隧道盾构进出洞施工风险分析
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
盾构施工过程中的地质风险分析及治理措施设计一、引言盾构施工是一种在地下进行隧道掘进的技术方法,广泛应用于城市地下管网、地铁和隧道等工程建设中。
然而,在盾构施工过程中,地质风险是不可避免的。
本文将对盾构施工过程中的地质风险进行分析,并提出相应的治理措施设计。
二、盾构施工中的地质风险1. 岩层变化带来的地质风险:在盾构施工中,可能会遇到地质构造变化导致岩层的突变,例如断层、脆弱带等。
这会对盾构机的推进和掘进造成不稳定性,增加地质风险。
2. 地下水位对施工的影响:地下水位的高低会直接影响盾构施工的进行。
在水位较高的地区,可能会导致隧道涌水,对施工工艺和安全造成威胁。
3. 地下空洞和洞室的存在:在地下施工中,可能会遇到地下洞室或空洞,这会导致盾构机的下沉和地质灾害的发生,对施工风险形成潜在威胁。
4. 后期地质沉降引发的地质风险:盾构施工完成后,地下的岩土会发生固结沉降,可能会影响地面建筑物的稳定性,引发地质风险。
三、盾构施工中地质风险分析的方法1. 前期地质调查:在盾构施工前,进行详细的地质调查,掌握施工区域的地质情况,包括岩性、断层、脆弱带、地下水位等信息。
这有助于预测地质风险发生的可能性,为治理措施的设计提供依据。
2. 现场勘探与监测:在盾构施工过程中,进行地下水位监测、地质构造检测等现场勘探工作,及时掌握工程进展情况,发现地质风险的迹象,并采取相应的措施进行治理。
四、盾构施工中地质风险的治理措施设计1. 岩层突变风险治理:对于存在断层和脆弱带的区域,可以采取预处理或加固措施,如钻孔注浆、锚索加固等,提高盾构施工的稳定性。
2. 地下水位控制治理:根据地下水位调查结果,设计合理的水封措施,包括增加隧道内部的防水层、设置排水系统等,避免盾构施工过程中的涌水风险。
3. 地下空洞治理:对于已知的地下洞室或空洞,采取相应的填充或加固措施。
另外,通过地质勘探和监测,及时发现潜在的地下空洞,避免施工过程中悬空洞室的发生。
一、不良地质中盾构施工风险1、盾构处在承压水砂层中,由于正面压力设定不够高,缺少必要的砂土改良措施以及盾尾密封失效,而引起正面及盾尾涌砂涌水导致盾构突沉、隧道损坏;2、在盾构上部为硬粘土、下部为承压水砂层时,由于硬粘土过硬很难顶进,而承压水砂层则因受压不足不能疏干而发生液化流失导致盾构突沉;另因过硬粘土卡住密封舱搅拌棒使粘土与砂土不能拌合排出,致使盾构下部砂土液化由螺旋器流出,导致盾构底部脱空下沉;3、超越沼气层或其他原因形成的含气层时(如气压法施工的隧道或工作井附近),如未探明其范围和压力、未事先进行必要的释放、未采取防备毒气和燃爆的措施,开挖面喷出的气体及其携带的泥沙可能引起盾构姿态突变、隧道突沉以及毒气燃爆的灾害;4、对沿线穿越地层中的透镜体、洞穴或桩基、废旧构筑物等障碍物。
未事先查明并做预处理或备有应急措施,可能引起盾构推进突沉偏移,盾尾注浆流失,致使地面沉陷过大,盾构无法推进。
二、盾构进出洞风险盾构在工作井出洞或进洞时,需要凿除预留洞口处钢筋混凝土挡土墙,而后由盾构刀盘切削洞口加固土体进入洞圈密封装置,此过程中洞口土体及加固土体暴露时间较长,且受前期工作井施工方法及其施工扰动影响,容易因加固土体或洞圈密封装置的缺陷而发生洞口水土流失或坍方。
如遇饱和含水砂性土层或沼气以及其他原因形成的含气层(如气压法施工的隧道或工作井附近),更易发生向井内的大量涌沙涌水而导致盾构出洞磕头或盾构进洞突沉,甚至在盾构进洞突沉中拖带盾尾后一段隧道严重变形或坍垮,造成极严重的工程事故,并严重破坏周边环境。
由于盾构进出洞事故概率较高,其后果可能极为严重,因此对关系到盾构进出洞风险的每个细节必须严格仔细的采取可靠的风险控制措施。
三、盾构穿越江河水底的风险当盾构推进挤压导致前方土体隆起过多,或盾构处于饱和含水砂层中发生涌水突沉引起上方江底沉陷,产生涌水裂隙,致使大量河水由盾尾或开挖的缺陷处涌入而淹没隧道。
四、旁通道施工风险1、旁通道冻结施工中,隧道钻冻结孔防喷措施不当引发泥水喷涌;2、旁通道冻结壁由于冻结管断裂、渗漏而未能使冷冻圈全部交圈导致透水失稳;3、临时支护强度、刚度不够或拆模过早,引起旁通道及连接隧道严重变形或坍塌;4、旁通道冻结体冻胀融沉引起隧道变形过大而危害隧道安全。
盾构机始发和接收的风险及控制我国地铁隧道施工已开始使用盾构法。
随着技术进步、认识提高、综合国力的增强,特别是随着该施工技术所显现的优势,盾构法越来越多地被国内地铁界所接受。
盾构的始发和接收是贯穿整个盾构施工当中的重点,也是较容易出现风险的关键环节.所以控制好始发和接收的风险尤为重要。
一,盾构基座变形1。
1、现象在盾构进出洞过程中,盾构基座发生变形,使盾构掘进轴线偏离设计轴线.1.2、控制措施(1)盾构基座形成时中心轴线应与隧道设计轴线方向一致,当洞口段隧道设计轴线处于曲线状态时,应考虑盾构基座与隧道设计曲线的减缓夹角扩大方向放置,两轴线接触点必须设于洞口内侧面处;(2)基座框架结构的强度和刚度能克服进洞段过土体加固区时盾构机所产生的与基座的摩擦力,以及盾构自身的重力和刀具切入地层所产生的扭矩。
(3)合理控制盾构姿态,尽量使盾构机在没有离开基座前的轴线与盾构基座中心轴线保持一致.(4)盾构基座的底面与始发井的底板(预埋件)之间要垫平垫实,焊接紧密,保证接触面积满足要求。
基座与周边侧墙的支撑要焊接紧密、牢固。
1.3、治理办法(1)查清前方土体是否有障碍物,并采取有效措施清除。
(2)清查盾构机的结构部分是否与基座有硬性接触,并清除. (3)先停止推进,对已发生变形破坏的构件分析破坏原因,进行相应的加固,如发现强度的原因可进行补强力焊。
对需要调换的部件,先将盾构支撑牢靠,再调换被破坏构件;(2)盾构基座的变形确实严重,盾构在起上又无法修复和加固时,只能采取盾构脱离基座,创造工作条件后对基座作修复加固.二,凿除钢筋混凝土洞门产生涌土2.1、现象在破除洞门过程中,洞门前方土体从洞门间隙内涌入工作井内. 2。
2、控制措施(1)根据现场土质状况,制定合理的土体加固方案,无侧限抗压强度≥0。
8MPA时满足始发,并在破洞门前设置观察孔,检测加固效果,以确保在土体加固效果良好的情况下破洞门;(2)布置井点降水管,将地下水位降至能保证安全进洞水位; (3)根据洞门的实际尺寸,制定合理的洞门破除方案,施工安排周详,确保破洞门时安全、快速。
盾构法隧道施工质量通病及防治措施盾构法隧道施工的质量控制重点是建成的隧道实际轴线与设计轴线的一致性;另外,隧道的综合防水能力,隧道施工过程对地层的扰动、对周围环境的影响等也是反映隧道施工质量的重要指标.为了保证隧道施工质量能符合相关标准,对盾构法施工的每道施工工序的质量均应严格控制,保证各关键技术参数达到能控制工程质量标准的范围.第一节盾构进、出洞盾构进出洞是盾构法隧道施工中的一道关键工序.在进、出洞过程中,施工环节多,工作量集中,各工种交叉施工频繁,设备、人员众多,工作零乱,因此,加强质量管理和控制尤为重要.1、盾构基座变形1.1、现象在盾构进出洞过程中,盾构基座发生变形,使盾构掘进轴线偏离设计轴线.1.2、原因分析⑴盾构基座的中心夹角轴线与隧道设计轴线不平行,盾构在基座上纠偏产生了过大的侧向力;⑵盾构基座的整体刚度、稳定性不够,或局部构件的强度不足;⑶盾构姿态控制不好,盾构推进轴线与基座轴线产生较大夹角,致使盾构基座受力不均匀;⑷对盾构基座的固定方式考虑不周,固定不牢靠.1.3、预防措施⑴盾构基座形成时中心夹角轴线应与隧道设计轴线方向一致,当洞口段隧道设计轴线处于曲线状态时,可考虑盾构基座沿隧道设计曲线的切线方向放置,切点必须取洞口内侧面处;⑵基座框架结构的强度和刚度能克服出洞段穿越加固土体所产生的推力;⑶合理控制盾构姿态,尽量使盾构轴线与盾构基座中心夹角轴线保持一致;⑷盾构基座的底面与始发井的底板之间要垫平垫实,保证接触面积满足要求.1.4、治理方法⑴先停止推进,对已发生变形破坏的构件分析破坏原因,进行相应的加固.对需要调换的部件,先将盾构支撑加固牢靠,再调换被破坏构件;⑵盾构基座的变形确实严重,盾构在其上又无法修复和加固时,只能采取措施使盾构脱离基座,创造工作条件后对基座作修复加固.2、盾构后靠支撑位移及变形2.1、现象在盾构出洞过程中,盾构后靠支撑体系在受盾构推进顶力的作用后发生支撑体系的局部变形或位移.2.2、原因分析⑴盾构推力过大,或受出洞千斤顶编组影响,造成后靠受力不均匀、不对称,产生应力集中;⑵盾构后靠混凝土充填不密实或填充的混凝土强度不够;⑶组成后靠体系的部分构件的强度、刚度不够,各构件间的焊接强度不够;⑷后靠与负环管片间的结合面不平整.2.3、预防措施⑴在推进过程中合理控制盾构的总推力,且尽量使千斤顶合理编组,使之均匀受力;⑵采用素混凝土或水泥砂浆填充各构件连接处的缝隙,除充填密实外,还必须确保填充材料强度,使推力能均匀地传递至工作井后井壁.在构件受力前还应做好填充混凝土的养护工作;⑶对体系的各构件必须进行强度、刚度校验,对受压构件一定要作稳定性验算.各连接点应采用合理的连接方式保证连接牢靠,各构件安装要定位精确,并确保电焊质量以及螺栓连接的强度;⑷尽快安装上部的后盾支撑构件,完善整个后盾支撑体系,以便开启盾构上部的千斤顶,使后盾支撑系统受力均匀.2.4、治理方法⑴对产生裂缝或强度不够的缝隙填充料凿除,重新充填,并经过养护后达到要求强度再恢复推进;⑵对变形的构件进行修补及加固.根据推进油压及千斤顶开启数量计算出发生破坏时的实际推力,对后靠体系进行校验;⑶对于发现裂缝的接头及时进行修补.3、凿除钢筋混凝土封门产生涌土3.1、现象在拆除洞封门过程中,洞门前方土体从封门间隙内涌人工作井(接收井)内.3.2、原因分析⑴封门外侧土体加固方案不当或加固效果欠佳,自立性达不到封门拆除所需的施工时间;⑵地下水丰富,土体软弱自立性极差;⑶封门拆除工艺编制不合理或施工中发生意外,造成封门外土体暴露时间过长.3.3、预防措施⑴根据现场土质状况,制定合理的土体加固方案,并在拆封门前设置观察孔,检测加固效果,以确保在土体加固效果良好的情况下拆封门;⑵布置井点降水管,将地下水位降至能保证安全出洞水位;⑶根据封门的实际尺寸,制定合理的封门拆除工艺,施工安排周详,确保拆封门时安全、快速.3.4、治理方法创造条件使盾构尽快进入洞口内,对洞门圈进行注浆封堵,减少土体流失.4、盾构出洞段轴线偏离设计4.1、现象盾构出洞推进段的推进轴线上浮,偏离隧道设计轴线较大,待推进一段距离后盾构推进轴线才能控制在隧道轴线的偏差范围内.4.2、原因分析⑴洞口土体加固强度太高,使盾构推进的推力提高.而盾构刚出洞时,开始几环的后盾管片是开口环,上部后盾支撑还未安装好,千斤顶无法使用,推力集中在下部,使盾构产生一个向上的力矩,盾构姿态产生向上的趋势;⑵盾构正面平衡压力设定过高导致引起盾构正面土体拱起变形,引起盾构轴线上浮;⑶未及时安装上部的后盾支撑,使上半部分的千斤顶无法使用,将导致盾构沿着向上的趋势偏离轴线;⑷盾构机械系统故障造成上部千斤顶的顶力不足.4.3、预防措施⑴正确设计出洞口土体加固方案,设计合理的加固方法和加固强度.施工中正确把握加固质量,保证加固土体的强度均匀,防止产生局部的硬块、障碍物等;⑵施工过程中正确地设定盾构正面平衡土压;⑶及时安装上部后盾支撑,改变推力的分布状况,有利盾构推进轴线的控制,防止盾构上浮现象;⑷正确操作盾构,按时保养设备,保证机械设备的完好.4.4、治理方法⑴施工过程中在管片拼装时加贴楔子,调正管片环面与轴线的垂直度,便于盾构推进纠偏控制;⑵在管片拼装时尽量利用盾壳与管片间隙作隧道轴线纠偏,改善推进后座条件:⑶用注浆的办法对隧道作少量纠偏,便于盾构推进轴线的纠偏.5、盾构进洞时姿态突变5.1、现象盾构进洞后,最后几环管片往往与前几环管片存在明显的高差,影响了隧道的有效净尺寸.5.2、原因分析⑴盾构进洞时,由于接收基座中心夹角轴线与推进轴线不一致,盾构姿态产生突变, 盾尾使在其内的圆环管片位置产生相应的变化;⑵最后两环管片在脱出盾尾后,与周围土体间的空隙由于洞口处无法及时地填充,在重力的作用下产生沉降.5.3、预防措施⑴盾构接收基座要设计合理,使盾构下落的距离不超过盾尾与管片的建筑空隙;⑵将进洞段的最后一段管片,在上半圈的部位用槽钢相互连结,增加隧道刚度;⑶在最后几环管片拼装时,注意对管片的拼装螺栓及时复紧,提高抗变形的能力;⑷进洞前调整好盾构姿态,使盾构标高略高于接收基座标高.5.4、治理方法在洞门密封钢板未焊接以前,用整圆装置将下落的管片向上托起,纠正误差.6、盾构进、出洞时洞口土体大量流失6.1、现象进出洞时,大量的土体从洞口流入井内,造成洞口外侧地面大量沉降.6.2、原因分析⑴洞口土体加固质量不好,强度未达到设计或施工要求而产生塌方,或者加固不均匀, 隔水效果差,造成漏水、漏泥现象;⑵在凿除洞门混凝土或拔除洞门钢板桩后,盾构未及时靠上土体,使正面土体失去支撑造成塌方;⑶洞门密封装置安装不好,止水橡胶帘带内翻,造成水土流失:⑷洞门密封装置强度不高,经不起较高的土压力,受挤压破坏而失效;⑸盾构外壳上有突出的注浆管等物体,使密封受到影响;⑹进洞时未能及时安装好洞圈钢板;⑺进洞时土压力末及时下调,致使洞门装置被顶坏,大量井外土体塌入井内.6.3、预防措施⑴洞口土体加固应提高施工质量,保证加固后土体强度和均匀性;⑵洞口封门拆除前应充分做好各项进、出洞的准备工作;⑶洞门密封圈安装要准确,在盾构推进的过程中要注意观察,防止盾构刀盘的周边刀割伤橡胶密封圈.密封圈可涂牛油增加润滑性;洞门的扇形钢板要及时调整,改善密封圈的受力状况;⑷在设计、使用洞门密封时要预先考虑到盾壳上的凸出物体,在相应位置设计可调节的构造,保证密封的性能;⑸盾构进洞时要及时调整密封钢板的位置,及时地将洞口封好;⑹盾构将进入进洞口土体加固区时,要降低正面的平衡压力.6.4、治理措施⑴将受压变形的密封圈重新压回洞口内,恢复密封性能,及时固定弧形板,改善密封橡胶带的工作状态;⑵对洞口进行注浆堵漏,减少土体的流失.第二节盾构掘进盾构掘进是盾构法隧道施工的主要工序,要保证隧道的实际轴线和设计轴线相吻合, 并确保管片圆环拼装质量,使隧道不漏水,地面不产生大的变形.1、土压平衡式盾构正面阻力过大1.1、现象盾构推进过程中,由于正面阻力过大造成盾构推进困难和地面隆起变形.1.2、原因分析⑴盾构刀盘的进土开口率偏小,进土不畅通;⑵盾构正面地层土质发生变化;⑶盾构正面遭遇较大块状的障碍物;⑷推进千斤顶内泄漏,达不到其本身的最高额定油压;⑸正面平衡压力设定过大;⑹刀盘磨损严重.1.3、预防措施⑴合理设计进土孔的尺寸,保证出土畅通;⑵隧道轴线设计前,应对盾构穿越沿线作详细的地质勘查,摸清沿线影响盾构推进的障碍物的具体位置、深度,以使轴线设计考虑到这一状况;⑶详细了解盾构推进断面内的土质状况,以便及时优化调整土压设定值、推进速度等施工参数;⑷经常检修刀盘和推进千斤顶,确保其运行良好;⑸合理设定平衡压力,加强施工动态管理,及时调整控制平衡压力值.1.4、治理方法⑴采取辅助技术,尽量采取在工作面内进行障碍物清理,在条件许可的情况下,也可采取大开挖施工法清理正面障碍物;⑵增添千斤顶,增加盾构总推力.2、泥水加压平衡式盾构正面阻力过大2.1、现象盾构推进过程中,由于正面阻力过大造成盾构推进困难.2.2、原因分析⑴泥水平衡系统不能建立或泥水压力过大;⑵盾构刀盘的进土开口率偏小,进土不畅通;⑶盾构正面地层土质发生变化;⑷盾构正面遭遇较大块状的障碍物;⑸推进千斤顶内泄漏,达不到其本身的最高额定油压.2.3、预防措施⑴严格控制泥水质量,准确设定泥水平衡压力、推进速度等施工参数,同时确保泥水输送系统的正常运行;⑵详细了解盾构推进断面内的土质状况,以便及时优化调整平衡压力设定值、推进速度等施工参数,同时配制与土质相适应的泥水;⑶在盾构穿越沿线做好详尽的地质勘查,事先清除障碍物或调整设计轴线;⑷经常检修推进千斤顶,确保其运行良好.2.4、治理方法⑴与土压平衡盾构一样;⑵增添千斤顶,增加盾构总推力.3、土压平衡盾构正面平衡压力的过量波动3.1、现象在盾构推进及管片拼装的过程中,开挖面的平衡土压力发生异常的波动,与理论压力值或设定压力值发生较大的偏差.3.2、原因分析⑴推进速度与螺旋机的旋转速度不匹配;⑵当盾构在砂土土层中施工时,螺旋机摩擦力大或形成土塞而被堵住,出土不畅,使开挖面平衡压力急剧上升;⑶盾构后退,使开挖面平衡压力下降;⑷土压平衡控制系统出现故障造成实际土压力与设定土压力的偏差.3.3、预防措施⑴正确设定盾构推进的施工参数,使推进速度与螺旋机的出土能力相匹配;⑵当土体强度高,螺旋机排土不畅时,在螺旋机或土仓中适量地加注水或泡沫等润滑剂,提高出土的效率.当土体很软,排土很快影响正面压力的建立时,适当关小螺旋机的闸门,保证平衡土压力的建立;⑶管片拼装作业,要正确伸、缩千斤顶,严格控制油压和伸出千斤顶的数量,确保拼装时盾构不后退;⑷正确设定平衡土压力值以及控制系统的控制参数;⑸加强设备维修保养,保证设备完好率,确保千斤顶没有内泄漏现象.3.4、治理方法⑴向切削面注入泡沫、水、膨润土等物质,改善切削进入土仓内的土体的性能,提高螺旋机的排土能力,稳定正面土压;⑵维修好设备,减少液压系统的泄漏;⑶对控制系统的参数重新进行设定,满足使用要求.4、泥水加压平衡盾构正面平衡压力过量波动、现象在泥水加压平衡盾构推进及拼装的过程中,开挖面的泥水压力发生异常的波动,与理论压力值或设定压力值发生较大的偏差.4.1、原因分析⑴泥水加压平衡盾构的排泥口堵塞,排泥不畅,而此时送泥管却仍在送泥水,导致开挖面的泥水压力瞬间上升,超出设定压力;⑵泥水系统的各施工参数设定不合理,泥水循环不能维持动态平衡;⑶泥水系统中的某些设备故障如泥水管路中接头泄露,排泥泵的叶轮磨损,控制阀的开关不灵活等,使泥水输送不正常,正面平衡压力过量波动;⑷拼装时盾构后退,使开挖面平衡压力下降;⑸正常情况下,当盾构停止推进的时间较长,开挖面平衡压力下降时,可以通过送泥管向开挖面补充泥水而提高压力,恢复平衡.而拆接泵管时,由于接泵管的速度慢,就会使开挖面平衡压力因得不到补充而下降.4.2、预防措施⑴在盾构的排泥吸口处安装搅拌机或粉碎机,保证吸口的畅通,排泥泵前的过滤器要经常进行清理,保证不被堵塞;⑵正确地设定泥水系统的各项施工参数,包括泥浆的密度、粘度、压力、流量等,以确保开挖面支护的稳定性;⑶对泥水系统的各运转部件定期进行检修保养,保证各设备的正常运转.在泥水系统的操作过程中要做到顺序正确,避免误操作引起压力波动;⑷管片拼装作业,要正确伸、缩千斤顶,严格控制油压和伸出千斤顶的数量,确保拼装时盾构不后退;⑸在泥水系统中设计一个单独的补液系统,以在送泥管被拆开时对泥水仓进行加压, 保证泥水仓压力的稳定.4.3、治理方法⑴遇到盾构正面吸泥口堵塞,应立即进行逆洗处理,每次逆洗的时间控制在2—3米in:⑵如多次逆洗达不到清除堵塞的目的,可采用压缩空气置换平衡仓内泥水,在确保安全前提下由气压工进入泥水仓清除堵塞物;⑶对损坏的设备要及时进行修复或更新,对泥水平衡控制系统的参数设定进行优化, 做到动态管理;⑷当发现泥水流动不畅时,可及时地转换为旁路状态,通过各个设备的运转情况和相应的泥水压力及流量判断管路堵塞的位置及堵塞的原因,并及时采取措施排除故障.5、土压平衡盾构螺旋机出土不畅5.1、现象螺旋机螺杆形成“土棍”,螺旋机无法出土,或螺旋机内形成阻塞,负荷增大,电动机无法带动螺旋机转动,不能出土.5.2、原因分析⑴盾构开挖面平衡压力过低,无法在螺旋机内形成足够压力,螺旋机不能正常进土, 也就不能出土;⑵螺旋机螺杆安装与壳体不同心,运转过程中壳体磨损,使叶片和壳体间隙增大,出土效率降低;⑶盾构在砂性土及强度较高的黏性土中推进时,土与螺旋机壳体间的摩擦力大,螺旋机的旋转阻力加大,电动机无法转动;⑷大块的漂砾进入螺旋机,卡住螺杆;⑸螺旋机驱动电动机因长时间高负荷工作,过热或油压过高而停止工作.5.3、预防措施⑴螺旋机打滑时,把盾构开挖面平衡压力的设定值提高,盾构的推进速度提高,使螺旋机正常进土;⑵螺旋机安装时要注意精度,运转过程中加强对轴承的润滑;⑶降低推进速度,使单位时间内螺旋机的进土量降低,螺旋机电动机的负荷降低;⑷在螺旋机中加注水、泥浆或泡沫等润滑剂,使土与螺旋机外壳的摩擦力降低,减少电动机的负荷.5.4、治理方法⑴打开螺旋机的盖板,清理螺旋机的被堵塞部位;⑵将磨损的螺旋机螺杆更换.6、泥水平衡盾构吸口堵塞6.1、现象在泥水平衡盾构施工过程中,排泥不畅,造成送、排泥流量严重失调,从而破坏开挖面泥水平衡.6.2、原因分析⑴盾构土舱的土体中含有大块状障碍物;⑵盾构土舱内搅拌机搅和不匀,致使吸口处沉淀物过量积聚;⑶泥水管路输送泵故障,致使排泥流量小于送泥流量;⑷泥水指标不合要求,不能有效形成盾构开挖面的泥膜.6.3、预防措施⑴及时调整各项施工参数,在推进过程中尽量保持推进速度、开挖面泥水压力的平稳;⑵确保各搅拌机的正常运转,以达到拌和均匀;⑶对泥水输送管路及泵等设备经常保养检修,确保泥水输送的畅通;⑷根据施工工况条件,及时调整泥水指标,确保泥膜的良好形成,以使盾构切削土体始终处于良性循环状态下.6.4、治理方法⑴如吸口轻微遭堵,应相应降低推进速度,同时按技术要求进行逆洗;⑵如吸口遭堵严重,应采取相应技术措施,在确保安全的前提下,及时组织力量,由施工人员进入土舱清除障碍物.7、盾构掘进轴线偏差7.1、现象盾构掘进过程中,盾构推进轴线过量偏离隧道设计轴线,影响成环管片的轴线.7.2、原因分析⑴盾构超挖或欠挖,造成盾构在土体内的姿态不好,导致盾构轴线产生过量的偏移;⑵盾构测量误差,造成轴线的偏差;⑶盾构纠偏不及时,或纠偏不到位;⑷盾构处于不均匀土层中,即处于两种不同土层相交的地带时,两种土的压缩性、抗压强度、抗剪强度等指标不同;⑸盾构处于非常软弱的土层中时,如推进停止的间歇太长,当正面平衡压力损失时会导致盾构下沉;⑹拼装管片时,拱底块部位盾壳内清理不干净,有杂质夹杂在相邻两环管片的接缝内,就使管片的下部超前,轴线产生向上的趋势,影响盾构推进轴线的控制;⑺同步注浆量不够或浆液质量不好,泌水后引起隧道沉降,而影响推进轴线的控制;⑻浆液不固结使隧道在大的推力作用下引起变形.7.3、预防措施⑴正确设定平衡压力,使盾构的出土量与理论值接近,减少超挖与欠挖现象,控制好盾构的姿态;⑵盾构施工过程中经常校正、复测及复核测量基站;⑶发现盾构姿态出现偏差时应及时纠偏,使盾构正确地沿着隧道设计轴线前进;⑷盾构处于不均匀土层中时,适当控制推进速度,多用刀盘切削土体,减少推进时的不均匀阻力.也可以采用向开挖面注入泡沫或膨润土的办法改善土体,使推进更加顺畅;⑸当盾构在极其软弱的土层中施工时,应掌握推进速度与进土量的关系,控制正面土体的流失;⑹拼装拱底块管片前应对盾壳底部的垃圾进行清理,防止杂质夹杂在管片间,影响隧道轴线;⑺在施工中按质保量做好注浆工作,保证浆液的搅拌质量和注入的方量.7.4、治理方法⑴调整盾构的千斤顶编组或调整各区域油压及时纠正盾构轴线;⑵对开挖面作局部超挖,使盾构沿被超挖的一侧前进;⑶盾构的轴线受到管片位置的阻碍不能进行纠偏时,采用楔子环管片调整环面与隧道设计轴线的垂直度,改善盾构后座面.8、泥水加压平衡盾构施工过程中隧道上浮8.1、现象泥水加压平衡盾构施工过程中,随着盾构的不断向前推进,成环隧道呈上浮现象.8.2、原因分析⑴盾构切口前方泥水后窜至盾尾后,使管片处于悬浮状态;⑵同步注浆效果欠佳,未能有效地隔绝正面泥水;⑶管片连接件未及时拧紧;⑷盾构推进一次纠偏量过大,对地层产生了过大扰动.8.3、预防措施⑴提高同步注浆质量,缩短浆液初凝时间,使其遇泥水后不产生劣化;⑵提高注浆与盾构推进的同步性,使浆液能及时充填建筑空隙,建立盾尾处的浆液压力.同时加强隧道沉降监测,当发现隧道上浮呈较大趋势时,立即采取对已成环隧道进行补压浆措施;⑶及时复紧已成环隧道的连接件.8.4、治理方法在盾尾后隧道外周压注双液浆形成环箍(必要时采用聚氨酯),以隔断泥水流失路径. 9、盾构过量地自转9.1、现象盾构推进中盾构发生过量的旋转,造成盾构与车架连接不好,设备运行不稳定,增加测量、封顶块拼装等困难.9.2、原因分析⑴盾构内设备布置重量不平衡,盾构的重心不在竖直中心线上而产生了旋转力矩;⑵盾构所处的土层不均匀,两侧的阻力不一致,造成推进过程中受到附加的旋转力矩;⑶在施工过程中刀盘或旋转设备连续同一转向,导致盾构在推进运动中旋转;⑷在纠偏时左右千斤顶推力不同及盾构安装时千斤顶轴线与盾构轴线不平行.9.3、预防措施⑴安装于盾构内的设备作合理布置,并对各设备的重量和位置进行验算,使盾构重心位于中线上或配置配重调整重心位置于中心线上;⑵经常纠正盾构转角,使盾构自转在允许范围内;⑶根据盾构的自转角,经常改变旋转设备的工作转向.9.4、治理方法⑴可通过改变刀盘或旋转设备的转向或改变管片拼装顺序来调节盾构的自转角度;⑵盾构自转量较大时,可采用单侧压重的方法纠正盾构转角.10、盾构后退10.1、现象盾构停止推进,尤其是拼装管片的时候,产生后退的现象,使开挖面压力下降,地面产生下沉变形.10.2、原因分析⑴盾构千斤顶自锁性能不好,千斤顶回缩;⑵千斤顶大腔的安全溢流阀压力设定过低,使千斤顶无法顶住盾构正面的土压力;⑶盾构拼装管片时千斤顶缩回的个数过多,并且没有控制好最小应有的防后退顶力.10.3、预防措施⑴加强盾构千斤顶的维修保养工作,防止产生内泄漏;⑵安全溢流阀的压力调定到规定值;⑶拼装时不多缩千斤顶,管片拼装到位及时伸出千斤顶到规定压力.10.4、治理方法盾构发生后退,应及时采取预防措施防止后退的情况进一步加剧,如因盾构后退而无法拼装,可进行二次推进.11、盾尾密封装置泄漏11.1、现象地下水、泥及同步注浆浆液从盾尾的密封装置渗漏进入盾尾的盾壳和隧道内,严重影响工程进度和施工质量,甚至对工程安全带来灾难.11.2、原因分析⑴管片与盾尾不同心,使盾尾和管片间的空隙局部过大,超过密封装置的密封功能界限;⑵密封装置受偏心的管片过度挤压后,产生塑性变形,失去弹性,密封性能下降;⑶盾尾密封油脂压注不充分,盾尾钢刷内侵入了注浆的浆液并固结,盾尾刷的弹性丧失,密封性能下降;⑷盾构后退,造成盾尾刷与管片间发生刷毛方向相反的运动,使刷毛反卷,盾尾刷变形而密封性能下降;⑸盾尾密封油脂的质量不好,对盾尾钢丝刷起不到保护的作用,或因油脂中含有杂质堵塞泵,使油脂压注量达不到要求.11.3、预防措施⑴严格控制盾构推进的纠偏量,尽量使管片四周的盾尾空隙均匀一致,减少管片对盾尾密封刷的挤压程度;⑵及时、保量、均匀地压注盾尾油脂;⑶控制盾构姿态,避免盾构产生后退现象;⑷采用优质的盾尾油脂,要求有足够的粘度、流动性、润滑性、密封性能.11.4、治理方法⑴对已经产生泄漏的部位集中压注盾尾油脂,恢复密封的性能;⑵管片拼装时在管片背面塞人海绵,将泄漏部位堵住;⑶有多道盾尾钢丝刷的盾构,可将最里面的一道盾尾刷更换,以保证盾尾刷的密封性;⑷从盾尾内清除密封装置钢刷内杂物.12、泥水加压平衡盾构施工过程中地面冒浆12.1、现象在泥水平衡盾构施工过程中,盾构切口前方地表出现冒浆.12.2、原因分析⑴盾构穿越土体发生突变(处于两层土断层中),或盾构覆土厚度过浅;⑵开挖面泥水压力设定值过高;⑶同步注浆压力过高;。
盾构出洞的安全注意事项一、施工一定要按照技术人员指定的工艺流程工作。
吊挂式脚手架每一工作台的高度应高于洞门凿除过程中气割钢筋的高度。
二、在气割洞门最后的钢筋时,由于用长枪,且绑在木杆上进行(注意木杆的重量要轻),由于长度大,造成枪体在气割中不稳,极易产生回火,且由于枪绑在木杆上不易及时制止回火现象,所以在作业时应由经验丰富的作业人员进行监护,一但发生回火应及时拧死胶管,以防止回火的继续进行,确保安全。
三、洞门在钢筋割除前的各种准备工作应周全充分。
如:十八日开会所提,如遇有泥浆溢出应设有泥浆泵,气割应配置两套以防意外,并应配置足够的灭火器、井上下的通讯设施,应电源充足,夜间施工应有足够的照明。
四、洞门气割钢筋应选有证,且工作经验丰富的施工人员,且在工作中应服从管理人员的统一指挥。
五、由于作业场地狭小、施工环境噪杂,所以无关人员不要进入施工现场,经批准可在二层升进行观看学习,但不要影响施工人员的指挥和作业。
六、由于出洞施工存在高空坠落、物体打击、起重伤害、火灾事故等几方面的安全隐患,所以在工作前应对每个施工人员的工作有一个具体的安排,施工人员应各司其职,切实到位,严禁离岗脱岗。
七、气割钢筋后由于洞门外土体的巨大压力,可能造成物体打击伤害,所以施工人员不得随意靠近不稳定的洞门土体。
如果对已气割的混凝土块进行吊运,作业人员在捆绑混凝土时应注意洞门土体得变化,应有逃逸路线,在确认混凝土绑扎牢固后应及时撤离。
八、吊运得钢丝绳应有足够的强度,即绳应于物重相匹配,且应检查钢丝绳的破损程度,如:钢丝绳断丝过多或锈蚀,严禁使用以防意外。
九、在架体上气割的人员应防止坠落,必要时应戴安全带加以保护。
架体上的作业人员不宜过多,架体上的脚手板应满铺,不能有探头板存在,上下架体应有专门的梯子。
十、对于参加出洞的人员见意上:一工作日不宜安排长时间的工作,以使施工人员休息好,从而在出洞时有良好的工作状态。
十一、出洞工作是一项危险性较大的工作,希望大家要认真对待,在工作重要精神集中、排除干扰、齐心协力,打好正式施工的第一仗。
盾构施工所面临的几大主要风险一、不良地质中盾构施工风险1、盾构处在承压水砂层中,由于正面压力设定不够高,缺少必要的砂土改良措施以及盾尾密封失效,而引起正面及盾尾涌砂涌水导致盾构突沉、隧道损坏;2、在盾构上部为硬粘土、下部为承压水砂层时,由于硬粘土过硬很难顶进,而承压水砂层则因受压不足不能疏干而发生液化流失导致盾构突沉;另因过硬粘土卡住密封舱搅拌棒使粘土与砂土不能拌合排出,致使盾构下部砂土液化由螺旋器流出,导致盾构底部脱空下沉;3、超越沼气层或其他原因形成的含气层时(如气压法施工的隧道或工作井附近),如未探明其范围和压力、未事先进行必要的释放、未采取防备毒气和燃爆的措施,开挖面喷出的气体及其携带的泥沙可能引起盾构姿态突变、隧道突沉以及毒气燃爆的灾害;4、对沿线穿越地层中的透镜体、洞穴或桩基、废旧构筑物等障碍物。
未事先查明并做预处理或备有应急措施,可能引起盾构推进突沉偏移,盾尾注浆流失,致使地面沉陷过大,盾构无法推进。
二、盾构进出洞风险盾构在工作井出洞或进洞时,需要凿除预留洞口处钢筋混凝土挡土墙,而后由盾构刀盘切削洞口加固土体进入洞圈密封装置,此过程中洞口土体及加固土体暴露时间较长,且受前期工作井施工方法及其施工扰动影响,容易因加固土体或洞圈密封装置的缺陷而发生洞口水土流失或坍方。
如遇饱和含水砂性土层或沼气以及其他原因形成的含气层(如气压法施工的隧道或工作井附近),更易发生向井内的大量涌沙涌水而导致盾构出洞磕头或盾构进洞突沉,甚至在盾构进洞突沉中拖带盾尾后一段隧道严重变形或坍垮,造成极严重的工程事故,并严重破坏周边环境。
由于盾构进出洞事故概率较高,其后果可能极为严重,因此对关系到盾构进出洞风险的每个细节必须严格仔细的采取可靠的风险控制措施。
三、盾构穿越江河水底的风险当盾构推进挤压导致前方土体隆起过多,或盾构处于饱和含水砂层中发生涌水突沉引起上方江底沉陷,产生涌水裂隙,致使大量河水由盾尾或开挖的缺陷处涌入而淹没隧道。
盾构施工风险源等级清单及控制措施名称风险源控制措施盾构进出洞1盾构安装,存在交叉作业。
搭设脚手架不规范。
出洞阶段吊运交替、吊运物件钢丝绳、索具配备不合理。
高处作业保护措施未健全。
(A)2、出洞过程准备工作协调监控不力。
(B)3、工程起始阶段各类安全通道未健全。
(C)4、行车吊运重物从施工人员上方经过。
(A)5、吊运大型物件未采取两级指挥。
(D)6、人员随意靠近不稳定的洞门土体。
(A)1、避免交叉作业,必须逐级进行安全技术教育及交底。
规范人员操作意识。
合理配备吊运重物的钢丝绳索具。
健全高处作业设施。
2、加强施工过程中动态控制。
3、健全各类通道,设置人行专用安全通道。
4、行车及指挥人员严格遵守“十不吊”。
5、对大型物件吊运必须采取两极指挥。
6、在洞门土体加强禁示,禁止人员靠近。
管片堆场1地面不平整,导致管片堆放不稳。
(A)2、管片底座支架制作不规范,导致管片无法放稳。
(A)3、运输管片车辆频繁进出,导致地面施工人员可能会被车辆伤及。
(C)4、行车吊钩保险损坏,起重钢索夹角较大,造成吊物脱钩,管片坠落。
(B)5、管片堆放的安全间距未能按规定设置。
(B)6、进场管片过多,造成堆放间距和堆放高度都违反标准。
管片堆放高度超高(超过三层堆放),导致行车司机视线受阻,易造成事故发生。
(B)7、管片堆场地面有积水,施工人员易摔、滑、跌倒。
(B)8、管片卸运时安装孔、头不合格,吊运时被拉脱。
1、管片堆放前,必须先组织人员将地面制作平整。
2、必须确保管片底座支架制作坚固且规范,使管片能正确、妥善放置。
3、输送管片车辆必须加强安全监控,做好施工人员的安全警示及提醒工作。
4、加强对行车各安全部分的检查,在行车起吊物件前,必须选用合理索具吊具,并保证夹角符合使用要求。
5、管片与管片之间必须保持纵向大于90厘米;横向大于100厘米。
6、管片进入堆场严格控制进入数量,不得对堆放造成拥挤,保持安全通道的畅通。
同时管片堆放高度不准超过三层。
国内TBM、盾构隧道工程事故案例分析在盾体支护下进行地下工程暗挖施工,不受地面交通、河道、航运、潮汐、季节、气候等条件的影响,能较经济合理地保证隧道安全施工。
盾构的推进、出土、衬砌拼装等可实行自动化、智能化和施工远程控制信息化,掘进速度较快,施工劳动强度较低。
但在施工过程中人机交错的特征十分明显,特别是在衬砌、运输、拼装、机械安装等环节工艺复杂,较易出现起重伤害、电瓶车伤人、机械伤害、高处坠落等多种事故,且在饱和含水的松软地层中施工,地表沉陷风险极大。
一、盾构进出洞阶段发生的安全事故盾构进出洞都存在相当大的危险性。
整个施工作业环境处于一个整体的动态之中,蕴藏着土体坍塌、起重伤害、高处坠落、物体打击等多种事故发生的可能。
南京地铁盾构进洞事故1、工程概况南京某区问隧道为单圆盾构施工,采用I 台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。
该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。
到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。
2、事故经过在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内同部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,对车架与管片紧邻部位进行加固,控制管片进一步变形。
仅不到一小时,到达段地表产生陷坑,随之继续沉陷。
所幸无人员伤亡,抢险小组决定采取封堵洞门方案。
隧道盾构进出洞施工风险分析
摘要:盾构进出洞施工过程是盾构法隧道施工的事故多发环节。
本文结合软土地区盾构进出洞工程经验,对隧道盾构进出洞施工进行了风险分析,提出了相应防范措施,为隧道盾构进出洞阶段的施工风险控制提供了依据。
尽量将盾构进出洞风险在最低程度,可以为地铁隧道工程建设管理、设计及施工单位提供一定的借鉴作用。
关键词:盾构进出洞;土体加固;风险控制
1.前言
隧道施工风险分析基于风险管理理论进行施工风险因素的分析及应对,引起了众多研究者关注,取得了丰硕的研究成果。
但是具体到事故多发的隧道盾构进出洞施工过程,虽有相关研究者进行研究,但风险分析理论还不完善,新的风险分析技术的应用研究仍有充分的理论意义和实践价值。
随着城市人口日益增加,城市建设不断发展,使得城市市区可供利用的地面面积越来越少,城市交通压力急剧增加,修建城市地下铁路、地下车行隧道等地下市政工程日益受到重视。
盾构进出洞时的风险控制一直是地铁工程中的重点难点,盾构进出洞往往会对周边环境产生比较大的影响,严重时易演变成重大工程事故,盾构进出洞施工已成为地铁工程的一项重大危险源。
盾构进出洞风险控制主要包括进出洞作业自身安全风险控制及对周边环境影响风险控制两方面。
前者主要是确保盾构进出洞时洞门自身稳定、渗流稳定等方面安全稳定,确保盾构进出洞时洞门不发生坍塌、流土等事故;后者对盾构进出洞时对周边环境产生的影响提出了更高的要求,确保进出洞时施工影响范围内重要建构筑物及设施的安全。
由于城市地铁工程很多都是在城市重要干线和敏感地段(包括施工影响范围内有重要建(构)筑物、重要管线或管道和密集住宅小区等),盾构进出洞作业一旦影响到周边设施的安全,重要设施(如大型雨污水管)的损坏反过来也会危机工程本身安全,可能会引起重大事故发生,盾构进出洞对周边环境影响所形成的风险已经成为盾构进出洞主要风险。
2.主要洞门土体加固技术
盾构进出洞时必须采取合理的土体稳定措施,使洞门外土体能稳定自立,为盾构进出洞提供条件。
当前常用的土体稳定技术有SMW工法、高压旋喷桩、深层搅拌桩、降水法、分层注浆法、冻结法等。
主要采取深层搅拌桩法洞门加固技术。
洞门加固技术主要对洞门外一定范围内的土体采用深层搅拌桩进行土体加固,工作井边缘与搅拌桩之间的间隙采用高压旋喷桩进行封闭。
土体加固范围向四周一般不小于一倍盾构半径,向前加固范围一般不小于盾构自身长度。
为使土体密实,防止渗水,被加固加固需有一定的强度,但为方便盾构进出洞作业,其强度又不宜过高,一般加固土体的强度达到0.8Mpa比较合适。
3.影响盾构进出洞安全的主要因素
影响盾构进出洞安全的因素是多方面的,从洞门土体加固方案,到加固方案施工,再到盾构进出洞施工,其中任何一个环节出现问题,都将可能造成盾构进出洞时出现安全事故,影响盾构进出洞安全的因素主要有以下几方面:
(1)洞门土体加固方案的合理性
洞门前土体加固区域是连接车站工程和区间工程的过度区域,其加固方案的合理性是决定盾构进出洞安全的前提。
洞门土体加固方案需统筹考虑洞门埋置深度、水文地质条件、周边环境情况等,明确加固方案的目标和目的,进行合理的方案设计。
对于复杂水文地质和工况条件下进出洞作业,在满足洞门土体自立稳定的同时,还应考虑到渗透稳定性及其他一些不利的影响因素。
对于工程周边有重要建构筑物需要保护时,需明确环境保护等级,制定明确的变形控制要求和目标,按相关控制要求制定合理的土体加固方案。
(2)洞门土体加固施工质量控制
制定合理的洞门土体加固方案后,如何按设计要求做好洞门土体加固十分重要,如果洞门加固处理不到位,可能会造成洞门土体失稳、渗透破坏等重大事故。
洞门土体加固在满足设计要求范围及强度的同时,土体加固的均匀性十分重要,土体加固不均匀,硬度过大的加固体将成为进出洞时的掘进障碍物,会造成盾构进出洞时姿态发生偏移,使土体扰动过大,对周边环境产生十分不利影响。
(3)进出洞时盾构掘进参数控制
洞门土体加固区是车站与区间的过渡区域,土体加固区与天然土区域的地质条件相差很大。
为确保盾构顺利进出洞,并且保证进出洞时对周边环境控制在可承受范围内,在盾构进出洞前必须请检测单位对加固土体的强度和均匀性进行检测,为盾构进出洞门加固土体区域时设定合理的掘进参数提供依据。
在盾构掘进过程也必须清楚自身所处位置,经过不同地质区域时应及时调整掘进参数,防止盾构进出现严重超挖欠挖、轴线偏移、姿态突变等情况,对自身安全及周边环境造成不利影响。
(4)进出洞时洞门防水装置的安装、洞门外部注浆孔的布设洞门防水装置的按装在进出洞过程中也起到重要的作用,在加固施工过程中不可能做到完美,因此进出洞过程中的防水装置及洞门外部的注浆孔起到了重要的作用。
4.盾构进出洞风险控制对策与措施
盾构进出洞风险控制是一项系统的工程,应该从前期周边环境排摸、方案制定,到后期监测、检测、施工阶段都做好充分的准备工作。
(1)盾构进出洞作业前的周边环境排摸
盾构进出洞作业前,施工单位应委托专业单位对施工影响范围内的雨污水管进行探测。
管径在 1.2m及以上的雨污水管必须采取潜水员进入雨污水管内直接探测的方法;管径在0.45m~1.2m 的雨污水管应采取CCTV等探测方法,根据探测情况形成书面报告,书面报告应包括平面关系图、纵断面关系图、雨污水管病害探测情况(渗水、漏水、裂缝、错位等)、修理建议等。
根据探测情况报告,并结合工程所处的水文地质及周边工况等条件,编制合理的盾构进出洞专项方案,提出进出洞对周边环境保护指标参数。
(2)盾构进出洞施工作业中的监测和检测
盾构进出洞作业前,检测单位在对加固土体进行强度检测的同时,应采取垂直和倾斜取芯的检验方法(其中斜孔不少于2孔)对加固土体的均匀性进行检测,并出具检测报告。
在城市重要干线和敏地段(包括施工影响范围内有重要建(构)筑物、重要管线或管道和密集住宅小区等)盾构进出洞作业,必须设置深层监测点,加强对路面沉降的监测;在施工影响范围内有大口径管线的,应对管线布设直接监测点。
在洞门破除过程前,至少需打6个水平探孔对加固效果进行复核,必要时在预埋的外部注浆孔注射双叶浆对土体加固的缺陷进行弥补。
(3)盾构进出洞作业的应急预案制度
盾构进出洞专项方案应包括应急预案,应急预案应明确工程一旦出险后的施救技术路线,确保相关抢险设备和专业抢险队伍能及时赶到现场救援。
盾构进出洞作业前,应由建设单位组织召开进出洞作业涉及的各类地下管线单位会议,工程参建单位参加,确定工程出险后地下管线单位的抢险配合工作。
(4)盾构进出洞施工的降低施工风险技术措施:
1)进出洞区域加固应根据所处的水文地质条件,选择可靠的加固方法,其中对在砂性土层中进出洞,土体加固(非冰冻法)长度应不小于盾构机长度,如果条件不能满足,应采取相应措施。
2)盾构在复杂水文地质条件下进出洞作业时,应事先在加固土体外侧打设降水井、在洞门周边结构上预埋至少8个注浆孔,上下4个作为备用应急措施,但在降水过程中应注意环境保护,注浆孔注意堵塞。
3)盾构在复杂水文地质条件下进出洞作业时,洞圈宜采用箱体密封装置。
4)在规划设计阶段和管线搬迁规划时,重要的管线距洞口水平距离不应少于10米,如不满足要求,应采取相应的技术措施。
5.结束语
近年来,中国地铁事业迎来了一轮新的建设高潮,一批新的城市开启了地铁工程,这些新兴地铁城市在工程设计经验,建设管理经验,施工经验,地质特性熟悉程度等方面都相对有所欠缺,地铁隧道工程建设潜在安全风险比较高。
虽然盾构进出洞工程只占整个地铁隧道工程工程投资很小的一部分,但盾构进出洞作业作为地铁工程中的重大危险源,是地铁建设过程中的重要节点,需加强重视。
本文通过对进出洞主要土体加固方案及加固目的分析、影响盾构进出洞安全主要风险因素分析并提出相关减轻和降低进出洞风险的对策和措施,可以为地铁隧道工程建设、设计及施工单位提供一定的借鉴作用。