2015届高考二轮复习 专题四 第3讲 推理与证明
- 格式:ppt
- 大小:1.48 MB
- 文档页数:66
专题检测(三) 数列、推理与证明(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是A .15B .30C .31D .64解析 由等差数列的性质得a 7+a 9=a 4+a 12, 因为a 7+a 9=16,a 4=1, 所以a 12=15.故选A. 答案 A2.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010等于A .-2B .-13C .-12D .3解析 由条件可得:a 1=-2,a 2=-13,a 3=-12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13.故选B.答案 B3.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是A .5B .6C .7D .8解析 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质 ,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.故选C.答案 C4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于A.310 B.13 C.18D.19解析 由等差数列的求和公式,可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310,故选A.答案 A5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为A .4B .5 C. 45D. 15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,由{a n }是等比数列,知⎝⎛⎭⎫45t 2=⎝⎛⎭⎫15t -15×4t , 显然t ≠0,解得t =5. 答案 B 6.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …………则第( )行的各数之和等于2 0092. A. 2 010B .2 009C .1 006D .1 005解析 由题设图知,第一行各数和为1; 第二行各数和为9=32; 第三行各数和为25=52; 第四行各数和为49=72;…, ∴第n 行各数和为(2n -1)2, 令2n -1=2 009,解得n =1 005. 答案 D7.已知正项等比数列{a n },a 1=2,又b n =log 2a n ,且数列{b n }的前7项和T 7最大,T 7≠T 6,且T 7≠T 8,则数列{a n }的公比q 的取值范围是A .172<q <162B .162-<q <172-C .q <162-或q >172-D .q >162或q <172解析 ∵b n =log 2a n ,而{a n }是以a 1=2为首项,q 为公比的等比数列, ∴b n =log 2a n =log 2a 1q n -1=1+(n -1)log 2q .∴b n +1-b n =log 2q .∴{b n }是等差数列, 由于前7项之和T 7最大,且T 7≠T 6,所以有⎩⎪⎨⎪⎧1+6log 2q >0,1+7log 2q <0,解得-16<log 2q <-17,即162-<q <172-.故选B.答案 B8.已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项.现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2. 其中真命题有 A .4个 B .3个 C .2个D .1个解析 3-1,3+1都不在数列0,1,3中,所以①错; 因为数列1,4,5具有性质P , 但1+5≠2×4,即a 1+a 3≠2a 2, 且a 1=1≠0,所以③④错;数列0,2,4,6中a j -a i (1≤i ≤j ≤4)在此数列, 所以②正确,所以选D. 答案 D9.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +2.则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是A.n +12(n +2)B.n +1n +2C.n (3n +5)4(n +1)(n +2)D.3n +44(n +1)解析 依题意得f ′(x )=mx m -1+a =2x +2, 则m =a =2,f (x )=x 2+2x , 1f (n )=1n 2+2n =12⎝⎛⎭⎫1n -1n +2,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和等于12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12+…+1n -⎝⎛⎭⎫13+14+…+1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=n (3n +5)4(n +1)(n +2),选C. 答案 C10.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是A .8,109B .9,109C .9,119D .8,119解析 设S 奇=a 1+a 3+…+a 15, S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d , S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8. 由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 奇∶S 偶=18∶22,解得S 奇=288,S 偶=352. 因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D. 答案 D11.数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是A .3B .2C .1D .0解析 依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1,∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n +1得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009=⎝⎛⎭⎫1a 1-1-1a 2-1+⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a 2 009-1-1a 2 010-1 =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案 C12.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是A .(-∞,-1]B .(-∞,-1)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析 ∵等比数列{a n }中,a 2=1, ∴S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q ≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1, ∴S 3∈(-∞,-1]∪[3,+∞). 答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上) 13.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N +,用含有n 的代数式表示). 解析 第二列等式右端分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右端比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.故填14n 2(n +1)2.答案 14n 2(n +1)214.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.解析 由a 2=2,a 4-a 3=4得方程组⎩⎪⎨⎪⎧a 2=2,a 2q 2-a 2q =4⇒q 2-q -2=0,解得q =2或q =-1.又{a n }是递增等比数列,故q =2. 答案 215.在公差为d (d ≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d .类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有________.答案T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 100 16.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a ,b 成立的条件不等式:________.解析 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 给出的三个式子的右边都是210,左边都是两个根式相加,两个被开方数都是正数且和为20, 又10+10=210,所以根据上述规律可以写出一个对正实数a ,b 成立的条件不等式: 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 答案 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n .已知a 1=1,b 1=3,a 3+b 3=17,T 3-S 3=12,求{a n },{b n }的通项公式.解析 设{a n }的公差为d ,{b n }的公比为q . 由a 3+b 3=17得1+2d +3q 2=17,① 由T 3-S 3=12得q 2+q -d =4.②由①、②及q >0解得q =2,d =2.故所求的通项公式为a n =2n -1,b n =3×2n -1.18.(12分)已知等比数列{a n }的公比q >1,42是a 1和a 4的等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N +).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .解析 (1)因为42是a 1和a 4的等比中项, 所以a 1·a 4=(42)2=32. 从而可知a 2·a 3=32.①因为6是a 2和a 3的等差中项,所以a 2+a 3=12.② 因为q >1,所以a 3>a 2.联立①②,解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2,a 1=2.故数列{a n }的通项公式为a n =2n .(2)因为b n =log 2a n (n ∈N +),所以a n b n =n ·2n . 所以S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n .③2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.④③-④得,-S n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.19.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1,所以a 2n -1=4n (n +1), 因此b n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1.故T n =b 1+b 2+…+b n=14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n 4(n +1), 所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点O 对称的两点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特性的性质并加以证明.解析 可以通过类比得:若M ,N 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点O 对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明 设点M (m ,n ),则N (-m ,-n ), 又设点P 的坐标为P (x ,y ), 则k PM =y -n x -m ,k PN =y +nx +m, 注意到m 2a 2-n 2b2=1,点P (x ,y )在双曲线x 2a 2-y 2b 2=1上,故y 2=b 2⎝⎛⎭⎫x 2a 2-1,n 2=b 2⎝⎛⎭⎫m 2a 2-1, 代入k PM ·k PN =y 2-n 2x 2-m 2可得:k PM ·k PN =b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(常数),即k PM ·k PN 是与点P 的位置无关的定值.21.(12分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.解析 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n , n ≤6,70×⎝⎛⎭⎫34n -6, n ≥7. (2)证明 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6, A n =780-210×⎝⎛⎭⎫34n -6n .易知{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以须在第9年初对M 更新.22.(14分)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎫b n +23, 又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (i)当n =1时,a 2=c -1a 1>a 1,命题成立;(ii)假设当n =k (k ≥1,k ∈N +)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由(i)(ii)知当c >2时,a n <a n +1. 当c >2时,令α=c +c 2-42,由a n +1a n <a n +1+1a n =c 得a n <α.当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )≤13(α-a n ), α-a n +1≤13n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3.因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎤2,103.。
第四讲 推理与证明一、选择题1.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为( )A.n n -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2C.n n -4+n +4(n +1)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2解析:由2+6=8,5+3=8,7+1=8,知选A. 答案:A2.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b)2+(b -c)2+(c -a)2≠0;②a>b 与a<b 及a =b 中至少有一个成立;③a≠b,b ≠c ,a ≠c 不能同时成立.其中判断正确的个数是( ) A .0个 B .1个 C .2个 D .3个解析:∵a,b ,c 是不全相等的正数,故①正确.③错误;对任意两个数a ,b ,a >b 与a <b 及a =b 三者必有其一正确,故②正确.答案:C3.已知1+2×3+3×32+4×33+…+n×3n -1=3n (n·a -b)+c 对一切n∈N *成立,那么( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:代入n =1,2,3,联立关于a ,b ,c 的方程组可得,也可通过验证法求解. 答案:A4.已知f(x +1)=2f (x )f (x )+2,f(1)=1 (x∈N *),猜想f(x)的表达式为( )A .f(x)=42x +2B .f(x)=2x +1C .f(x)=1x +1D .f(x)=22x +1答案:B5.已知数列{a n }的前n 项和S n =n 2a n (n≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n=( )A.2(n +1)2B.2n (n +1) C.22n-1 D.22n -1解析:由S n =n 2a n 知S n +1=(n +1)2a n +1, ∴S n +1-S n =(n +1)2a n +1-n 2a n , ∴a n +1=(n +1)2a n +1-n 2a n , ∴a n +1=nn +2a n (a≥2).当n =2时,S 2=4a 2,又S 2=a 1+a 2, ∴a 2=a 13=13,a 3=24a 2=16,a 4=35a 3=110.由a 1=1,a 2=13,a 3=16,a 4=110.猜想a n =2n (n +1).答案:B二、填空题6. (2014·福建卷)若集合{a ,b ,c ,d}={1,2,3,4},且下列四个关系:①a =1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d)的个数是________个.解析:由于题意是只有一个是正确的所以①不成立,否则②成立,即可得a≠1,由b≠1即b =2,3,4,可得b =2,c =1,d =4,a =3;b =3,c =1,d =4,a =2,两种情况.由c =2,d =4,a =3,b =1,所以有一种情况.由d≠4,即d =1,2,3,可得d =2,a =3,b =1,c =4;d =2,a =4,b =1,c =3;d =3,a =2,b =1,c =4,共三种情况.综上共6种. 答案:67.若从点O 所作的两条射线OM ,ON 上分别有点M 1,M 2与点N 1,N 2,则三角形面积之比S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.如下图,若从点O 所作的不在同一平面内的三条射线OP ,OQ 和OR 上分别有点P 1,P 2,点Q 1,Q 2和点R 1,R 2,则类似的结论为________________.解析:考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2- OR 2Q 2的底面面积比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为VOP 1Q 1R 1VOP 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 答案:VO -P 1Q 1R 1VO -P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 28. (2014·陕西卷) 观察分析下表中的数据:________.解析:①三棱锥:F=5,V=6,E=9,得F+V-E=5+6-9=2;②五棱锥:F=6,V=6,E=10,得F+V-E=6+6-10=2;③立方体:F=6,V=8,E=12,得F+V-E=6+8-12=2;所以归纳猜想一般凸多面体中,F,V,E所满足的等式是:F+V-E=2.故答案为F+V -E=2.答案:F+V-E=2三、解答题9.观察下表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,…问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 011是第几行的第几个数?(4)是否存在n∈N*,使得第n行起的连续10行的所有数之和为227-213-120?若存在,求出n的值;若不存在,请说明理由.解析:(1)∵第n+1行的第1个数是2n,∴第n行的最后一个数是2n-1.(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)=(2n-1+2n-1)·2n-12=3·22n-3-2n-2.(3)∵210=1 024,211=2 048,1 024<2 011<2 048,∴2 011在第11行,该行第1个数是210=1 024,由2 011-1 024+1=988,知2 011是第11行的第988个数.(4)设第n 行的所有数之和为a n ,第n 行起连续10行的所有数之和为S n . 则a n =3·22n -3-2n -2,a n +1=3·22n -1-2n -1,a n +2=3·22n +1-2n,…,a n +9=3·22n +15-2n +7,∴S n =3(22n -3+22n -1+…+22n +15)-(2n -2+2n -1+…+2n +7)=3·22n -3(410-1)4-1-2n -2(210-1)2-1=22n +17-22n -3-2n +8+2n -2,当n =5时,S 5=227-128-213+8=227-213-120.∴存在n =5使得第5行起的连续10行的所有数之和为227-213-120.10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n 幅图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明); (2)证明:1f (1)+1f (2)+1f (3)+…+1f (n )<43.答案:(1)解析:f(4)=37,f(5)=61. 由于f(2)-f(1)=7-1=6, f(3)-f(2)=19-7=2×6, f(4)-f(3)=37-19=3×6, f(5)-f(4)=61-37=4×6, …因此,当n≥2时,有f(n)-f(n -1)=6(n -1),所以f(n)=[f(n)-f(n -1)]+[f(n -1)-f(n -2)]+…+[f(2)-f(1)]+f(1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f(1)=1=3×12-3×1+1,所以f(n)=3n 2-3n +1(直接给出结果也可). (2)证明:当n≥2时,1f (n )=13n 2-3n +1<13n 2-3n =13⎝ ⎛⎭⎪⎫1n -1-1n .当n =1时,显然结论成立, 当n≥2时,1f (1)+1f (2)+1f (3)+…+1f (n )<1+13[⎝ ⎛⎭⎪⎫1-12+(12-13)+…+(1n -1-1n )]=1+13⎝ ⎛⎭⎪⎫1-1n <1+13=43. 综上,结论成立.。
第23课时 推理与证明一、基础练习:1、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,f(n)表示这n 条直线交点的个数,则f(4)=_________;当n>4时,f(n)=___________(用n 表示)2、由图(1)有面积关系:''''PA B PAB S PA PB S PA PB∆∆=⋅,则由图(2)有体积关系:'''P A B C P ABCV V --=__________3、用反证法证明“形如4k+3(k ∈N*)的数不能化为两个整数的平方和”时,开始假设结论的反面成立应写成___________。
4、凡自然数是整数,4是自然数,所以4是整数。
以上三段论推理A 、正确B 、推理形式不正确C 、两个“自然数”概念不一致D 、“两个整数”概念不一致5、如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i=1,2,3,4),此四边形内任一点P 到i 条边的距离记为h i (i=1,2,3,4),若31241234a a a a k ====,则412()i i S ih k ==∑,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i =(i=1,2,3,4),此三棱锥内任一点Q到第i 个面的距离记为H i (i=1,2,3,4),若31241234S S S S K ====,则41()i i iH =∑=__________ 二、例题析解 例1:设有椭圆221259x y +=,F 1,F 2是其两个焦点,点M 在椭圆上。
(1)若∠F 1MF 2=90°,求△F 1MF 2的面积。
(2)若∠F 1MF 2=60°,△F 1MF 2的面积是多少?若∠F 1MF 2=45°,△F 1MF 2的面积又是多少?(3)观察以上计算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗?试证明你的结论。
专题24 推理与证明一、选择题1.【2014山东.文4】用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根 B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根 D.方程02=++b ax x 恰好有两个实根2.【2014山东.文9】对于函数)(x f ,若存在常数0≠a ,使得x 取定义域内的每一个值,都有)2()(x a f x f -=,则称)(x f 为准偶函数,下列函数中是准偶函数的是( )A x x f =)( B 2)(x x f = C x x f tan )(= D )1cos()(+=x x f 3.【2015高考浙江,文8】设实数a ,b ,t 满足1sin a b t +==()A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin2b 唯一确定D .若t 确定,则2a a +唯一确定4.【2015高考广东,文10】若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=()A .50B .100C .150D .2005.【2014高考广东卷.文.10】对任意复数1w .2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数.对任意复数1z .2z .3z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*;②()()()1231213z z z z z z z *+=*+*;③()()123123z z z z z z **=**;④1221z z z z *=*.则真命题的个数是( )A .1B .2C .3D .46.【2014年普通高等学校招生全国统一考试湖北卷10】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )A.227 B.258 C.15750 D.3551137.【2015高考湖北,文10】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为() A .77 B .49 C .45 D .308.【2014福建,文12】在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-+-则平面内与x 轴上两个不同的定点12,FF 的“L-距离”之和等于定值(大于12|||F F )的点的轨迹可以是()二、填空题1.【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.2.【2016高考山东文数】观察下列等式:;;;;……照此规律,_________.3.【2015高考山东,文14】定义运算“⊗”:22x y x y xy -⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是.4.【2015高考陕西,文16】观察下列等式:1-1122=1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为______________________.5.【2014四川,文15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。
第3讲变异、育种和进化[考纲要求] 1.基因重组及其意义(B)。
2.基因突变的特征和原因(B)。
3.染色体结构变异和数目变异(B)。
4.生物变异在育种上的应用(C)。
5.转基因食品的安全性(B)。
6.现代生物进化理论的主要内容(B)。
7.生物进化与生物多样性的形成(B)。
1.变异与育种的整合2.生物可遗传的变异包括基因突变、基因重组和染色体变异(1)基因突变:具有普遍性、随机性、低频性、不定向性和多害少利性,产生新基因,是生物变异的根本来源。
(2)基因重组:包括交叉互换和自由组合,产生新的基因型,导致重组性状出现,是形成生物多样性的重要原因之一。
(3)染色体变异:包括染色体结构变异和染色体数目变异,是生物可遗传变异的重要来源。
3.生物变异在育种上的应用[错混诊断]1.DNA复制时发生碱基对的增添、缺失或改变,导致基因突变(2011·江苏,22A)(√) 2.A基因突变为a基因,a基因还可能再突变为A基因(2011·上海,8A)(√)3.染色体片段的缺失和重复必然导致基因种类的变化(2011·海南,19C)(×)4.低温可抑制染色体着丝点分裂,使子染色体不能分别移向两极导致染色体加倍(2010·福建,3A改编)(×)5.多倍体形成过程增加了非同源染色体重组的机会(2009·广东,7D)(×)6.在有丝分裂和减数分裂过程中,非同源染色体之间交换一部分片段,导致染色体结构变异(2011·江苏,22C)(√)7.染色体组整倍性、非整倍性变化必然导致基因种类的增加(2011·海南,19AB改编)(×) 8.某种极具观赏价值的兰科珍稀花卉很难获得成熟种子。
为尽快推广种植,可采用幼叶、茎尖等部位的组织进行组织培养(2013·江苏,11D)(√)9.用秋水仙素处理细胞群体,M(分裂)期细胞的比例会减少(2013·浙江,1D)(×)10.三倍体西瓜植株的高度不育与减数分裂同源染色体联会行为有关(2013·安徽,4③)(√)题组一从生物变异的种类及实质进行考查1.(2014·江苏,7)下列关于染色体变异的叙述,正确的是()A.染色体增加某一片段可提高基因表达水平,是有利变异B.染色体缺失有利于隐性基因表达,可提高个体的生存能力C.染色体易位不改变基因数量,对个体性状不会产生影响D.通过诱导多倍体的方法可克服远缘杂交不育,培育出作物新类型答案 D解析A项,染色体增加某一片段不一定会提高基因的表达水平,且该基因的大量表达对生物体也不一定是有利的。
2015年高考数学专题14:推理与证明(理)1.【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .302.【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5B .等于5C .至多等于4D .至多等于33.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立4.【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油5.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中试卷第2页,总3页有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 .6.【2015高考山东,理11】观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++= .7.【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.8.【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.9.【2015高考上海,理23】对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =.(1)验证()sin 3x h x x =+是以π6为周期的余弦周期函数; (2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =;(3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T.。