第6章焊接结构疲劳
- 格式:ppt
- 大小:2.53 MB
- 文档页数:85
焊接结构试题及参考答案1.判断题(是画√,⾮画×,)1.焊接过程中,材料因受热的影响(但未熔化)⽽发⽣组织和⼒学性能变化的区域称为焊接热影响区。
(√)2.熔合区是焊接接头中综合性能最好的区域。
(×)3.结构刚度增⼤时,焊接残余应⼒也随之增⼤。
(√)4.为了减⼩焊接变形,焊接平⾯交叉焊缝时,应当先焊横向焊缝,后焊纵向焊缝。
(√)5.承受动载的重要结构,可⽤增⼤焊缝余⾼来提⾼其疲劳强度。
(×)6.由于搭接接头不是焊接结构的理想接头,故很少采⽤。
(√)7.锰既是较好的脱氧剂,⼜是常⽤的脱硫剂,与硫化合成硫化锰,形成熔渣浮于熔池表⾯,以减少焊缝的热裂倾向。
(√)8.焊接过程中,硫易引起焊缝⾦属热裂,故⼀般规定:焊丝中的含硫量不⼤于0.040%,优质焊丝中不⼤于0.030%。
(√)9.若低碳钢含硫量过⾼,为防⽌焊接接头出现裂纹,焊前需进⾏预热,⼀般预热温度为100~150℃。
(√)10.多层焊过程中,第⼀层按规定的预热温度预热,以后各层的预热温度可敬逐层降低。
(×)11.影响焊接热循环的主要因素有:焊接热输⼊、预热和层间温度、⼯件厚度、接头形式及材料本⾝的导热性能等。
(√)12.焊接热输⼊仅与焊接电流和电弧电压有关,⽽与焊接速度⽆关。
(×)13.采⽤较⼩的焊接热输⼊,有利于减轻接头的应变脆化程度。
(√)14.可焊性试验的主要⽬的是选择适⽤于母材的焊接材料,确定合适的焊接⼯艺。
(√))15、焊接⼯艺评定主要因素变更时,不影响接接头的机械性能,则不需重新评定焊接⼯艺。
(×)16、在同⼀类别钢材中钢材的钢号变更,焊接⼯艺就要重评定。
(×)17、焊接结构的疲劳断裂通常是在焊接接头处开始产⽣。
(√)18、提⾼t形接头疲劳强度的根本措施是开坡⼝焊接和加⼯焊缝过渡区使之圆滑过渡。
(√)19、焊接热影响区的⼤⼩与焊接⼯艺参数⽆关。
(×)20、在焊接过程中,碳是⼀种良好的脱氧剂,所以焊芯中含碳量越⾼越好。
第三章焊接结构强度的基本理论焊接结构在使用中,除结构强度不够时会导致破坏外,还有其他形式的破坏,如疲劳破坏、脆性断裂等,这些破坏也是焊接结构常见破坏形式。
本章主要介绍焊接结构疲劳破坏、脆性断裂产生的原因,以及提高疲劳强度和防止脆性断裂的主要措施。
第一节焊接结构的疲劳破坏一、疲劳的定义疲劳定义为由重复应力所引起的裂纹起始和缓慢扩展而产生的结构部件的损伤,疲劳极限是指试样受“无数次”应力循环而不发生疲劳破坏的最大应力值。
在承受重复载荷结构的应力集中部位,当部件所受的公称应力低于弹性极限时,就可能产生疲劳裂纹,由于疲劳裂纹发展的最后阶段——失稳扩展(断裂)是突然发生的,没有预兆,没有明显的塑性变形,难以采取预防措施,所以疲劳裂纹对结构的安全性有很大危胁。
焊接结构在交变应力或应变作用下,也会由于裂纹引发(或)扩展而发生疲劳破坏。
疲劳破坏一般从应力集中处开始,而焊接结构的疲劳破坏又往往从焊接接头处产生。
二、影响焊接接头疲劳性能的因素焊接结构的疲劳强度,在很大程度上决定于构件中的应力集中情况,不合理的接头形式和焊接过程中产生的各种缺陷(如未焊透、咬边等)是产生应力集中的主要原因。
除此之外,焊接结构自身的一些特点,如接头性能的不均匀性,焊接残余应力等,都对焊接结构疲劳强度有影响。
1.应力集中和表面状态的影响结构上几何不连续的部位都会产生不同程度的应力集中,金属材料表面的缺口和内部的缺陷也可造成应力集中。
焊接接头本身就是一个几何不连续体,不同的接头形式和不同的焊缝形状,就有不同程度的应力集中,其中具有角焊缝的接头应力集中较为严重。
构件上缺口愈尖锐,应力集中愈严重(即应力集中系数K愈大),疲劳强度降低也愈大。
不同材料或同一材料因组织和强度不同,缺口的敏感性(或缺口效应)是不相同的。
高强度钢较低强度钢对缺口敏感,即在具有同样的缺口情况下,高强度钢的疲劳强度比低强度钢降低很多。
焊接接头中,承载焊缝的缺口效应比非承载焊缝强烈,而承载焊缝中又以垂直于焊缝轴线方向的载荷对缺口最敏感。
第一章绪论1.选择题(1)在结构设计中,失效概率P f与可靠指标β的关系为 B 。
A. P f越大,β越大,结构可靠性越差B. P f越大,β越小,结构可靠性越差C. P f越大,β越小,结构越可靠D. P f越大,β越大,结构越可靠2.填空题(1)某构件当其可靠指标 减小时,相应失效概率将随之增大。
(2)承载能力极限状态为结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态。
(3)在对结构或构件进行正常使用极限状态验算时,应采用永久荷载和可变荷载的标准值。
3.简答题(1)钢结构和其他建筑材料结构相比的特点。
答:轻质高强;材性好,可靠性高;工业化程度高,工期短;有效使用空间大;运输、安装方便;可拆卸、改造,建筑垃圾少,材料可重复利用;密封性好;抗震性好;有一定耐热性,但抗火性能差;耐腐蚀性能差。
第二章钢结构的材料1.选择题(1)钢材的设计强度是根据 C 确定的。
A. 比例极限B. 弹性极限C. 屈服点D. 极限强度(2)钢结构设计中钢材的设计强度为 D 。
A. 强度标准值B. 钢材屈服点C. 强度极限值D. 钢材的强度标准值除以抗力分项系数(3)钢材是理想的 C 体。
A. 弹性B. 塑性C. 弹塑性D. 非弹性(4)钢结构中使用钢材的塑性指标,目前最主要用 D 表示。
A. 流幅B. 冲击韧性C. 可焊性D. 伸长率(5)钢材的伸长率 用来反映材料的 C 。
A. 承载能力B. 弹性变形能力C. 塑性变形能力D. 抗冲击荷载能力(6)建筑钢材的伸长率与 D 标准拉伸试件标距间长度的伸长值有关。
A. 达到屈服应力时B. 达到极限应力时C. 试件塑性变形后D. 试件断裂后(7)钢材的三项主要力学性能为 A 。
A. 抗拉强度、屈服强度、伸长率B. 抗拉强度、屈服强度、冷弯性能C. 抗拉强度、冷弯性能、伸长率D. 冷弯性能、屈服强度、伸长率(9)在构件发生断裂破坏前,有明显先兆的情况是 B 的典型特征。
第 2 章 钢结构的连接一、选择题1 直角角焊缝的强度计算公式 w c f l h N =t ≤ w f f 中,he 是角焊缝的——。
(A)厚度 (B)有效厚度 (C)名义厚度 (D)焊脚尺寸2 对于直接承受动力荷载的结构,计算正面直角焊缝时——。
(A)要考虑正面角焊缝强度的提高 (B)要考虑焊缝刚度影响。
(C)与侧面角焊缝的计算式相同 (D)取 f b =1.22 3 等肢角钢与钢板相连接时,肢背焊缝的内力分配系数为——。
(A)0.7 (B)0.75 (C)0.65 (D)0.354 直角角焊缝的有效厚度 c h ——。
(A)0.7 f h (B)4mm (C)1.2 f h (D)1.5 fh 5 在动荷载作用下,侧焊缝的计算长度不宜大于——·(A)60 f h (B)40 f h (C)80 f h (D)120 fh 6 角钢和钢板间用侧焊搭接连接,当角钢肢背与肢尖焊缝的焊脚尺寸和焊缝的长度都等同 时,————。
(A)角钢肢背的侧焊缝与角钢肢尖的侧焊缝受力相等(B)角钢肢尖侧焊缝受力大于角钢肢背的侧焊缝(C)角钢肢背的侧焊缝受力大于角钢肢尖的侧焊缝(D)由于角钢肢背和肢尖的侧焊缝受力不相等,因而连接受有弯矩的作用7 不需要验算对接焊缝强度的条件是斜焊缝的轴线和外力 N 之间的夹角满足——。
(A) q tan £1.5 (B) q tan >l,5 (C)q ≥70º (D) q <70º8 产生焊接残余应力的主要因素之一是——·(A)钢材的塑性太低 (B)钢材的弹性模量太高(C)焊接时热量分布不均 (D)焊缝的厚度太小9 钢结构连接中所使用的焊条应与被连接构件的强度相匹配,通常在被连接构件选用 Q345 时,焊条选用——。
(A)E55 (B)E50 (C)E43 (D)前三种均可10 焊缝连接计算方法分为两类,它们是——。
(A)手工焊缝和自动焊缝 (B)仰焊缝和俯焊缝(C)对接焊缝和角焊缝 (D)连续焊缝和断续焊缝11 焊接结构的疲劳强度的大小与——关系不大。
《焊接结构学》重点归纳第一章绪论1、焊接结构的优点:(1)焊接接头系数大;(2)水密性和气密性好;(3)重量轻,省材料;(4)厚度基本不受限制;(5)结构设计简单;(6)生产周期短,成本低。
2、焊接结构的特点:(1)焊接结构的应力集中范围比铆接结构大;(2)焊接结构是非均匀体,焊接接头具有较大的性能不均匀性;(3)焊接结构具有较大的焊接应力和变形;(4)焊接结构的整体性强,止裂性差;(5)焊接结构对材料敏感;(6)焊接接头对温度敏感。
第三章焊接应力和变形1、内应力是指在没有外力的条件下平衡于物体内部的应力。
2、内应力分类:按照分布范围可分为宏观内应力、微观内应力和超微观内应力。
按产生机理可分为温度应力(热应力)、残余应力、相变应力和安装应力。
热应力是由于构件受热不均匀产生的。
3、基本概念(1)焊接瞬时应力:随焊接热循环过程而变化的应力。
(2)焊接残余应力:焊后在室温条件下,残余在构件中的内应力。
(3)焊接瞬时变形:随焊接热循环过程而变化的变形。
(4)焊接残余变形:焊后在室温条件下,残留在工件上的变形。
4、内部变形率:若|ε|<εs,则为弹性变形,恢复到原始T0时,长度不变。
若|ε|>εs,则为弹性变形、塑性变形,若ε<0,则为压缩变形;若ε>0,则为拉伸变形,恢复到原始T0时,长度比初始长度减小△L p。
5、影响焊接应力与变形的主要因素(1)焊缝及其附近不均匀加热的范围和程度,也就是产生热变形的范围和程度。
影响因素包括焊缝的尺寸、数量、位置、母材的热物理性能(导热系数、比热及热膨胀系数)和力学性能(弹性模量、屈服极限)、焊接工艺方法(气焊、焊条电弧焊、埋弧焊、气体保护焊、电子束焊等等)、焊接规范参数(电流、电压、速度、预热温度、焊后缓冷及焊后热处理等)、施焊方法(直通焊、跳焊、分段退焊等)。
(2)焊件本身的刚度和受到周界的拘束程度,也就是阻止焊缝及其附近产生热变形的程度。
第一章测试1.钢结构计算中,实际内力和力学计算结果最符合的原因是()A:钢材韧性好B:钢材强度高C:钢材材质均匀D:钢材塑性好答案:C2.下述破坏属于正常使用极限状态的是()A:结构转变为机动体系B:连接的强度计算C:梁腹板加劲肋计算D:构件在荷载作用下产生较大变形而影响作答案:D3.结构的重要性系数是根据结构的( )分别取 1.1、1.0、0.9。
A:安全等级的一、二、三级B:耐久性等级的一、二、三级C:抗震等级D:建筑面积的大小答案:A4.在构件发生断裂破坏前,有明显先兆的情况是()的典型特征。
A:强度破坏B:脆性破坏C:塑性破坏D:失稳破坏答案:C5.下列关于荷载分项系数的论述( )不正确。
A:不分场合均取为1.2B:一般情况下取1.4,当楼面活荷载大于4kN/mm2时,取1.3C:用于计算活荷载效应的设计值D: 为结构永久荷载分项系数答案:A6.验算型钢梁正常使用极限状态的变形时,用荷载( )。
A:组合值B:最大值C:设计值D:标准值答案:D7.钢结构设计中按荷载设计值计算的有 ( )A:局部稳定B:强度C:疲劳D:梁的刚度E:整体稳定答案:ABE8.承载能力极限状态包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载的状态。
A:对B:错答案:A9.承载能力极限状态包括影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部破坏。
A:对B:错答案:B10.焊接结构的疲劳强度的大小与()关系不大。
A:残余应力大小B:连接的构造细节C:钢材的种类D:应力循环次数答案:D第二章测试1.反映钢材在塑性变形和断裂过程中吸收能量的能力的指标为()A:冷弯性能B:屈服强度C:韧性D:伸长率答案:C2.钢中含碳量越高()A:强度越高B:塑性韧性越高C:可焊性越好D:塑性越差,韧性越好答案:A3.结构钢的屈服强度 ( ) :A:随着厚度增大而降低,而且随质量等级从A到D逐级提高B:随着厚度增大而降低,但于质量等级(A、B、C、D)无关C:随着厚度增大而提高,而且随质量等级从A到D逐级降低D:随着厚度增大而降低,而且随质量等级从A到D逐级降低答案:A4.在钢的化学元素中,下列哪一种元素的有害作用主要是使钢在低温时韧性降低并容易发生脆性破坏( )A:硫B:磷C:硅D:锰答案:B5.碳的含量对钢材性能的影响很大,一般情况下随着含碳量的增高,钢材的塑性和韧性逐渐增高。
1焊接接头特有的疲劳属性金属疲劳的研究,要回答“裂纹从何处萌生?”,而对焊接接头而言,它没有裂纹萌生过程,焊缝上“大于零的”的微裂纹总是有的,问题是观察的放大镜的倍数是否足够大。
金属疲劳研究的另一个要回答的问题是,“裂纹沿着哪个方向扩展?”,对焊接接头而言,它的扩展模式是明确的,裂纹要么从焊趾沿板的厚度方向扩展,要么从焊根向焊喉方向扩展。
与金属疲劳不同,焊接接头中有残余应力,但是,不论其大与小,也不论其分布如何复杂,它是自平衡的,与外载荷无关。
2疲劳评估时如何确定应力一般使用有限元方法与焊接分级的方法相配合进行疲劳评估。
2.1名义应力法BS 7608以材料力学范畴中的名义应力来描述与定义焊接接头S-N 曲线。
对于不同的接头类型(如喇叭口焊缝和对接焊缝)、载荷形式(如小的循环张力或者弯曲),就需要用不同的疲劳S-N 曲线。
BS 7608编入的设计曲线,对于给定焊接接头,严格说,当分级接头上的名义应力可以用材料力学教科书的内容计算时才可用。
在分析现实焊件时,名义应力的定义是很难确定的。
如果简单的名义应力的定义不能用来表达易出现疲劳位置的应力状态,那么,可靠的疲劳寿命设计或寿命预测就无法实现。
2.2热点应力法由于在焊趾处这样容易出现疲劳的位置的应力很难确定,以及应力的严重网格敏感性,有人就假设认为临近焊趾处的存在一些特定的位置,在这些位置处可以用表面外推法获得焊趾处的热点应力。
由于缺乏同表面应力和外推应力的焊趾应力状态相关联的合理可靠的力学基础,这些方法只能作为一些经验主义的应力确定过程来看待。
此外,在确定焊趾热点应力时用其它给定外推程序,一般也会遇到网格尺寸和单元类型敏感性问题。
2.3结构应力法在焊接件的疲劳评估时,如何以一致的方式确定应力?多少年来,工程中的S-N 曲线一直采用名义应力表示(不可将它与用热点应力表示的S-N 曲线混为一谈,比较而言,后者很难获得),其历史原因是,研究总是从简单问题开始,名义应力可以用材料力学的公式计算,或者用贴片的方法测试,对简单的焊接接头而言,名义应力是合适的,虽然人们知道疲劳破坏总是发生在在焊缝上,但是,如何在焊缝上获得那些应力,却是困难的。