典型局部放电模型谱图
- 格式:doc
- 大小:172.25 KB
- 文档页数:5
电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离1-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-6所示。
电缆高频局部放电典型图谱
一、变压器内部放电
图1变压器内部放电典型图谱
图谱说明:正负半周的放电几乎同时产生,图谱形状也十分相似。
放电起始时局放脉冲总是先出现在电压幅值绝对值上升部位的相位上(约90°及270°处),电压升高后放电脉冲的相位范围逐渐扩展,甚至超过0°和180°,但90°和270°之后的一段相位内没有放电产生。
布。
形状呈锥形不对称分布,正半周的放电幅值比负半周要小。
六、噪音信号图谱
图6持续性噪音典型图谱
图7周期性噪音典型图谱
图谱说明:噪音信号分为持续性噪音和周期性噪音,在0°~360°整个的相位内都存在。
持续性噪音在各个相位上放电的数量基本相同,周期性噪音为周期性重复出现,在数量和大小上都很相似。
噪声的大小没有限制,其幅值的大小,与本身的频率有关。
局部放电标准图谱附录一高频局部放电检测标准高频局部放电测试结果图谱特征放电幅值说明缺陷具有典型局部放电的检测图谱且放电幅值较大放电相位图谱具有明显180度特征,且幅值正负分明大于500mV,并参考放电频率。
缺陷应密切监视,观察其发展情况,必要时停电检修。
通常频率越低,缺陷越严重。
异常具有局部放电特征且放电幅值较小放电相位图谱180度分布特征不明显,幅值正负模糊小于500mV大于100mV,并参考放电频率。
异常情况缩短检测周期。
正常无典型放电图谱没有放电特征没有放电波形按正常周期进行附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形沿面放电相位图谱分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC1)曾经发生事故的电缆线路应密切关注,并适当缩短监测周期。
2)与标准图谱(附录B 高频局部放电检测典型图谱)比较,确定局部放电及类型。
3)异常及缺陷应根据处理标准进行处理。
附录D(资料性附录)局部放电高频电流检测法的典型特征图谱D.1主绝缘电树缺陷附图D.1主绝缘电树缺陷D.2主绝缘气泡缺陷附图D.2主绝缘气泡缺陷D.3主绝缘刀痕缺陷附图D.3主绝缘刀痕缺陷D.4悬浮放电缺陷附图D.4悬浮放电缺陷D.5主绝缘半导电电尖刺缺陷附图D.5主绝缘半导电电尖刺缺陷附录E(资料性附录)典型局部放电缺陷的案例分析E.1电缆本体外半导电层放电缺陷电缆本体外半导电层放电缺陷如附图E.1示。
(a)PRPD谱图(b)铜编织网放电烧蚀附图E.1外半导电层放电缺陷的谱图及解体情况E.2电缆终端尾管位置电缆外半导电层爬电缺陷(a)PRPD谱图(b)解体发现的爬电缺陷附图E.2电缆终端尾管位置电缆外半导电层爬电缺陷E.3电缆本体气隙放电缺陷(a)PRPD谱图(b)解体发现的缺陷附图E.3电缆本体气隙放电缺陷E.4电缆终端漏油引发的局部放电缺陷附图E.4电缆终端漏油引发的局部放电缺陷E.5电缆终端应力锥内部裂痕引发的局部放电缺陷附图E.5电缆终端应力锥内部裂痕引发的局部放电缺陷附录F(资料性附录)局部放电高频电流检测的定位方法F.1光纤同步测量法光纤同步测量法是在一段电缆线路上的每个接头处架设HFCT传感器,并同时采集各个传感器上的局放信号。
由于每个传感器信号采集点具有时间同步刻度,通过比较各个接头上局放信号判断出局放源的位置。
其同步性通过在各个接头之间架设光缆实现。
这种方法能够对长距离电缆进行局放定位,且较为精确,但要求每个检测点都能够实现信号同步采集,需要特定的同步方法。
通过测量局部放电电磁波信号到达两个测量点的时间差来计算局部放电位置,公式为:l1=[L-(T N1-T M1)v]/2(F-1)l2=[L-(T M1-T N1)v]/2(F-2)式中:L——相邻两个测试点间的距离;l1、l2——局部放电点分别与两个测试点的距离;T M1、T N1——局部放电信号到达两个测试点的时间;v——局部放电信号在电缆的传播速度。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱1毛刺放电1. 1 基本特征接地体和带电体部分上的突起(毛刺放电)的特征表现为:•局部场强增加•由于电晕球的保护作用,工频耐压水平不受影响•雷电冲击电压水平会大幅度下降•毛刺如果大于1-2 mm 就认为是有害的导体上的毛刺与壳体上的毛刺放电图谱是一样的,但导体上的毛刺位于气室中心,其产生的压力波会呈扇形在整个气室传递,在壳体外能在较广的范围内接收到信号,而壳体上的毛刺信号较集中,在放电处信号最强。
也可以根据SF6气体对高频信号的衰减特性,调整带通滤波器的上限频率,如果信号明显降低,表明是壳体上的毛刺放电,如果信号变化不大,表明是导体上的毛刺放电。
一般导体上的毛刺放电更具危险性。
1.2 典型图谱毛刺放电的典型图谱如下:毛刺放电故障连续模式下有效值和峰值都会增大,信号稳定,而50HZ相关性明显,100HZ相关性较弱。
在相位模式下,一个周期内会有一簇较集中的信号聚集点。
1.3经验判据根据现有经验,毛刺一般在壳体上,但导体上的毛刺更危险。
如果毛刺放电发生在母线壳体上,信号的峰值Vpeak < 2mV, 认为不是很危险,可继续运行。
如果毛刺放电发生在导体上,信号的峰值Vpeak > 3 mV, 建议停电处理或密切监测。
对于不同的电压等级,如110KV/220KV, 可参照上述标准执行。
对于330KV/500KV/750KV,由于母线筒直径大,信号有衰减,并且设备重要性提高,应更严格要求,建议标准提高一些。
局部放电缺陷检测典型案例和图谱库电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-61所示。
局部放电波形分析及图谱识别一、局部放电的波形分析图3-5中检测阻抗Z m 可由电阻、电感、阻容并联元件、电感电容并联元件等构成。
而对于局部放电脉冲而言,可用图3-9的回路来计算检测阻抗Z m 上的波形。
C kC x△uZm图3-9 计算Z m 上电压波形的等值回路1、Z m 为R 时,Z m 上的波形实际上是方波加于阻容串联回路时电阻上的波形,电容为C x 与C k 的串联。
R 上的波形是一个陡直上升、指数下降的曲线(图3-10(a )曲线1),其方程是//x k x k R C C t R C C t T R Aq u u e e C ⎛⎫- ⎪+-⎝⎭=∆= (3-19) 由此可见,u R 的幅值为q/C x ,CA 一定时,u R 的幅值与视在放电量q 成正比。
一般气隙放电,脉冲的前沿仅约0.01微秒左右。
当时间常数T R 远大于此值时,可视脉冲为方波而得到(3-19)式。
如果T R 和脉冲前沿时间可以比拟时,则u R 的表达式便不能用(3-19)式了。
假定脉冲波的前沿是指数上升的,则u R 便是一个双指数波。
此外,如果是油中电晕之类的脉冲,其前沿时间可达数微秒甚至更长,即使T R 为若干微秒,二者也是可比拟的,此时u R 也是双指数波,图3-10(a )曲线2为此波形的示意图。
u m0t 12u m 0t12(a)(b)图3-10 检测阻抗上的波形(a) Z m 为R 时,Z m 上的波形 (b) Z m 为L m 时的输出波形2、Z m 为m m R C 时的输出波形 输出波形u cr 仍为指数衰减波,但幅值降低,时间常数加大了。
其方程为[()]()CR t T K CR M K A K A A K C qu e C C C C C C C -=+++ []()A K CR m m A K C C T C R C C =++ (3-20) 3、Z m 为L m 时的输出波形因为L m 中总有一定的电阻,整个回路也有一定的损耗,所以L m 的输出波形是一个衰减振荡波,其包络线是指衰减曲线,近似的方程为cos t t L x x q q u e t e C C γγω--== (3-21) γ为回路损耗造成的衰减时间常数的倒数。
典型局部放电模型谱图————————————————————————————————作者:————————————————————————————————日期:典型局部放电模型试谱图1. 高压尖刺模型 电压等级PRPD谱图说明9.1K V270°先出现放电,属于尖刺放电的第一阶段11.2KV90°、270°均出现放电现象,属于尖刺放电的第二阶段13.0KV90°、270°放电剧烈,90°出现门型,属于放电的第三阶段2. 低压尖刺模型电压等级P RP D谱图说明13.5KV90°先出现放电,属于尖刺放电的第一阶段16.8KV90°、270°均出现放电现象,属于尖刺放电的第二阶段24.1KV90°放电剧烈,出现门型,属于放电的第三阶段3.悬浮模型电压等级PRPD谱图说明25.8KV0~90°、180~270°之间均出现悬浮空中的放电现象。
悬浮仅加一个电压等级4. 自由金属颗粒模型颗粒类型 电压等级PRPD 谱图说明两个颗粒8.8KV0~360°均有放电,总体趋势呈双山峰状12.3KV一个颗粒9.7KV0~360°均有放电,总体趋势呈双山峰状1 4.5KV5.沿面模型电压等级PRPD谱图说明16.6KV180~270°之间先出现放电,0~90°仅出现少量放电,属于沿面放电的第一阶段21.5KV0~90°、180~270°之间均出现放电现象,0~90°放电较第一阶段明显增加,属于沿面放电的第二阶段24.1KV0~90°、180~270°之间放电剧烈,属于沿面放电的第三阶段6.气隙模型电压等级PRPD谱图说明10.7KV相位发生在电压上升沿(1、3象限),第一象限有翼状图谱形状出现。
12.2KV相位发生在电压上升沿(1、3象限),第一象限翼状图谱形状变窄。
局部放电波形分析及图谱识别一、的波形分析检测阻抗Zm上的电压即检测信号是相当小的,必须经过放大才能使仪器上有明显的指示.经放大器放大后的脉冲信号的峰值可由示波器测量,除此之外,示波器上还可以看出放电发生在工频的什么相位,测定脉冲波形和放电次数,观察整个局部放电的特征.以确定放电的大致部位和性质.示波器可用水平扫描和椭圆扫描.水平扫描时全屏偏转相当于一个周期,并与试验电压同步,以确定脉冲的相位.椭圆扫描也是每扫一周相当于试验电压一个周期.图3-11为两种扫描时屏上波形的示意图.图3-11示波器上的显示在局部放电试验时,除绝缘内部可能产生局部放电外,引线的联接,电接触以及日光灯,高压电极的电晕等,也可能会影响局部放电的波形.为此,要区别绝缘内部的局部放电与其他干扰的波形,图3-12就是几种典型的波形.a高压极产生的电晕b介质中的空穴放电c靠近高压电极的空穴放电d电接触噪音图3-12典型放电的示波图二、局部放电的图谱识别图3-13为不同类型的局部放电示波图,示波图是在接近起始电压时得到的.其中图a、b、c、d为局部放电的基本图谱,e、f、g为干扰波的基本图谱.图3-13接近起始电压时,不同类型局部放电的示波图a中,绝缘结构中仅有一个与电场方向垂直的气隙,放电脉冲叠加于正与负峰之间的位置,对称的两边脉冲幅值及频率基本相等.但有时上下幅值的不对称度3:1仍属正常.放电量与试验电压的关系是起始放电后,放电量增至某一水平时,随试验电压上升放电量保持不变.熄灭电压基本相等或略低于起始电压.b中,绝缘结构内含有各种不同尺寸的气隙,多属浇注绝缘结构.放电脉冲叠加于正及负峰之前的位置,对称的两边脉冲幅值及频率基本相等,但有时上下幅值的不对称度3:1仍属正常.放电刚开始时,放电脉冲尚能分辨,随后电压上升,某些放电脉冲向试验电压的零位方向移动,同时会出现幅值较大的脉冲,脉冲分辨率逐渐下降,直至不能分辨.起始放电后,放电量随电压上升而稳定增长,熄灭电压基本相等或低于起始电压.c中,绝缘结构中仅含有一个气隙位于电极的表面与介质内部气隙的放电响应不同.放电脉冲叠加于电压的正及负峰值之前,两边的幅值不尽对称,幅值大的频率低,幅值小的频率高.两幅值之比通常大于3:1,有时达10:1.总的放电响应能分辨出.放电一旦起始,放电量基本不变,与电压上升无关.熄灭电压等于或略低于起始电压.d中,1一簇不同尺寸的气隙位于电极的表面,但属封闭型;2电极与绝缘介质的表面放电气隙不是封闭的.放电脉冲叠加于电压的止及负峰值之前两边幅值比通常为3:1,有时达10:1.随电压上升,部份脉冲向零位方向移动.放电起始后,脉冲分辨率尚可;继续升压,分辨率下降直至不能分辨.放电起始后放电皇随电压的上升逐渐增大,熄灭电压等于或略低于起始电压.如电压持续时间在10min以后,放电响应会有些变化.e干扰源为针尖对平板或大地的液体介质.较低电压下产生电晕放电,放电脉冲总叠加于电压的峰值位置.如位于负峰值处.放电源处于高电位;如位于正峰处放电源处于低电位.这可帮助判断电压的零位,一对脉冲对称的出现在电压正或负峰处、每一簇的放电脉冲时间间隔均各自相等.但两簇的幅值及时间间隔不等,幅值较小的一簇幅值相等、较密.一簇较大的脉冲起始电压较低,放电量随电压上升增加;一簇较小的脉冲起始电压较高,放电量与电压无关,保持不变;电压上升,脉冲频率密度增加,但尚能分辨;电压再升高,逐渐变得不可分辨. f针尖对平板或大地的气体介质.较低电压下产生电晕放电,放电脉冲总叠加于电压的峰值位置.如位于负峰处,放电源处于高电位;如位于正峰处,放电源处于低电位.这可帮助判断电压的零位.起始放电后电压上升,放电量保持不变,惟脉冲密度向两边扩散、放电频率增加,但尚能分辨;电压再升高,放电脉冲频率增至逐渐不可分辨.g悬浮电位放电.在电场中两悬浮金属物体间,或金属物与大地间产生的放电.波形有两种情况:1正负两边脉冲等幅、等间隔及频率相同;2两边脉冲成对出现,对与对间隔相同,有时会在基线往复移动.起始放电后有3种类型:1放电量保持不变,与电压无关,熄灭电压与起始电压完全相等.2电压继续上升,在某一电压下,放电突然消失.电压继续上升后再下降,会在前一消失电压下再次出现放电.3随电压上升,放电量逐渐减小,放电脉冲随之增加。