【 2014唐山市一模】河北省唐山市2014届高三第一次模拟考试 数学理试题 扫描版含答案
- 格式:doc
- 大小:11.67 MB
- 文档页数:7
唐山市2013—2014学年度高三年级第三次模拟考试理科数学参考答案1(Ⅱ)建立如图所示的坐标系C -xyz . 设AC =BC =2,因为A 1A =A 1C ,则A (2,0,0),B (0,2,0),A 1(1,0,1),C (0,0,0).CB →=(0,2,0),CA 1→=(1,0,1),A 1B 1→=AB →=(-2,2,0).设n 1=(a ,b ,c )为面BA 1C 的一个法向量,则n 1·CB →=n 1·CA 1→=0, 则⎩⎨⎧2b =0,a +c =0,取n 1=(1,0,-1).同理,面A 1CB 1的一个法向量为n 2=(1,1,-1). …9分所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=63,故二面角B -A 1C -B 1的余弦值为63. …12分(19)解:(Ⅰ)记事件:“一顾客购买一件饮品获得i 等奖”为A i ,i =1,2,则P (A 1)=663=136,P (A 2)=4A 3363= 4 36,则一顾客一次购买一件饮品获得奖励的概率为P (A 1+A 2)=P (A 1)+P (A 2)=536. …4分故一顾客一次购买两件饮品,至少有一件获得奖励的概率p =1-(1-536)2=3351296. …6分(Ⅱ)设一顾客每购买一件饮品所得奖金额为X 元,则X 的可能取值为x , x2,0.由(Ⅰ)得P (X =x )=136,P (X = x 2)= 4 36,E (x )=x 36+2x 36=x12. …9分该商场每天销售这种饮品所得平均利润Y =y [(36-20)-E (x )]=(x 4+24)(16-x 12)=-148(x -48)2+432.当x =48时,Y 最大.故x 设定为48(元)为最佳. …12分 (20)解:(Ⅰ)抛物线C 的准线x =- p 2,依题意M (4- p2,4),则42=2p (4- p2),解得p =4.故抛物线C 的方程为y 2=8x ,点M 的坐标为(2,4), …3分(Ⅱ)设A (y 218,y 1),B (y 228,y 2).直线MA 的斜率k 1=y 1-4y 218-2=8y 1+4,同理直线MB 的斜率k 2=8y 2+4.由题设有8y 1+4+8y 2+4=0,整理得y 1+y 2=-8.直线AB 的斜率k =y 1-y 2y 218-y 228=8y 1+y 2=-1. …6分设直线AB 的方程为y =-x +b .由点M 在直线AB 的上方得4>-2+b ,则b <6. 由⎩⎨⎧y 2=8x ,y =-x +b得y 2+8y -8b =0. 由Δ=64+32b >0,得b >-2.于是-2<b <6. …9分 |y 1-y 2|=(y 1+y 2)2-4y 1y 2=42b +4, 于是|AB |=2|y 1-y 2|=8b +2.点M 到直线AB 的距离d =6-b2,则△MAB 的面积S = 12|AB |·d =22(b +2)(6-b )2.设f (b )=(b +2)(6-b )2,则f '(b )=(6-b )(2-3b ).当b ∈(-2,2 3)时,f '(x )>0;当b ∈(23,6)时,f '(x )<0. 当b = 2 3时,f (b )最大,从而S 取得最大值12839. …12分(21)解:(Ⅰ)h (x )=f (x )-g (x )=e x -1-x ,h '(x )=e x -1. 当x ∈(-∞,0)时,h '(x )<0,h (x )单调递减; 当x ∈(0,+∞)时,h '(x )>0,h (x )单调递增. 当x =0时,h (x )取最小值h (0)=0. …4分(Ⅱ)[f ( x k )g (- x k )]k >1-x 2k 即[e x (1- x k )]k >1-x2k. ①由(Ⅰ)知,f ( x k )-g ( x k )≥0,即e x k ≥1+ xk ,又1- x k >0,则e x k (1- x k )>(1+ x k )(1- x k )=1-x 2k2>0.所以[e x k (1- x k )]k >(1-x2k2)k . ② …7分设φ(t )=(1-t )k -1+kt ,t ∈[0,1].由k >1知,当t ∈(0,1)时,φ'(t )=-k (1-t )k -1+k =k [1-(1-t )k ]>0, φ(t )在[0,1]单调递增,当t ∈(0,1)时,φ(t )>φ(0)=0.因为x 2k 2∈(0,1),所以φ(x 2k 2)=(1-x 2k 2)k -1+k ·x 2k 2>0,因此不等式②成立,从而不等式①成立. …12分 (22)解:(Ⅰ)连结OA ,则OA =OD ,所以∠OAD =∠ODA ,又∠ODA =∠ADE ,所以∠ADE =∠OAD ,所以OA ∥即CE . 因为AE ⊥CE ,所以OA ⊥AE . 所以AE 是⊙O 的切线. …5分(Ⅱ)由(Ⅰ)可得△ADE ∽△BDA ,所以AE AD =AB BD ,即2AD =4BD,则BD =2AD ,所以∠ABD =30︒,从而∠DAE =30︒,所以DE =AE tan 30︒=233.由切割线定理,得AE 2=ED ·EC ,所以4=233 (233+CD ),所以CD =433. …10分(23)解:(Ⅰ)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即cos 2θ4+sin 2θ=1ρ2.在极坐标系中,设M (ρ,θ),P (ρ1,α),则题设可知,ρ1= ρ 2,α= θ2. ①因为点P 在曲线C 1上,所以cos 2α4+sin 2α=1ρ21. ②由①②得曲线C 2的极坐标方程为1ρ2=cos 2 θ 216+sin 2θ24. …6分(Ⅱ)由(Ⅰ)得1|OM |2=116(1+3sin 2 θ2). 因为1|OM |2的取值范围是[116, 14],所以|OM |的取值范围是[2,4]. …10分 (24)解:(Ⅰ)记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-1,-2x -1,-1<x <1,-3,x ≥1.由-2<-2x -1<0解得- 1 2<x < 1 2,则M =(- 1 2, 12). …3分所以| 1 3a + 1 6b |≤ 1 3|a |+ 1 6|b |< 1 3× 1 2+ 1 6× 1 2= 14. …6分(Ⅱ)由(Ⅰ)得a 2< 1 4,b 2< 14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, …9分所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |. …10分。
唐山市2013—2014学年度高三年级第一学期期末考试文科数学参考答案一、选择题A卷:ADCBD CACBC BBB卷:BBCBA CACBD CD二、填空题(13)8 (14)(2,12] (15)10 (16)-12三、解答题(17)解:(Ⅰ)因为A+B+C=π,所以sin B+C2=sinπ-A2=cosA2,所以由已知得4cos2A2-cos2A=72,变形得2(1+cos A)-(2co s2A-1)=72,整理得(2cos A-1)2=0,解得cos A=1 2.因为A是三角形的内角,所以A=π3.…6分(Ⅱ)sin B sin C=sin B sin(2π3-B)=32sin B cos B+12sin2B=34sin2B+14(1-cos2B)=12sin(2B-π6)+14.…9分当B=π3时,sin B sin C取最大值34.…12分(18)解:(Ⅰ)取AB中点为O,连结OD,OP.因为PA=PB,所以AB⊥OP.又AB⊥PD,OP∩PD=P,所以AB⊥平面POD,因为OD⊂平面POD,所以AB⊥OD.…3分由已知,BC⊥PB,又OD∥BC,所以OD⊥PB,因为AB∩PB=B,所以OD⊥平面PAB.又OD⊂平面ABC,所以平面PAB⊥平面ABC.…6分(Ⅱ)由(Ⅰ)知,OP⊥平面ABC.设PA=a,因为D为AC的中点,所以V P-BCD=12V P-ABC=12×13×12a2×32a=324a3,…10分由324a3=3解得a=23,即PA=23.…12分(19)解:记这家单位甲类优秀的指标项为a1,a2,甲类非优秀的指标项为b1;乙类优秀的指标项为a3,乙类非优秀的指标项为b2.依题意,被抽取的指标项的可能结果有:a1a2a3,a1a2b2,a1b1a3,a1b1b2,a2b1a3,a2b1b2共6种.(Ⅰ)记这家公司“获得10万元奖励”为事件A,“获得6万元奖励”为事件B,则P(A)=16,P(B)=16.…7分记这家公司“获奖”为事件C,则P(C)=P(A)+P(B)=1 3.(Ⅱ)这家单位这次整治性核查中所获金额的均值为-x =10×1+6×1+0×2-8×26=0(万元). …12分 (20)解:(Ⅰ)将y =kx +2代入x 2=2py ,得x 2-2pkx -4p =0. …2分其中Δ=4p 2k 2+16p >0设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2pk ,x 1x 2=-4p . …4分OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 212p ·x 222p =-4p +4.由已知,-4p +4=2,p = 1 2.所以抛物线E 的方程x 2=y . …6分 (Ⅱ)由(Ⅰ)知,x 1+x 2=k ,x 1x 2=-2.k 1=y 1+2x 1=x 21+2x 1=x 21-x 1x 2x 1=x 1-x 2,同理k 2=x 2-x 1, …10分 所以k 21+k 22-2k 2=2(x 1-x 2)2-2(x 1+x 2)2=-8x 1x 2=16.…12分 (21)解:(Ⅰ)设g (x )=x e x +1,则g '(x )=(x +1)e x .当x ∈(-∞,-1)时,g '(x )<0,g (x )单调递减;当x ∈(-1,+∞)时,g '(x )>0,g (x )单调递增.所以g (x )≥g (-1)=1-e -1>0.又e x >0,故f (x )>0. …3分f '(x )=e x (1-e x )(x e x +1)2. 当x ∈(-∞,0)时,f '(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f '(x )<0,f (x )单调递减.所以f (x )≤f (0)=1.综上,有0<f (x )≤1. …6分(Ⅱ)f (x )>1ax 2+1等价于(ax 2-x +1)e x -1>0. ① …7分 设h (x )=(ax 2-x +1)e x -1,则h '(x )=x (ax +2a -1)e x .若a ≥ 1 2,则当x ∈(0,+∞),h '(x )>0,h (x )单调递增,h (x )>h (0)=0.…10分若0<a < 1 2,则当x ∈(0,1-2a a ),h '(x )<0,h (x )单调递减,h (x )<h (0)=0.综上,a 的取值范围是[ 1 2,+∞). …12分(22)证明:(Ⅰ)连结BD .因为AD ⊥AB ,所以BD 是⊙O 的直径.因为AE =AF ,所以∠FBA =∠EBA .又因为AB =AC ,所以∠FBA =∠C . …4分 又因为∠C =∠D ,∠D +∠ABD =90︒,所以∠FBA +∠ABD =90︒,即∠FBD =90︒,所以BF 是⊙O 的切线. …7分(Ⅱ)由切割线定理,得BF 2=AF ·DF .因为AF =AE ,BE =BF ,所以BE 2=AE ·DF . …10分(23)解:(Ⅰ)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为 C :ρ=2,l :ρ(cos θ+sin θ)=2. …4分 (Ⅱ)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2得ρρ1=ρ22.…6分 又ρ2=2,ρ1=2cos θ+sin θ, 所以2ρcos θ+sin θ=4, 故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0). …10分(24)解:(Ⅰ)因为x +y +z ≥33xyz >0, 1 x + 1 y + 1 z ≥33xyz>0, 所以(x +y +z )( 1 x + 1 y + 1 z )≥9,即 1 x + 1 y + 1 z ≥3,当且仅当x =y =z =1时, 1 x + 1 y + 1 z 取最小值3.…5分 (Ⅱ)x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3. 又x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy +yz +zx )<0,所以3≤x 2+y 2+z 2<9. …10分。
河北省唐山市2014届高三第一次模拟考试理科综合能力试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至X 页,第Ⅱ卷X 至XX 页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷、答题卡一并交回。
第Ⅰ卷一、选择题(本题包括13小题,每小题只有一个选项符合题意)1.下列有关细胞结构的说法,不正确的是( )A .细胞膜中脂质的形成与内质网和高尔基体的加工有关B .肺炎双球菌无线粒体,但能进行有氧呼吸C .细胞器在细胞质中的分布与细胞的功能相适应D .抗体分泌过程中囊泡膜经膜融合可成为细胞膜的一部分2.下列关于“葡萄糖丙酮酸CO 2”的过程,叙述错误的是A .①过程可在植物细胞中进行,也可在动物细胞中进行B .②过程可产生ATP ,也可不产生ATPC .②过程可产生[H],也可消耗[H]D .①过程可在线粒体中进行,也可在细胞质基质中进行3.左图为水稻根负向光性与光波长的关系图,右图为莴苣种子萌发率与光波长的关系图,下列说法错误的是( )A .光波长这种物理信息对于植物生命活动正常进行和繁衍起着重要的作用B .波长600~720nm 对诱导根负向光性生长无效;波长大于800nm 的光照条件下,莴苣种子不萌发C .进行这两项实验研究时,均需用相同光强而不同波长的光照射相同时间,这是为了控制无关变量D .光波长这种物理信息对同一种植物种子的萌发作用有两重性:既有促进作用,又有抑② ①制作用4.下列关于B淋巴细胞与T淋巴细胞的防御特性的比较,错误的是A.两种淋巴细胞表面都有能识别抗原的专一性受体B.两种淋巴细胞的抗原专一性受体都能直接与任一病原体上的抗原结合C.B细胞活化后会分化为浆细胞产生抗体,抗体和抗原结合后可使病原体失去致病力D.病毒感染时,T细胞会分化为效应T细胞而杀死被病毒感染的细胞5.右图是蛋白质合成时tRNA分子上的反密码子与mRNA上的密码子配对情形,以下有关叙述错误的是A.tRNA上结合氨基酸分子的部位为甲端B.图中戊处上下链中间的化学键表示氢键C.与此tRNA反密码子配对之密码子为UCGD.蛋白质的合成是在细胞内的核糖体上进行的,核糖体沿着mRNA由丙到丁移动6.在下面以洋葱为材料完成的实验中,正确的是A.经吡罗红甲基绿染色的洋葱鳞片叶内表皮细胞,可以观察到红色的细胞核B.浸在0.3 g/mL的蔗糖溶液中的洋葱鳞片叶外表皮细胞,可以观察到液泡紫色变浅C.观察洋葱根尖细胞有丝分裂时,可用洋葱鳞片叶内表皮细胞代替根尖细胞D.在低温诱导洋葱根尖分生组织细胞染色体加倍的实验中,卡诺氏液起固定作用7.下列说法正确的是A.汽油、花生油都是油脂B.碘元素遇淀粉溶液变蓝色CsC.质子数为86、中子数为51的铯原子:13786D. CO2的电子式:8.有关如图所示化合物的说法不正确的是A.该有机物的分子式为C15H18O4B.1 mo1该化合物最多可以与2 mo1NaOH反应C.既可以催化加氢,又可以使酸性KMnO4溶液褪色D.既可以与FeC13溶液发生显色反应,又可以与NaHCO3溶液反应放出CO2气体9.下列离子方程式书写正确的是:A.碳酸氢镁溶液中加入过量的NaOH溶液:Mg2++2HCO3-十4OH一=Mg(OH)2↓2H2O+2CO32—B.NaHSO4溶液与Ba(OH)2溶液混合后显酸性:Ba2++OH-+H++SO42-=BaSO4↓+H2OC.少量C12通入水中:Cl2 +H2O 2H++C1O-十C1-D.酸性高锰酸钾可使草酸溶液褪色:2MnO4-+5C2O42-+16H+= 2Mn2++ l0CO2↑+8H2O 10.下列有关实验装置进行的相应实验,能达到实验目的的是A.用图l装置完成实验室制取乙酸乙酯B.用图2所示装置可制取大量的CO2气体C.用图3所示装置可分离溴的四氯化碳溶液和水D.用图4装置制备Fe(OH)2并能较长时间观察其颜色11.铅蓄电池是典型的可充电电池,电池总反应式为:Pb+PbO2+4H++2SO42一2PbSO4+2H2O。
河北省 2014 届高三理科数学一轮复习考试一试题优选(1)分类汇编 10:数列一、选择题1.(河北省唐山一中2014届高三第二次调研考试数学(理)试题)数列 { a n } 的前n 项和为S n n2n1, b n(1) n a n (n N * ) ,则数列 {b n } 的前50项的和为()A. 49B.50C. 99D. 100【答案】 A2.(河北省衡水中学2014届高三上学期二调考试数学(理)试题)设 S n是等差数列{ a n}的前n项和, S53(a2a8 ) ,则a5的值为()a31B.13D5A.3C66. 5.【答案】 D3.(河北省唐山市 2014届高三摸底考试数学(理)试题)设等差数列 {a n} 的前 n 项和为 S n, 且 S5=13,S 15=63,20()则 S =A. 100B.90C. 120D. 110【答案】 B4 .(河北省衡水中学 2014 届高三上学期三调考试数学(理)试题)设S n是公差不为0 的等差数列{ a n}的前 n 项和 , 且S1, S2, S4成等比数列 , 则a2的值为()a1A. 1 B . 2C. 3D. 4【答案】 C5.(河北省邯郸市 2014届高三上学期摸底考试数学(理)试题)在等比数列 a n中, a5a113, a3a134,则a12()2A. 3 B .31D.3或1 C.3 或3 3【答案】 C6.(河北省邯郸市武安三中2014届高三第一次摸底考试数学理试题)数列 a n是首项为1,且公比q 0的等比数列 ,S n是a n的前 n1的前 5 项和为项和, 若9S3S6, 则数列()a nA.15B . 5C.31D.15 181616【答案】 C7.(河北省保定市八校结合体2014届高三上学期第一次月考数学(理科)试题)在等差数列中,a 1+a = 16,则 a等于()53A. 8 B .4 C .-4D. -8【答案】 A8.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)已知 { a } 为等差数列,其前 n 项和为 S ,n n 若 a36, S312 ,则公差d等于()A.15C.2D.3 B .3【答案】 C9 .(河北省衡水中学 2014届高三上学期二调考试数学(理)试题)已知等比数列a n的公比 q 2 ,且2a4 , a6 ,48 成等差数列,则 a n的前 8项和为()A. 127B.255C. 511D. 1023【答案】 B10.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)等比数列 { a n } 中,已知对随意自然数n , a1a2a3a n2n1,则a12a22a32a n2等于()A.(2n1) 2 B .1(2n1)C.4n1D.1(4n1) 33【答案】 D11.(河北省邯郸市武安三中2014 届高三第一次摸底考试数学理试题)设等差数列a n的前 n 项和为 S n,若 a2a815 a5,则 S9等于()A. 45B.60C.36D.18【答案】 B12.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)若数列{an}知足:存在正整数T,关于任意正整数 n 都有an Tan 成立,则称数列{an}为周期数列,周期为T.已知数列 {a n} 满足a n1,a n,1a n 1 =10a n 1.0) ,,a1m (m a n则以下结论中错误的是()..A.若m4, 则a535B a3 2 ,3C.若m2 ,则数列{ an}是周期为3的数列D.m Q且m2 ,数列{ an}是周期数列【答案】 D13 .(河北省衡水中学2014届高三上学期二调考试数学(理)试题)已知数列为等比数列, 且 .a5 4,a964,则=()A.8 B .16C. 16D.8【答案】 C14.(河北省张家口市蔚县一中2014 届高三一轮测试数学试题)在首项为 57, 公差为5的等差数列a n 中, 最靠近零的是第 ( )项 .()A. 14B.13C. 12D. 11【答案】 C15.(河北省保定市 2014届高三 10月摸底考试数学(理)试题)设a n为等差数列, 且a3 a7 a10 2, a11 a47,则数列a n的前13项的和为S13()A. 63B.109C. 117D. 210【答案】 C提示 : ∵a3 +a7-a 10+ a 11— a4=9, ∴a7=9, ∴S13=13 a 7=117二、填空题16.(河北省唐山市2014 届高三摸底考试数学(理)试题)已知数列 {a n} 知足 a1=0,a 2=1, a n23an 12a n,则{a n} 的前 n 项和 S n=_______________.【答案】 2n n117.(河北省衡水中学 2014届高三上学期二调考试数学(理)试题)在等比数列 a n中,若a7 a8a9a1015 ,a8a99, 则1111___________.88a7a8a9a10【答案】5 318.(河北省唐山一中 2014届高三第二次调研考试数学(理)试题)数列 a n 中 , a15,a n2a n 1 2n1(n N, n2),若存在实数,使得数列a n为等差数列 , 则2n =_________.【答案】119.(河北省保定市2014届高三 10 月摸底考试数学(理)试题)已知数列 a n是各项均为正数的等比数优选文档列, 若a 22, 2a 3 a 4 16 , 则 a n ______________.【答案】 2n 1 ; 三、解答题20.( 河北省邯郸市 2014 届高三上学期摸底考试数学(理)试题) 在等差数列a n 中 , a 2 6,S 4 20 .(1) 求数列a n的通项公式 ;(2) 设 b n2 (nN * ),T n b 1 b 2Lb n (n N * ) , 求 T n .n(12 a n )【答案】设a 1 d6a n 的公差为 d , 由题意得6d204a 1a 8解得{ d 12得: a n 8 2( n 1) 10 2n.(2) ∵ b n2 1n(12 a n )n(n 1)∵ b n1 1nn1T nb 1 b 2 b 3b n (1 1) (1 1)(11 ) n n2 2 3nn 1121.(河北省衡水中学2014届高三上学期三调考试数学(理)试题)已知函数 f (x)x 3 mx 在 (0,1)上是增函数 ,( Ⅰ) 实数 m 的取值会合为 A, 当 m 取会合 A 中的最小值时 , 定义数列 { a n } 知足a 1 3, 且 a n 0, a n 13 f a nn} 的通项公式 ;9 , 求数列 {a ( Ⅱ) 若 b nna n , 数列 { b n } 的前 n 项和为 S n , 求证 : S n 3.由题意得 f ′(x)= ﹣ 3x 2+m,4【答案】解 :(1)∵ f (x)= ﹣ x 3 +mx 在 (0,1) 上是增函数 , ∴f ′(x)= ﹣ 3x 2+m ≥0在(0,1) 上恒建立 , 即m ≥ 3x 2, 得 m ≥3,故所求的会合 A 为[3,+ ∞); 因此 m=3,∴f ′(x)= ﹣ 3x 2+3,∵ ,an>0, ∴ ∴数列 {an} 是以 3 为首项和公比的等比数列(2) 由 (1) 得,bn=na n =n?3n,=3an, 即, 故 an=3n;=3,234n②3Sn=1?3 +2?3 +3?3 ++n?3 +1①﹣②得 , ﹣2Sn=3+32+33 ++3n ﹣n?3 n +1= ﹣n?3n+1化简得 ,Sn=>22.(河北省保定市 2014届高三 10月 摸 底 考 试 数 学 ( 理 ) 试 题 ) 已 知 数 列 a n , 满 足1 a n n 为偶数 , 5an 12 a 4, 若 b na2n 11(b n0) .a n为奇数21n(1) 求 a 1 ;(2) 求证 :b n 是等比数列 ;(3) 若数列 a n 的前 n 项和为 S n , 求 S 2n .51 为偶数【答案】 (1) 解: ∵, a n2 a n , na 412a n, 为奇数1 n∴ a 35 13, ∴ a 23, ∴ a 122 2b na2 n 1(2) 证明 :a2n 3bn 111 a2n2 1121a2 n1,21 2故数列 { b n } 是首项为 1, 公比为 1 的等比数列2( 1 )n 1(3) 解: ∵ b na2 n 11 , ∴ a 2n 11 (a 1 1)(1 )n 12 即 a 2n1121 (11)1∴a 1a 3 La2 n 1 2n n=2-1-1n12n2又∵ a 2 a 1 1,a 4a 3 1,La2 na2 n 11 10分∴S2n2(a 1 a 3a 2n 1 )n 413n( 张军红命制 )2n 223.(河北省保定市 2014 届高三 10月 摸 底 考 试 数 学 ( 理 ) 试 题 ) 已 知 数 列 a n中, a 24, a n 1an2( n N * ) , 其前 n 项和为 S n ,(1) 求数列 a n的通项公式 ;(2)1, 求数列b n的前 n 项和为 T n.令 b nS n【答案】解 : (1)由于 a n 1a n 2(n N * ) ,因此数列a n的公差d=2又a2 4因此 a n2n(2)易得 S n= n2n111因此 b n1) n n1n(n因此T n11=nn 1n124 .(河北省容城中学2014届高三上学期第一次月考数学(理)试题)已知数列 {a n} 的前 n 项和S n1n2kn (此中 k N*),且S的最大值为8.2n(1)确立常数 k, 求 a n.9 2a n的前 n 项和 T n.(2) 求数列2n【答案】 (1) 当n k N * 时,S n1n2kn取最大值,即 8 S k1k2k21k2,22225.(河北省张家口市蔚县一中2014 届高三一轮测试数学试题)已知二次函数 f ( x)px2qx( p 0) ,其导函数为 f (x) 6x 2 ,数列{ a n}的前n项和为S n,点 (n, S n )( n N * ) 均在函数y f (x) 的图像上.(1)求数列 { a n } 的通项公式;(2) 若c n 1(a n 2), 2b1 22 b2 23 b3 L2n b n c n,求数列{ b n}的通项公式. 3【答案】26.(河北省保定市八校结合体2014 届高三上学期第一次月考数学(理科)试题)设 a n是公差不为零的等差数列 , S n为其前n项和 , 知足a22a32a42a52,S7 7.(1)求数列 a n的通项公式及前n项和 S n;(2)试求全部的正整数 m ,使得amam 1为数列 a n中的项. am 2【答案】 [ 分析 ]本小题主要考察等差数列的通项、乞降的相关知识, 考察运算和求解的能力. 满分 14分.( 1) 设公差为 d ,则 a22a52a42a32, 由性质得3d (a4a3 ) d (a4a3 ) ,由于 d0 ,所以a4a30,即2a15d 0,又由S77 得7a17 6d 7 ,解得2a1 5 ,d2,(2)amam 1=(2 m7)(2 m5),设2m3t ,am 22m3(方法一)则 a m a m 1= (t4)(t2)t86,因此为 8的约数a m2t t( 方法二 ) 由于amam 1(am 24)( a m 2 2)a m 268为数列a n中的项, a m 2a m 2a m 2故8为整数 , 又由 (1)知: a m 2为奇数 , 因此a m 22m31,即m 1,2 a m+2经查验 ,切合题意的正整数只有m 227 .(河北省衡水中学2014届高三上学期二调考试数学(理)试题)数列 {a n}的前n项和为n,且Sn*S=n( n+1)( n∈N).(1)求数列 { a n} 的通项公式 ;(2)若数列 {b1b2+b3++ nb nn}的通项公式; n}知足: n=+23,求数列{b a3+1 3+ 1 3+ 1 3+ 1ba b*n n(3)令 c n=4( n∈N), 求数列 { c n} 的前n项和T n.【答案】28 .(河北省张家口市蔚县一中2014届高三一轮测试数学试题)已知为两个正数, 且, 设当,时,.( Ⅰ) 求证 : 数列是递减数列,数列是递加数列;(Ⅱ)求证 :;( Ⅲ) 能否存在常数使得对随意, 有, 若存在 , 求出的取值范围;若不存在,试说明原因 .【答案】( Ⅱ)证明:.(Ⅲ)解: 由, 可得.若存在常数使得对随意,有,则对随意,.即对随意建立 .即对随意建立.设表示不超出的最大整数,则有.即当时 ,.与对随意建立矛盾.因此 , 不存在常数使得对随意, 有29.(河北省唐山一中2014届高三第二次调研考试数学(理)试题)设等比数列a n的前n项和为S n,已知 a n 12S n2( n N ) .( Ⅰ) 求数列a n的通项公式;优选文档( Ⅱ) 在a n与a n 1之间插入n个数 , 使这n 2 个数构成公差为d n的等差数列,设数列1的前 n 项和d nT n,证明:T n 15. 16【答案】解 ( Ⅰ) 由an 12S n*得 a n 2S n2( n*2(n N )1N, n 2 ),两式相减得 : a n 1a n2a n,即 a n 1*, n2), 3a n (n N∵ { a n } 是等比数列,因此 a23a1,又 a2 2a1 2,则 2a1 2 3a1,∴ a1 2 ,∴ a n2g3n 1( Ⅱ) 由 (1) 知a n 12g3n , a n2g3n 1∵ a n 1 a n (n 1)d n,∴d n43n 1n ,11111令 T nd2d3,d1d n则 T n234+n1①430 4 31 4 324g3n11T n 23n n1②3 4 31 4 324g3n 14g3n①-②得2T n 2111n 134g304g314g324g3n 14g3n11 1 13(13n 1 )n 1 5 2n 51n n 24 4 388 313g gT n 152n515 1616g3n 116优选文档。
河北省唐山市2014届高三年级摸底考试数学(理)试题说明:1.本试卷分为第Ⅰ卷和第II 卷.第Ⅰ卷为选择题;第II 卷为非选择题,分为必考和选考两部分。
2.答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
3.做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案。
4.考试结束后,将本试卷与原答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z 满足z (1+i )=i ,则复数z 的共轭复数为 A .1122i + B .1122i - C .1+i D .1-i2.设U=R ,已知集合A={x|x >1},B={x|x >a},且(U A ð)B R =,则实数A 的 取值范围是A .(,1)-∞B .(1,)+∞C .(],1-∞D .[)1,+∞3.已知点A (6,2),B (l ,14),则与AB 共线的单位向量为 A .512512,,13131313⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或 B .512,1313⎛⎫-⎪⎝⎭C .125125,,13131313⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭或 D .512,1313⎛⎫-⎪⎝⎭4.已知sin2a=13,则cos 24πα⎛⎫-= ⎪⎝⎭ A .23 B .23-C .13D .13-5.执行右面的程序框图,那么输出S 的值为 A .9 B .10 C .45 D .556.设等差数列{a n }的前n 项和为S n ,且S 5=13,S 15=63,则S 20=A .100B .90C .120D .1107.某几何体的三视图如图所示,则它的侧面积为A .B .C .24D .8.已知双曲线2222x y a b-=1(a>0,b>0)的左、右焦点分别为F l ,F 2,以12F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为A .221169x y -=B .22134x y -=C .221916x y -=D . 22143x y -=9.直三棱柱ABC -A 1B 1 C 1的六个顶点都在球O 的球面上.若AB=BC=1, ∠ABC=120o ,AA 1,则球O 的表面积为A .4πB .16πC .24πD .8π10.设函数f (x )=x 2-23x+60, g (x )=f (x )+|f (x )|,则g (1)+g (2)+…+g (20)= A .0 B .38 C . 56 D .11211.在长度为3的线段上随机取两点,将其分成三条线段,则恰有两条线段的长大于1的概率为 A .23B .59C .19D .1312.设x ,y ∈R ,则(3-4y -cosx)2+(4+3y+sinx)2的最小值为 A .4 B .5 C .16 D .25第II 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在题中横线上. 13.过坐标原点与曲线y=lnx 相切的直线方程为 。
绝密★启用前2014届河北唐山市高三年级摸底考试理科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:135分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设,则的最小值为( )A .4B .16C .5D .252、在长度为3的线段上随机取两点,将其分成三条线段,则恰有两条线段的长大于1的概率为( )A .B .C .D .3、设函数,,则( )A .0B .38C .56D .1124、直三棱柱的六个顶点都在球的球面上,若,,,则球的表面积为( )A .B .C .D .5、某几何体的三视图如图所示,则它的侧面积为( )A .B .C .24D .6、设等差数列的前项和为,且,,则( )A .90B .100C .110D .1207、执行右面的程序框图,那么输出的值为( )A .9B .10C .45D .558、已知,则( )A .B .C .D .9、已知点,,则与共线的单位向量为( )C.或 D.10、设,已知集合,,且,则实数的取值范围是()A. B. C. D.11、已知复数满足,则复数的共轭复数为( )A. B. C. D.12、已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A. B. C. D.第II卷(非选择题)二、填空题(题型注释)13、已知数列满足,,,则的前项和= .14、若存在正数,使成立,则实数的取值范围是 .15、抛物线的准线截圆所得弦长为2,则= .16、过坐标原点与曲线相切的直线方程为 .三、解答题(题型注释)17、设函数.(Ⅰ)解不等式;(Ⅱ)若不等式的解集为,求实数的取值范围.18、极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求的直角坐标方程;(Ⅱ)设直线与曲线交于两点,求弦长.19、如图,为圆的直径,为垂直于的一条弦,垂足为,弦与交于点.(Ⅰ)证明:四点共圆;(Ⅱ)证明:.20、已知函数.(Ⅰ)讨论的单调性;(Ⅱ)若恒成立,证明:当时,.21、已知点是椭圆:上一点,分别为的左右焦点,,的面积为.(Ⅰ)求椭圆的方程; (Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.22、在如图所示的几何体中,四边形均为全等的直角梯形,且,.(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.23、从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(Ⅱ)以上述样本的频率作为概率,从该校高三学生中有放回地抽取3人,记抽取的学生成绩不低于90分的人数为,求的分布列和期望.24、在中,角所对的边分别是,已知.(Ⅰ)求;(Ⅱ)若,且,求的面积.参考答案1、B2、A3、D4、C5、A6、B7、D8、D9、C10、B11、A12、C13、14、15、216、17、(Ⅰ);(Ⅱ).18、(Ⅰ) ;(Ⅱ).19、(Ⅰ)证明过程详见解析;(Ⅱ)证明过程详见解析.20、(Ⅰ)当时,在上递增;当时,单调递增;当时,单调递减;(Ⅱ)证明过程详见解析.21、(Ⅰ);(Ⅱ)详见解析.22、(Ⅰ)证明过程详见解析;(Ⅱ).23、(Ⅰ)92分;(Ⅱ)分布列详见解析,.24、(Ⅰ);(Ⅱ)或.【解析】1、试题分析:所求的最小值可以看成点到点的距离的平方,点是在以原点为圆心,半径为1的圆周上运动,先算点到圆心的最小值,即,所以的最小值为5,又因为圆的半径为1,所以到点的最小距离为,所以到点的距离的平方为16,所以的最小值为16.考点:1.两点间距离公式;2.函数式的几何意义.2、试题分析:在长度为3的线段上随机取两点,将其分成三条线段,需满足区域,而恰有两条线段的长大于1,需满足或或,所以画出区域,恰有两条线段的长大于1的概率为.考点:1.线性规划;2.几何概型.3、试题分析:因为,所以当和时,;当时,;当时,,所以当和时,;当时,;当时,,所以.考点:1.分解因式;2.去绝对值;3.函数值的运算.4、试题分析:在中,,,由余弦定理有,直三棱柱外接球的球心位于上下底外心连线的中点上,中,即,,所以,球的表面积.考点:1.余弦定理;2.球的表面积.5、试题分析:由三视图得,这是一个正四棱台,由条件,侧面积.考点:1.三视图;2.正棱台侧面积的求法.6、试题分析:因为数列为等差数列,所以成等差数列,设,,则成等差数列,所以,所以,所以分别为,所以,所以. 考点:等差数列的性质.7、试题分析:,否,,,否,,,否,,,否,,,否,,,否,,,否,,,否,,,否,,,否,,,是,输出.考点:1.程序框图;2.等差数列求和.8、试题分析:. 考点:1.倍角公式;2.诱导公式.9、试题分析:因为点,,所以,,与共线的单位向量为.考点:向量共线.10、试题分析:因为,所以,要使,只需.考点:集合的运算.11、试题分析:,所以复数的共轭复数为. 考点:1.复数的运算;2.共轭复数.12、试题分析:由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.考点:1.双曲线方程的求法;2.双曲线的渐近线.13、试题分析:∵,∴,∴,∴数列是以1为首项,2为公比的等比数列,∴∴,,,……,,∴,∴,∴.考点:1.等比数列的证明方法;2.累加法求通项公式;3.等比数列的求和公式.14、试题分析:∵存在正数,使成立,∴,∴令,∵,∴,∴,∴.考点:1.配方法求函数的最值;2.指数函数的函数值.15、试题分析:抛物线的准线为,而圆化成标准方程为,圆心,,圆心到准线的距离为,所以,即.考点:1.抛物线的准线方程;2.勾股定理.16、试题分析:设切点坐标为,∵,∴,∴,∴切线方程为,又∵在切线上,∴即,又∵在曲线上,∴,∴,∴切线方程为即.考点:过点求切线.17、试题分析:本题考查绝对值不等式的解法和不等式的恒成立问题.考查学生的分类讨论思想和转化能力.第一问利用零点分段法进行求解;第二问利用绝对值的运算性质求出的最大值,证明恒成立问题.试题解析:(Ⅰ)2分当时,不成立;当时,由,得,解得;当时,恒成立.所以不等式的解集为.5分(Ⅱ)因为,所以,解得,或,所以的取值范围是.10分考点:1.绝对值不等式的解法;2.绝对值的运算性质.18、试题分析:本题考查坐标系和参数方程.考查学生的转化能力和计算能力.第一问利用互化公式将极坐标方程转化为普通方程;第二问,先将直线方程代入曲线中,整理,利用两根之和、两根之积求弦长.试题解析:(Ⅰ)由,得,即曲线的直角坐标方程为. 5分(Ⅱ)将直线l的方程代入,并整理得,,,.所以.10分考点:1.极坐标方程与普通方程的互化;2.韦达定理.19、试题分析:本题考查四点共圆的判定和圆割线的性质.考查学生的分析问题解决问题的能力.第一问是证明四点共圆,证明四点共圆的基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.2.若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)5.证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.第二问是等式的证明,这一问中遇到的圆割线的性质(从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等)、相似三角形、勾股定理三式联立,证明等式成立.试题解析:(Ⅰ)连结,则.因为,所以.所以,即四点共圆.5分(Ⅱ)连结.由四点共圆,所以.在中,,,所以. 10分考点:1.四点共圆的判断;2.圆割线的性质.20、试题分析:本题主要考查导数的运算,利用导数研究函数的单调区间、最值等数学知识和方法,突出考查分类讨论思想和综合分析问题和解决问题的能力.第一问是利用导数研究函数的单调性,但是题中有参数,需对参数进行讨论,可以转化为含参一元一次不等式的解法;第二问先是恒成立问题,通过第一问的单调性对进行讨论,通过求函数的最大值求出符合题意的,表达式确定后,再利用函数的单调性的定义,作差,放缩法证明不等式.试题解析:(Ⅰ).若,,在上递增;若,当时,,单调递增;当时,,单调递减.5分(Ⅱ)由(Ⅰ)知,若,在上递增,又,故不恒成立.若,当时,递减,,不合题意.若,当时,递增,,不合题意.若,在上递增,在上递减,符合题意,故,且(当且仅当时取“”).8分当时,,所以.12分考点:1.利用导数求函数的单调性;2.恒成立问题;3.分类讨论思想和放缩法的应用. 21、试题分析:本题考查椭圆的定义、余弦定理及韦达定理的应用.第一问是利用三角形面积公式、余弦定理、椭圆的定义,三个方程联立,解出,再根据的关系求,本问分析已知条件是解题的关键;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)在中,由,得.由余弦定理,得,从而,即,从而,故椭圆的方程为.6分(Ⅱ)当直线的斜率存在时,设其方程为,由,得.8分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有.12分考点:1.椭圆的定义;2.韦达定理;3.直线的斜率.22、试题分析:本题考查线面平行的判定以及二面角的求法.线面平行的判断:①判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②性质:如果两个平面平行,其中一个平面内的直线必平行于另一个平面;③性质:如果两条平行线中的一条平行于一个平面,那么另一条也平行于这个平面或在这个平面内;④性质:如果一条直线平行于两个平行平面中的一个,那么这条直线也平行于另一个平面或在这个平面内;⑤性质:如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.第一问是利用线面平行的判定定理证明;第二问建立空间直角坐标系是关键,利用向量法得到平面的一个法向量为,和平面的一个法向量为,再利用夹角公式求夹角的余弦,但是需判断夹角是锐角还是钝角,进一步判断余弦值的正负.试题解析:(Ⅰ)连结,由题意,可知,故四边形是平行四边形,所以.又平面,平面,所以平面. 5分(Ⅱ)由题意,两两垂直,以为轴,为轴建立空间直角坐标系.设,则,,,.设平面的一个法向量为,则,,又,,所以,取.同理,得平面的一个法向量为.因为,又二面角为钝角,所以二面角的余弦值. 12分考点:1.线面平行的判断定理;2.向量法解题.23、试题分析:本题主要考查频率分布直方图的读图能力和计算能力,以及离散型随机变量的分布列与数学期望.第一问根据频率分布直方图,求该校高三学生本次数学考试的平均分,解决实际问题,公式为:每一个区间的中点×每一个长方形的高×组距,把所得结果相加即可;第二问利用频率=高×组距,求出样本中成绩不低于90分的频率,通过分析发现人数符合二项分布,利用二项分布的概率计算公式:来计算每种情况的概率,列出分布列,由于,所以利用上面的公式计算期望.试题解析:(Ⅰ)由频率分布直方图,得该校高三学生本次数学考试的平均分为5分(Ⅱ)样本中成绩不低于90分的频率为,所以从该校高三学生中随机抽取1人,分数不低于90分的概率为. 7分由题意,,(),其概率分布列为:10分的期望为.考点:1.频率分布直方图;2.分布列;3.数学期望.24、试题分析:本题主要考查解三角形中的正弦定理、余弦定理的运用.考查了分类讨论思想.第一问考查了正弦定理,利用正弦定理将边转化为角,消去得到正切值,注意解题过程中才可以消掉;第二问利用三角形的内角和转化角,用两角和差的正弦公式展开表达式化简,讨论是否为0,当时,,可直接求出边,当时,利用正余弦定理求边,再利用求三角形面积.试题解析:(Ⅰ)由正弦定理,得,因为,解得,.6分(Ⅱ)由,得,整理,得.若,则,,,的面积. 8分若,则,.由余弦定理,得,解得.的面积.综上,的面积为或.12分考点:1.正弦定理;2.余弦定理;3.两角和差的正弦公式;4.三角形面积公式.。
河北省唐山市2014届高三年级期末考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分。
考试时间120分钟。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设全集=U R ,已知集合{|1}A x x =≥,{|(2)(1)0}B x x x =+-<,则( ) A .AB U = B .A B φ=C .U C B A ⊆D .U C A B ⊆2.设复数12z =,则z z=( ) A .z - B .z - C .z D .z3.设,x y 满足约束条件00226x y y x y ≥⎧⎪≥⎪⎨≤⎪⎪+≤⎩,则目标函数2z x y =+的最大值是( )A .3B .4C .5D .64.(x)f 是R 上的奇函数,当0x ≥时,3(x)x ln(1x)f =++,则当0x <时,()f x =( ) A .3x ln(1x)--- B .3x ln(1x)+- C .3x ln(1x)-- D .3x ln(1x)-+- 5.执行下边的程序框图,则输出的n 是( )A .4B .5C .6D .76.在公比大于1的等比数列{}n a 中,3772a a =,2827a a +=,则12a =( ) A .96 B .64 C .72 D .487.某几何体的三视图如图所示,则该几何体的体积为( )A .816π+B .816π-C .88π+D .168π-8.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为( )A .2B .1C 9.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(B |A)P =( )A .4π B .2πC .13D .2310.(x)2sin x x 1f π=-+的零点个数为( ) A .4 B .5 C .6 D .711.椭圆2222:1x y C a b+=(a b 0)>>的左、右焦点分别为12,F F ,,A B 是C 上两点,113AF F B =,0290BAF ∠=,则椭圆C 的离心率为( )A .12 B .34 C 12.C 是以原点O 为中心,焦点在y 轴上的等轴双曲线在第一象限部分,曲线C 在点P 处的切线分别交该双曲线的两条渐近线于,A B 两点,则( )A .1|OP ||AB |2< B .|OP ||AB|= C .1|AB ||OP ||AB |2<< D .1|OP ||AB |2=第Ⅱ卷本卷包括必考题和选考题两个部分。
理科数学参考答案
一、选择题:
A 卷:ABDCC DBAA
B D
C B 卷:DCABB CDADA CB 二、填空题: (13)(-∞,1]
(14)6
(15)163
(16)(-∞, 1
2
]
三、解答题: (17)解:
(Ⅰ)由4b sin A =7a ,根据正弦定理得4sin B sin A =7sin A ,
所以sin B =7
4. …4分 (Ⅱ)由已知和正弦定理以及(Ⅰ)得
sin A +sin C =7
2. ①
设cos A -cos C =x , ②
①2+②2,得2-2cos(A +C )= 7
4+x 2. ③ …7分 又a <b <c ,A <B <C ,所以0︒<B <90︒,cos A >cos C ,
故cos(A +C )=-cos B =- 3
4. …10分
代入③式得x 2= 7
4.
因此cos A -cos C =7
2. …12分 (18)解:
(Ⅰ)由抽样方法可知,从甲、乙、丙三个车床抽取的零件数分别为1,2,3.
从抽取的6个零件中任意取出2个,记事件“已知这两个零件都不是甲车床加工点”为A ,事件“其中至少有一个是乙车床加工的”为B ,则
P (A )=C 2
5C 26,P (AB )=C 25-C 23
C 26
,
所求概率为P (B |A )=P (AB )P (A )=C 25-C 2
3
C 25
=0.7. …5分
(Ⅱ)X 的可能取值为0,1,2.
P (X =i )=C i 2C 3-i 4
C 36
,i =0,1,2.
X 的分布列为
…10分
X 的期望为
E (x )=0×0.2+1×0.6+2×0.2=1. …12分
(19)解:
(Ⅰ)因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .
又BC ⊥AC ,所以BC ⊥平面A 1ACC 1,所以AC 1⊥BC . …2分 因为AA 1=AC ,所以四边形A 1ACC 1是菱形,所以AC 1⊥A 1C . 所以AC 1⊥平面A 1BC , 所以A 1B ⊥AC 1. …5分
(Ⅱ)以OC 为单位长度,建立如图所示的空间直角坐标系O -xyz , 则A (0,-1,0),B (2,1,0),C (0,1,0),C 1(0,2,3).
AB →=(2,2,0),BB 1→=CC 1→=(0,1,3),
设m =(x ,y ,z )是面ABB 1的一个法向量,则m ·AB →=m ·BB 1→=0, 即⎩⎨⎧2x +2y =0,y +3z =0,
取m =(3,-3,1). 同理面CBC 1的一个法向量为n =(0,-3,1).
…10分
因为cos 〈m ,n 〉=m ·n |m ||n |=27
7.
所以二面角A -BB 1-C 的余弦值27
7.
…12分
(20)解:
(Ⅰ)圆A 的圆心为A (-1,0),半径等于22.
由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22,
故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆,a =2,c =1,b =1,
曲线Γ的方程为x 22+y 2
=1. …5分 (Ⅱ)由cos ∠BAP =223,|AP |=22,得P (
5 3,22
3)
.
…8分
于是直线AP 方程为y =2
4(x +1).
由⎩
⎨⎧x 22+y 2
=1,y =2
4(x +1),
解得5x 2+2x -7=0,x 1=1,x 2=- 7
5.
由于点M 在线段AP 上,所以点M 坐标为(
1,2
2)
. …12分
(21)解:
(Ⅰ)f '(x )=-x e x .
当x ∈(-∞,0)时,f '(x )>0,f (x )单调递增; 当x ∈(0,+∞)时,f '(x )<0,f (x )单调递减. 所以f (x )的最大值为f (0)=0.
…4分
(Ⅱ)g (x )=(1-x )e x -1x ,g '(x )=-(x 2-x +1)e x
+1
x 2
. 设h (x )=-(x 2-x +1)e x +1,则h '(x )=-x (x +1)e x . 当x ∈(-∞,-1)时,h '(x )<0,h (x )单调递减; 当x ∈(-1,0)时,h '(x )>0,h (x )单调递增;
A
B
C A 1
O
B 1
C 1
x
y
z
当x ∈(0,+∞)时,h '(x )<0,h (x )单调递减. …7分
又h (-2)=1-7e 2>0,h (-1)=1- 3
e <0,h (0)=0, 所以h (x )在(-2,-1)有一零点t .
当x ∈(-∞,t )时,g '(x )>0,g (x )单调递增; 当x ∈(t ,0)时,g '(x )<0,g (x )单调递减. …10分 由(Ⅰ)知,当x ∈(-∞,0)时,g (x )>0;当x ∈(0,+∞)时,g (x )<0. 因此g (x )有最大值g (t ),且-2<t <-1. …12分 (22)解:
(Ⅰ)连结OA ,则OA ⊥EA .由射影定理得EA 2=ED ·EO .
由切割线定理得EA 2=EB ·EC ,故ED ·EO =EB ·EC ,即ED BD =EC
EO , 又∠OEC =∠OEC ,所以△BDE ∽△OCE ,所以∠EDB =∠OCE . 因此O ,D ,B ,C 四点共圆. …6分
(Ⅱ)连结OB .因为∠OEC +∠OCB +∠COE =180︒,结合(Ⅰ)得 ∠OEC =180︒-∠OCB -∠COE =180︒-∠OBC -∠DBE
=180︒-∠OBC -(180︒-∠DBC )=∠DBC -∠ODC =20︒. …10分
(23)解:
(Ⅰ)因为ρ2=x 2+y 2,ρsin θ=y ,所以圆C 的直角坐标方程为 x 2+y 2-4y +2=0. …4分
(Ⅱ)平移直线l 后,所得直线l '的⎩⎨⎧x =h -10+t ,
y =t
(t 为参数).
2t 2+2(h -12)t +(h -10)2+2=0. 因为l '与圆C 相切,所以
Δ=4(h -12)2-8[(h -10)2+2]=0,即h 2-16h +60=0, 解得h =6或h =10. …10分 (24)解:
(Ⅰ)g (x )≤5⇔|2x -1|≤5⇔-5≤2x -1≤5⇔-2≤x ≤3; f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1. …6分 (Ⅱ)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a ≥|a -1|+a , 当且仅当(2x -a )(2x -1)≥0时等号成立.
解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞). …10分
A
B
C
D
E
O。