解析:观察图形可知:f(1)=1,f(2)=4,f(3)=10,f(4)=20,…,故下一堆的个数是上一堆个数加上下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n n +12.将以上(n -1)个式子相加可得f(n)=f(1)+3+6+10+…+n n +12=12[(12+22+…+n 2)+(1+2+3+…+n)]=12[16n(n +1)(2n +1)+n n +12]=n n +1n +26. 变式迁移:3:在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N *)边形有几条对角线?解:凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条,凸六边形有9条对角线,比凸五边形多4条,于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线. 于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.因此凸n 边形的对角线条数为2+3+4+5+…+(n -2)=12n(n -3)(n ≥4且n ∈N *) 探究点四:归纳推理在算式问题中的应用例4:观察下列等式,并从中归纳出一般法则.(1)1=12, 1+3=22,1+3+5=32, 1+3+5+7=42,1+3+5+7+9=52,……(2)1=12, 2+3+4=32, 3+4+5+6+7=52 4+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92, ……解:(1)对于(1),等号左端是整数,且是从1开始的n 项的和,等号的右端是项数的平方; 对于(2),等号的左端是连续自然数的和,且项数为2n -1,等号的右端是项数的平方.∴(1)猜想结论:1+3+5+…+(2n -1)=n 2(n ∈N *).:(2)猜想结论:n +(n +1)+…+[n+(3n -2)]=(2n -1)2(n ∈N *).变式迁移4:在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立.猜想在n 边形A 1A 2…A n 中成立的不等式为1A 1+1A 2+…+1A n ≥n 2n -2π(n ≥3且n ∈N *).. 三,练一练1.已知2+23=223,3+38=338,4+415=4415,…, 若6+a b =6a b(a 、b 均为实数).请推测a =6,b =35 解析:本题考查归纳推理能力,由前面三个等式,发现被开方数的整数与分数的关系:整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测6+a b中,a =6,b =62-1=35. 2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为n 2-n +62解析:前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 3.已知正项数列{a n }满足S n =12(a n +1a n),求出a 1,a 2,a 3,a 4,并推测a n . 解:a 1=S 1=12(a 1+1a 1),又因为a 1>0,所以a 1=1. 当n ≥2时,S n =12(a n +1a n ),S n -1=12(a n -1+1a n -1),两式相减得:a n =12(a n +1a n )-12(a n -1+1a n -1),即a n -1a n =-(a n -1+1a n -1).所以a 2-1a 2=-2,又因为a 2>0,所以a 2=2-1. a 3-1a 3=-22,又因为a 3>0,所以a 3=3- 2. a 4-1a 4=-23,又因为a 4>0,所以a 4=2- 3.将上面4个式子写成统一的形式:a 1=1-0,a 2=2-1,a 3=3-2,a 4=4-3,由此可以归纳推测:a n =n -n -1. 四,课时小结归纳推理的一般步骤(1)对有限的资料进行观察、分析、归纳、整理,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般命题,提出带有规律性的结论,即猜想.注意:一般性的命题往往要用字母表示,这时需注明字母的取值范围.五,作业设计:1. 数列5,9,17,33,x ,…中的x 等于 (B)A .47B .65C .63D .1282. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x)′=-sin x ,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(D)A .f(x)B .-f(x)C .g(x)D .-g(x) 3. f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,推测当n ≥2时,有f(2n )>n +224. 已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32. 通过观察上述两等式的规律,请你写出一个一般性的命题sin 2(α-60°)+sin 2α+sin 2(α+60°)=325. 已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=36. 设x ∈R ,且x ≠0,若x +x -1=3,猜想x2n +x -2n (n ∈N *)的个位数字是77. 如图,观察图形规律,在其右下的的空格处画上合适的图形,应为①8. 如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为a n =3n -1(n ∈N *) 9. 如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题:(1)按照要求填表:(2)S 10=55 (3)S n =n (n +1)210画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第5 030项;(2)b 2k -1=5k (5k -1)2.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.解:当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n ∈N *).12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.(1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 解:(1)3条直线最多将平面分成7个部分.(2)f(n +1)=f(n)+n +1.(3)f(n)=[f(n)-f(n -1)]+[f(n -1)-f(n -2)]+…+[f(2)-f(1)]+f(1)=n +(n -1)+(n -2)+…+2+2=n 2+n +22. 13.在一容器内装有浓度为r%的溶液a 升,注入浓度为p%的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.解:b 1=a 〃r 100+a 4〃p 100a +a 4=1100(45r +15p);b 2=ab 1+a 4〃p 100a +a 4=1100[(45)2r +15p +452p];b 3=ab 2+a 4〃p 100a +a 4=1100[(45)3r +15p +452p +453p].归纳得b n =1100[(45)n r +15p +452p +…+4n -15n p] 1.2 类比推理【学习要求】1.通过具体实例理解类比推理的意义;2.会用类比推理对具体问题作出判断.【学法指导】类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.归纳和类比是合情推理常用的思维方法,其结论不一定正确.一,基础知识回顾:1.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征 ,我们把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.2.合情推理:合情推理是根据实验 和实践的结果、个人的经验和直觉、已有的事实 和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.二,问题探究探究点一:平面图形与立体图形间的类比例1:如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少? 解:对平面凸四边形:S =12a 1h 1+12a 2h 2+12a 3h 3+12a 4h 4=12(kh 1+2kh 2+3kh 3+4kh 4) =k 2(h 1+2h 2+3h 3+4h 4),所以h 1+2h 2+3h 3+4h 4=2S k ;类比在三棱锥中,V =13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4 =13(KH 1+2KH 2+3KH 3+4KH 4) =K 3(H 1+2H 2+3H 3+4H 4).故H 1+2H 2+3H 3+4H 4=3V K. 变式迁移1:在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是____________.解析:类比条件:两边AB 、AC 互相垂直侧面ABC 、ACD 、ADB互相垂直.结论:AB 2+AC 2=BC 2 S 2△A B C +S 2△A C D +S 2△A D B =S 2△B C D .答案:设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD探究点二:内似两事物之间的内比例2:根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质:(1)a =b ⇒a +c =b +c; (1)a>b ⇒a +c>b +c ;(2)a =b ⇒ac =bc; (2)a>b ⇒ac>bc ;(3)a =b ⇒a 2=b 2等等. (3)a>b ⇒a 2>b 2等等.例3:在等差数列{a n }中,若a 10=0,证明:等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19,n∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式_______成立.解析:在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19,a 2=-a 18,…,a 19-n=-a n +1,∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相应地,类比此性质在等比数列{b n }中,可得b 1b 2…b n =b 1b 2…b 17-n ,(n<17,n ∈N *).变式迁移3:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4:,T 12T 8,T 16T 12成等比数列. 三,练一练1.下列说法正确的是 (B )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误解析:根据合情推理可知,合情推理必须有前提有结论.2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8解析:∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.3.若数列{c n }是等差数列,则当d n =c 1+c 2+…+c n n时,数列{d n }也是等差数列,类比上述性质,若数列{a n }是各项均为正数的等比数列,则当b n =n a 1a 2…a n时,数列{b n }也是等比数列.4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的中心.四,课时小结1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为: 从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想 五,作业设计:1. 下列推理正确的是 (D)A .把a(b +c)与log a (x +y)类比,则有log a (x +y)=log a x +log a yB .把a(b +c)与sin (x +y)类比,则有sin (x +y)=sin x +sin yC .把a(b +c)与a x +y 类比,则有a x +y =a x +a y D .把a(b +c)与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c2. 下面几种推理是合情推理的是 (C) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④3. 把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是(B) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行4. 在等差数列{a n }中,若a n >0,公差d>0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q>1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是(A)A.b 4+b 8>b 5+b 7B.b 5+b 7>b 4+b 8C.b 4+b 7>b 5+b 8D.b 4+b 5>b 7+b 8.5. 已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=12lr 6. 类比平面直角坐标系中△ABC 的重点G(x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x 33y =y 1+y 2+y 33(其中A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),猜想以A(x 1,y 1,z 1)、B(x 2,y 2,z 2)、C(x 3,y 3,z 3)、D(x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G(x ,y ,z )的公式为⎩⎪⎨⎪⎧ x =x 1+x 2+x 3+x 44y =y 1+y 2+y 3+y 44z =z 1+z 2+z 3+z 447. 公差为d(d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q(q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 1008. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.你认为比较恰当的是.①②③.(填序号)9. 已知抛物线y 2=2px(p>0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,p k),请你写出弦MN 的中点坐标:(pk 2+p ,-pk) 10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a 3811.如图(1),在平面内有面积关系S △PA ′B ′S △PAB=PA ′·PB ′PA·PB写出图(2)中类似的体积关系,并证明你的结论.解:类比S △PA ′B ′S △PAB =PA ′〃PB ′PA 〃PB ,有V P —A ′B ′C ′V P —ABC =PA ′〃PB ′PA 〃PB 〃PC ′PC证明:如图:设C ′,C 到平面PAB 的距离分别为h ′,h.则h ′h=PC ′PC ,故V P —A ′B ′C ′V P —ABC=13〃S △PA ′B ′〃h ′13S PAB 〃h =PA ′〃PB ′〃h ′PA 〃PB 〃h =PA ′〃PB ′〃PC ′PA 〃PB 〃PC. 12. 如图所示,在△ABC 中,射影定理可表示为a =b·cos C +c·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1〃cos α+S 2〃cos β+S 3〃cos γ.13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确及并给出理由.解:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD.则1AE 2=1AB 2+1AC 2+1AD 2.猜想正确.如图所示,连接BE ,并延长交CD 于F ,连接AF.∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD.而AF ⊂平面ACD ,∴AB ⊥AF.在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD 2,故猜想正确. 1.3综合法与分析法(一)【学习要求】1.了解直接证明的两种基本方法——综合法和分析法.2. 理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.【学法指导】综合法和分析法是直接证明中最基本的两种证明方法,要结合实例了解两种证法的思考过程、特点.一,基础知识回顾:1.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.2.一般地,利用已知条件和某些数学定义、公理、定理等,经过演绎推理论证,最后推导出所要证明的结论成立,这种证明方法叫作综合法3.分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二,问题探究探究点一:综合法例1:在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形.证明:由A ,B ,C 成等差数列,有2B =A +C ①,由A ,B ,C 为△ABC 的三个内角,所以A +B +C =π②,由①②,得B =π3③,由a ,b ,c 成等比数列,有b 2=ac ④,由余弦定理及③,可得b 2=a 2+c 2-2accos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c)2=0, 从而a =c ,所以A =C ⑤。
第3讲 合情推理与演绎推理1.推理(1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做出的判断.判断正误(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)× (2)√ (3)× (4)×(教材习题改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2D .a n =3n -1解析:选C.由a 1=1,a n =a n -1+2n -1,则 a 2=a 1+2×2-1=4;a 3=a 2+2×3-1=9; a 4=a 3+2×4-1=16,所以a n =n 2.(2017·高考全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩解析:选D.依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选择D.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是________.解析:由演绎推理三段论可知,①是大前提,②是小前提,③是结论. 答案:②在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8归纳推理(高频考点)归纳推理是每年高考的常考内容,题型多为选择题或填空题,难度稍大,属中高档题.高考对归纳推理的考查常有以下三个命题角度: (1)与数字(数列)有关的等式的推理; (2)与不等式(式子)有关的推理;(3)与图形变化有关的推理.[典例引领]角度一 与数字(数列)有关的等式的推理有一个奇数组成的数阵排列如下:1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … …则第30行从左到右第3个数是________.【解析】 观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+…+60=30×(2+60)2-1=929.又第n 行从左到右的第2个数比第1个数大2n ,第3个数比第2个数大2n +2,所以第30行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1 051. 【答案】 1 051角度二 与不等式(式子)有关的推理(2016·高考山东卷)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________.【解析】 每组角的分母恰好等于右边两个相邻正整数因数的和.因此答案为43n (n +1).【答案】 43n (n +1)角度三 与图形变化有关的推理我国的刺绣有着悠久的历史,如图所示中的(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(n)的表达式为()A.f(n)=2n-1B.f(n)=2n2C.f(n)=2n2-2n D.f(n)=2n2-2n+1【解析】我们考虑f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,…,结合图形不难得到f(n)-f(n-1)=4(n-1),累加得f(n)-f(1)=2n(n-1)=2n2-2n,故f(n)=2n2-2n+1.【答案】 D归纳推理问题的常见类型及解题策略(1)与“数字”相关问题:主要是观察数字特点,找出等式左右两侧的规律.(2)与不等式有关的推理:观察所给几个不等式两边式子的特点,注意纵向看、找出隐含规律.(3)与图形有关推理:合理利用特殊图形归纳推理得出结论.[通关练习]1.观察三角数阵,记第n行的第m个数为a(n,m),则下列关系正确的是()11 112 1133 11464 1…11045…4510 1A.a(n+1,m+1)=a(n,m)+a(n,m+1)B.a(n+1,m+1)=a(n-1,m-1)+a(n,m)C.a(n+1,m+1)=a(n,m)+a(n+1,m)D.a(n+1,m+1)=a(n+1,m)+a(n,m+1)解析:选A.观察分析得出三角数阵中的每一个数等于其“肩上”两个数之和.所以a(n+1,m=a(n,m)+a(n,m+1).+1)2.(2018·青岛模拟)某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=3×2-3条线段,二级分形图有9=3×22-3条线段,三级分形图中有21=3×23-3条线段,按此规律n 级分形图中的线段条数a n =3×2n -3(n ∈N *). 答案:3×2n -3(n ∈N *)类比推理[典例引领]如图,在Rt △ABC 中,∠C =90°,设a ,b ,c 分别表示三条边的长度,由勾股定理,得c 2=a 2+b 2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.【解】 如题图所示,在Rt △ABC 中, ∠C =90°.设a ,b ,c 分别表示3条边的长度,由勾股定理,得c 2=a 2+b 2.类似地,在四面体P -DEF 中,∠PDF =∠PDE =∠EDF =90°.设S 1,S 2,S 3和S 分别表示△PDF ,△PDE ,△EDF 和△PEF 的面积,相应于直角三角形的2条直角边a ,b 和1条斜边c ,图中的四面体有3个“直角面”S 1,S 2,S 3和1个“斜面”S .于是,类比勾股定理的结构,我们猜想S 2=S 21+S 22+S 23成立.若本例条件“由勾股定理,得c 2=a 2+b 2”换成“cos 2 A +cos 2 B =1”,则在空间中,给出四面体性质的猜想. 解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝⎛⎭⎫b c 2+⎝⎛⎭⎫a c 2=a 2+b 2c2=1. 于是把结论类比到四面体P -A ′B ′C ′中,我们猜想,四面体P -A ′B ′C ′中,若三个侧面P A ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.[通关练习]1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若z 1,z 2∈C ,则z 1-z 2=0⇒z 1=z 2”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若z 1,z 2∈C ,则z 1-z 2>0⇒z 1>z 2”. 其中类比得到的结论正确的个数是( ) A .0 B .1 C .2D .3解析:选C.由复数的减法运算可知①正确;因为a ,b ,c ,d 都是有理数,2是无理数,所以②正确;因为复数不能比较大小,所以③不正确.2.(2018·山东烟台五校联考)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0).△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e ,则sin A +sin C sin B =1e ,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),双曲线的离心率为e ,则有________________.解析:在双曲线中,设△ABC 的外接圆的半径为r ,则|AB |=2r sin C ,|AC |=2r sin B ,|BC |=2r sin A ,则由双曲线的定义得||BA |-|BC ||=2a ,|AC |=2c ,则双曲线的离心率e =c a =|AC |||BA |-|BC ||=sin B|sin A -sin C |,即|sin A -sin C |sin B =1e .答案:|sin A -sin C |sin B =1e演绎推理[典例引领]数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列. (结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),所以S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又因为a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, 所以对于任意正整数n ,都有S n +1=4a n .演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略;(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),所以x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,因为x1<x2,所以f(x2)-f(x1)>0,f(x2)>f(x1).所以y=f(x)为R上的单调增函数.把握合情推理与演绎推理的三个特点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.易错防范(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)合情推理中运用猜想时不能凭空想象,要有猜想或拓展的依据.1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C.因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 2.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:选B.(a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立,如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误.由向量的运算公式知③正确.3.若等差数列{a n }的公差为d ,前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( ) A.q 2 B .q 2 C.qD.n q解析:选C.由题意知,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=b n1q (n -1)n2,所以nT n =b 1qn -12,所以等比数列{nT n }的公比为q ,故选C.4.(2018·陕西渭南模拟)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( ) A .45 B .55 C .65D .66解析:选B.第1个图中,小石子有1个, 第2个图中,小石子有3=1+2个, 第3个图中,小石子有6=1+2+3个, 第4个图中,小石子有10=1+2+3+4个, …故第10个图中,小石子有1+2+3+…+10=10×112=55个,即a 10=55,故选B.5.(2018·安徽江淮十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12B.5-12C.1+52D.1-52解析:选C.1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 6.在平面几何中:△ABC 的∠ACB 内角平分线CE 分AB 所成线段的比为AC BC =AEBE .把这个结论类比到空间:在三棱锥A BCD 中(如图)DEC 平分二面角A CD B且与AB 相交于E ,则得到类比的结论是________.解析:由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD .答案:AE EB =S △ACDS △BCD7.(2018·陕西咸阳模拟)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,…,根据以上规律,第n (n ∈N *)个不等式是____________________.解析:根据所给不等式可得第n 个不等式是1×2+2×3+…+n ·(n +1)<(n +1)22.答案:1×2+2×3+…+n ·(n +1)<(n +1)228.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析:类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb 2=1.答案:x 0x a 2-y 0yb2=19.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:因为△ABC 为锐角三角形, 所以A +B >π2,所以A >π2-B ,因为y =sin x 在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,同理可得sin B >cos C ,sin C >cos A , 所以sin A +sin B +sin C >cos A +cos B +cos C . 10.给出下面的数表序列: 表1 表2 表3 1 1 3 1 3 5 4 4 8 12…其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明). 解:表4为1 3 5 7 4 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.1.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析:选A.设“黄金双曲线”的方程为x 2a 2-y 2b 2=1(a >0,b >0),则B (0,b ),F (-c ,0),A (a ,0). 在“黄金双曲线”中,因为FB →⊥AB →, 所以FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ),所以b 2=ac .而b 2=c 2-a 2,所以c 2-a 2=ac . 在等号两边同除以a 2,得e 2-1=e , 解得e =5+12⎝ ⎛⎭⎪⎫e =1-52舍去. 2.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人 B .3人 C .4人D .5人解析:选B.利用推理以及逻辑知识求解.首先要证,没有任意两个同学的数学成绩是相同的.假设A ,B 两名同学的数学成绩一样,由题知他们的语文成绩不一样,这样他们的语文成绩总有一个人比另一个人高,相应地由题可知,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此看得出,没有任意两个同学的数学成绩是相同的.因为数学成绩等级只有3种,因而同学数量最大为3.之后要验证3名同学能否满足条件.易证3名同学的成绩等级分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,因此满足条件的最多人数是3. 3.考察等式:C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m =C r n ,(*)其中n ,m ,r ∈N *,r ≤m <n 且r ≤n -m .某同学用概率论方法证明等式(*)如下:设一批产品共有n 件,其中m 件是次品,其余为正品.现从中随机取出r 件产品,记事件A k ={取到的r 件产品中恰有k 件次品},则P (A k )=C k m C r -k n -mC rn,k =0,1,…,r .显然A 0,A 1,…,A r 为互斥事件,且A 0∪A 1∪…∪A r =Ω(必然事件),因此1=P (Ω)=P (A 0)+P (A 1)+…+P (A r )=C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m C rn,所以C 0m C rn -m +C 1m C r -1n -m +…+C r m C 0n -m =C rn ,即等式(*)成立.对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一.但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断: ①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确. 试写出所有正确判断的序号:____________.解析:显然公式C 0m C r n -m +C 1m C r -1n -m +…+C r m C 0n -m =C rn 是正确的,该公式的证明过程利用了构造概率事件的方法,其列举了该事件发生的所有的互斥事件,且其和事件为必然事件,其概率之和为1,故其证明过程是正确的,正确判断的序号为①③. 答案:①③4.(2018·湖北八校联考模拟) 祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于______________.解析:椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2(π×b 2×a -13π×b 2a )=43π×b 2a .答案:43π×b 2a5.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想猜想,对于空间中的四面体V -BCD ,存在什么类似的结论,并用“体积法”证明.解:结论:在四面体V -BCD 中,任取一点O ,连接VO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE VE +OF DF +OG BG +OHCH=1.证明如下:在四面体O -BCD 与V -BCD 中,设其高分别为h 1,h , 则OE VE =h 1h =13S △BCD ·h113S △BCD·h =V O BCD V V BCD. 同理,OF DF =V O VBC V D VBC ;OG BG =V O VCD V B VCD ;OH CH =V O VBDV C VBD ,所以OE VE +OF DF +OG BG +OH CH =V O BCD +V O VBC +V O VCD +V O VBDV V BCD=V V BCDV V BCD=1. 6.我们将具有下列性质的所有函数组成集合M :函数y =f (x )(x ∈D ),对任意x ,y ,x +y2∈D 均满足f ⎝⎛⎭⎫x +y 2≥12[f (x )+f (y )],当且仅当x =y 时等号成立.(1)若定义在(0,+∞)上的函数f (x )∈M ,试比较f (3)+f (5)与2f (4)的大小; (2)设函数g (x )=-x 2,求证:g (x )∈M . 解:(1)对于f ⎝⎛⎭⎪⎫x +y 2≥12[f (x )+f (y )], 令x =3,y =5得f (3)+f (5)≤2f (4). (2)证明:g ⎝⎛⎭⎪⎫x 1+x 22-12[g (x 1)+g (x 2)] =-(x 1+x 2)24+x 21+x 222=(x 1-x 2)24≥0,所以g ⎝⎛⎭⎪⎫x 1+x 22≥12[g (x 1)+g (x 2)], 所以g (x )∈M .。
第三讲推理与证明导数知识要点1.归纳推理(1)定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理.(2) 归纳推理的思维过程大致如图实验、观察―→概括、推广―→猜测一般性结论(3) 归纳推理的特点①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.(4)结论:结论不一定正确,有待于进一步证明2.类比推理(1) 定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理.(2) 类比推理的思维过程:观察、比较―→联想、类推―→猜测新的结论(3)结论:结论不一定正确,有待于进一步证明3.演绎推理(1)定义:指如果推理是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)演绎推理的一般模式是“三段论”,包括:①大前提;②小前提;③结论.(3) 三段论的常用格式为:M — P(M是P)①;S-M(S是M)②;S — P(S是P)③其中,①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般原理,对特殊情况作出的判断(4)结论:在前提和推理形式都正确的前提下,得到的结论一定正确4.直接证明①综合法:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫综合法.综合法又叫顺推法或由因导果法.②分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明方法叫分析法.分析法又叫逆推法或执果索因法.5.间接证明——反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法.典例精析归纳推理 例1.在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n. (1) 求a 1,a 2,a 3;(2) 由(1)猜想数列{a n }的通项公式;(3) 求S n .类比推理例2.现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.演绎推理例3.设同时满足条件:①b n +b n +22≤b n +1(n∈N *);②b n ≤M (n∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界” 数列.(1) 若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ;(2) 判断(1)中的数列{S n }是否为“特界” 数列,并说明理由.例4.用分析法证明:若a >0,则。
推理与证明第3讲数学归纳法一、选择题(共6小题;共30分)1. 利用数学归纳法证明“”时,在验证成立时,左边应该是A. B. C. D.2. 用数学归纳法证明命题“当是正奇数时,能被整除”,在第二步时,正确的证法是A. 假设,证明命题成立B. 假设(是正奇数),证明命题成立C. 假设,证明命题成立D. 假设(是正奇数),证明命题成立3. 用数学归纳法证明+,则当时,左端应在的基础上加上A. B. C. D.4. 对于不等式,某同学用数学归纳法的证明过程如下:(1)当时,,不等式成立.(2)假设当(且)时,不等式成立,即,则当时,,所以当时,不等式成立,则上述证法A. 过程全部正确B. 验得不正确C. 归纳假设不正确D. 从到的推理不正确5. 下列代数式(其中)能被整除的是A. B. C. D.6. 已知对一切都成立,则、、的值为A. ,B.C. ,D. 不存在这样的、、二、填空题(共4小题;共20分)7. 用数学归纳法证明不等式的过程中,由推导时,不等式的左边增加的式子是.8. 用数学归纳法证明:;当推证当等式也成立时,用上归纳假设后需要证明的等式是.9. 已知整数对的序列如下:,,,,,,,,,,,,,则第个数对是.10. 在数列中,且,通过计算,,,猜想的表达式是.三、解答题(共4小题;共52分)11. 已知,求证:.12. 已知数列:,,,,与数列:,,,,.记.(1)若,求的值;(2)求证:.13. 设数列满足,,.(1)求,,的值,并猜想数列的通项公式(不需证明);(2)记为数列的前项和,试求使得成立的最小正整数,并给出证明.14. 数列满足,.(1)证明:是递减数列的充分必要条件是;(2)求的取值范围,使是递增数列.答案第一部分1. C 【解析】当时,左边.2. D3. C 【解析】因为当时,左侧,当时,左侧.4. D 【解析】在时,没有应用时的假设,故推理错误.5. D【解析】()当时,显然只有能被整除;()假设当时,命题成立,即能被整除,那么,这就是说,时命题也成立.由()()可知,命题对任何都成立.6. A 【解析】因为等式对一切均成立,所以,,时等式成立,即整理得解得,.用数学归纳法可以证明等式对一切均成立.第二部分7.【解析】不等式的左边增加的式子是,故填.8.【解析】当时,故只需证明即可.+9.【解析】本题规律:;;;;;一个整数所拥有数对为对.,,所以第个数对为.10.【解析】当时,,即;当时,,即;当时,,即.所以,,,,故猜想.第三部分11. ()当时,,即时命题成立;()假设当时命题成立,即,则当时,故当时,命题成立.由()和()可知,对,.不等式都成立.12. (1)因为,所以.(2)用数学归纳法证明:当时,.①当时,,故等式成立.②假设时等式成立,即,那么当时,等式也成立.根据①和②可以断定:当时,.13. (1),,,猜想.(2),使得成立的最小正整数.下证:时都有.①时,,即成立;②假设时,成立,那么,即时,不等式成立;由①,②可得,对于所有的都有成立.14. (1)先证充分性,若,由于,故是递减数列;再证必要性,若是递减数列,则由可得.(2)假设是递增数列.由,得,.由,得.由知,对任意都有注意到由式和式可得,即.由式和还可得,对任意都有反复运用式,得,和两式相加,知对任意成立.根据指数函数的性质,得,,故.若,要证数列为递增数列,即,即证对任意成立.下面用数学归纳法证明当时,对任意成立.(i)当时,,结论成立;(ii)假设当时,结论成立,即,因为函数在区间内单调递增,所以,这就是说当时,结论也成立.故对任意成立.因此,,即是递增数列.由知,使得数列单调递增的的范围是.。
第十二讲推理与证明数学推理与证明知识点总结:推理与证明:①推理是中学的主要内容,是重点考察的内容之一,题型为选择题、填空题或解答题,难度为中、低档题。
利用归纳和类比等方法进行简单的推理的选择题或填空题在近几年的中考中都有所体现。
②推理论证能力是中考考查的基本能力之一,它有机的渗透到初中课程的各个章节,对本节的学习,应先掌握其基本概念、基本原理,在此基础上通过其他章节的学习,逐步提高自己的推理论证能力。
第一讲推理与证明一、考纲解读:本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。
新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。
高考对直接证明与间接证明的考查主要以直接证明中的综合法为主,结合不等式进行考查。
二、要点梳理:1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题。
2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
3.演绎推理三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出判断。
4.直接证明与间接证明①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。
综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。
②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
四、知识讲解第一节 归纳与类比(一)高考目标1.了解归纳与类比的含义,能利用归纳和类比等进行简单的推理,了解归纳与类比在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 考向预测1.考查的重点是对合情推理和演绎推理的理解及应用.2.主要是以选择题和填空题的形式出现,难度不大,多以中低档题为主.(二)课前自主预习知识梳理1.根据一类事物中部分事物具有某种属性,推断该事物中每一个都有这种属性,这种推理方式称为2.根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,这种推理过程称为 3.归纳推理是由部分到整体,由个别到一般的推理;类比推理是两类事物特征之间的推理. 归纳推理和类比推理是最常见的合情推理. (三)、基础自测1.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2n +2B.2nn + C.22n -1 D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n ,∴a n +1=nn +2a n (a ≥2), 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13,a 3=24a 2=16,a 4=35a 3=110.由a 1=1,a 2=13,a 3=16,a 4=110,猜想a n =2n n +,故选B.2.利用归纳推理推断,当n 是自然数时,18(n 2-1)[1-(-1)n]的值( )A .一定是零B .不一定是整数C .一定是偶数D .是整数但不一定是偶数 [答案] C[解析] 当n =1时,值为0;当n =2时,值为0;当n =3时,值为2;当n =4时,值为0;当n =5时,值为6. 3.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的( ) A .一条中线上的点,但不是中心 B .一条垂线上的点,但不是垂心 C .一条角平分线上的点,但不是内心 D .中心 [答案] D[解析] 边的中点对应于面的中心.4.(文)下图所示的三角形数组是我国古代数学家杨辉发现的,称为“杨辉三角形”,根据图中的数构成的规律,a 所表示的数是( )A .2B .4C .6D .8 [答案] C[解析] 因为其规律是a 为肩上两数之和,故a =3+3=6.(理)类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列一些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角相等;②各个面是全等的正三角形,相邻两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点的任何两条棱的夹角都相等; ④各棱长相等,相邻两个面所成的二面角相等.A .①B .①②C .①②③D .③ [答案] B[解析] 类比的原则是“类比前后保持类比的一致性,”而③④违背了这一原则.5.在平面几何中,若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c )成立,类比上述结论,相应地,在立体几何中,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则这个四面体的体积V =________成立.[答案] 13R (S 1+S 2+S 3+S 4)[解析] 通过类比,可把四面体分割为四部分.6.(2010·陕西理)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________.[答案] 13+23+33+43+53+63=212[解析] 由13+23+33+…+n 3=[n n +2]2知n =6时为13+23+33+43+53+63=212.7.在数列{a n }中,a 1=1,a n +1=2a n 2+a n(n ∈N *),试猜想这个数列的通项公式.[解析] ∵a 1=1=22,∴a 2=2a 12+a 1=23,a 3=2a 22+a 2=432+23=12=24,a 4=2a 32+a 3=12+12=25,…,猜想:a n =2n +1.(四)典型例题1.命题方向:归纳推理[例1] 通过归纳推理完成下列各题: (1)观察下表 1=1 3+5=87+9+11=2713+15+17+19=64 ……据此你可归纳猜想出的结论是________. (2)观察下式: 1+3=221+3+5=231+3+5+7=241+3+5+7+9=25……据此你可归纳猜想出的一般结论为________.(3)设数列{an }的前n 项和为Sn ,Sn =2n -an (n ∈N*),计算前4项,归纳出an =________.(4)平面上两条直线最多有一个交点,三条直线最多有3个交点,4条直线最多有6个交点,5条直线最多有10个交点,则n 条直线(n ∈N*,n ≥2)最多有________个交点.[答案] (1)[n (n -1)+1]+[n (n -1)+3]+…+[n (n -1)+(2n -1)]=n 3 (2)1+3+5+…+(2n -1)=n 2(3)2n-12n -1(4)12n (n -1)[点评] 由特殊结果,归纳总结出一般结论,是一种很重要的题型、结论正确,可以给出一般性的证明.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可靠. 跟踪练习1当正三角形的边长为n (n ∈N *)时,图(1)中点的个数为f 3(n )=1+2+3+…+(n +1)=12(n +1)(n +2);当正方形的边长为n 时,图(2)中点的个数为f 4(n )=(n +1)2;在计算图(3)中边长为n 的正五边形中点的个数f 5(n )时,观察图(4)可得f 5(n )=f 4(n )+f 3(n -1)=(n +1)2+n n +2=12(n +1)(3n +2);….则边长为n 的正k 边形(k ≥3,k ∈N)中点的个数f k (n )=____________。