真核生物之酵母表达系统
- 格式:ppt
- 大小:3.39 MB
- 文档页数:42
酵母细胞的基因表达调控和代谢调节研究酵母细胞作为微生物中的重要代表,是一类单细胞真核生物,其广泛应用于生物学、发酵工艺和医学研究中。
酵母细胞的基因表达调控和代谢调节是酵母细胞研究的重要方向,也是生物学研究的重要领域,对理解生命过程以及人类疾病的发病机制有着重要的意义。
一、基因表达调控的研究酵母细胞具有很强的遗传可控性,基因表达调控的研究一直是酵母细胞研究的热点之一。
酵母细胞中基因表达调控主要包括转录前、转录后和调节因子等方面的研究。
1、转录前调控转录前调控主要是指通过转录因子对基因启动子的结合来调控基因的转录速率。
酵母细胞的转录因子主要包括激活转录因子和抑制转录因子两类。
激活转录因子通过结合启动子使得转录因子蛋白与RNA聚合酶共同形成转录复合物,从而促进基因的转录;抑制转录因子则通过结合启动子抑制转录复合物的形成,使得基因的转录过程被抑制。
2、转录后调控转录后调控主要是指转录后修饰以及mRNA剪接等方式对RNA的降解速率和转录的抑制作用。
酵母细胞中常见的转录后修饰有剪切、RNA编辑、加工等方式,这些修饰可以影响RNA的稳定性、翻译速率和结构功能等方面。
3、调节因子调节因子是指在DNA核苷酸序列中通过某种方式调节基因表达的核酸分子。
调节因子可以增强或者抑制某个基因的转录,也可以同时调控多个基因的转录。
酵母细胞中的调节因子主要有染色质重塑复合体、DNA甲基转移酶等。
二、代谢调节的研究代谢调节是指在代谢途径中通过调节酵素活性和代谢产物浓度等方式影响代谢反应的调节过程。
酵母细胞的代谢途径包括葡萄糖酵解、异养代谢、脂质代谢、氨基酸代谢等。
1、葡萄糖酵解葡萄糖酵解是指将葡萄糖分解为乳酸或乙醇代谢的过程。
酵母细胞的葡萄糖酵解主要受到两种调控方式的影响,一种是通过启动子上的转录因子对基因表达的调节,另一种是通过一些代谢产物对基因表达的反馈调控。
2、异养代谢异养代谢是指在缺少氧气或碳源时,酵母细胞通过吸收硫酸盐、氨、磷酸盐等原始无机物质方式进行代谢的过程。
蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点蛋白质表达是生物学研究中一项重要的技术,它可以通过合成蛋白质来研究其结构和功能。
蛋白质表达系统是实现这一过程的关键工具,主要包括原核表达系统和真核表达系统两种。
本文将对这两种蛋白质表达系统进行介绍,并分析它们的优缺点。
一、原核表达系统原核表达系统是利用原核生物(如大肠杆菌)来表达外源蛋白质的系统。
该系统具有以下特点:1. 高表达水平:大肠杆菌是常用的原核表达宿主,具有高表达水平的优势。
通过利用原核细胞的强大蛋白质合成机器,可以获得高产量的外源蛋白质。
2. 易操作性:原核表达系统相对简单,操作步骤少,易于操作和控制。
不需要复杂的细胞培养条件,可以在常见培养基中进行表达。
3. 快速表达:从启动表达到获得蛋白质通常只需要数小时至数天,速度较快。
这使得原核表达系统在高通量表达和快速实验中具有优势。
然而,原核表达系统也存在一些缺点:1. 外源蛋白质折叠问题:由于原核细胞的机器无法正确折叠某些复杂蛋白质,这可能导致外源蛋白质的不正确折叠和失活。
2. 原核特异性翻译后修饰:原核细胞缺乏一些真核细胞所具有的翻译后修饰机制,这可能影响蛋白质的功能和稳定性。
3. 复杂蛋白质表达困难:对于复杂蛋白质(如膜蛋白),原核表达系统通常无法达到理想的表达水平和正确的折叠结构。
二、真核表达系统真核表达系统主要利用真核生物(如酵母、昆虫细胞和哺乳动物细胞)来表达外源蛋白质。
真核表达系统具有以下特点:1. 正确的折叠和修饰:真核细胞具有复杂的蛋白质折叠和修饰机制,能够产生正确折叠和修饰的蛋白质。
2. 适用于复杂蛋白质:真核表达系统适用于复杂蛋白质(如膜蛋白)的表达。
真核细胞提供了正确的环境和细胞器,能够较好地表达这类蛋白质。
3. 适用于大规模表达:真核细胞通常可以进行大规模培养和表达,适用于工业化生产。
然而,真核表达系统也存在一些缺点:1. 低表达水平:相对于原核表达系统,真核表达系统的表达水平较低,可能无法满足高产量蛋白质的需求。
酵母表达引言酵母是一类单细胞真核生物,被广泛应用于生物学研究中。
酵母表达系统是指利用酵母细胞表达外源基因的技术,被广泛应用于蛋白质的高效表达和产量大规模生产。
本文将介绍酵母表达系统的原理、优势和应用。
原理酵母表达系统的核心原理是将外源基因导入酵母细胞,并通过酵母细胞的转录、翻译和修饰机制,使外源基因在酵母细胞中得到表达和功能发挥。
通常情况下,酵母表达系统主要采用酵母菌属的酿酒酵母(Saccharomyces cerevisiae)或毕赤酵母(Pichia pastoris)作为宿主细胞。
1.酵母转录机制:酵母细胞的基因表达主要通过RNA聚合酶Ⅱ进行转录,产生mRNA分子。
2.酵母翻译机制:酵母细胞通过核糖体进行翻译,将mRNA翻译成蛋白质。
3.酵母修饰机制:酵母细胞具有多种修饰酶,可以对蛋白质进行翻译后修饰,如糖基化、磷酸化等。
优势相比其他常用的表达系统,酵母表达系统具有一系列的优势:1.高效表达能力:酵母表达系统能够实现高水平的外源基因表达,产量可达到克级。
2.翻译后修饰:酵母细胞具有多种修饰酶,可以对蛋白质进行翻译后修饰,使蛋白质得到正确的糖基化等修饰。
3.生长条件简单:酵母菌生长条件相对简单,可以在常规培养基中进行培养,对培养条件的要求相对较低。
4.可溶性蛋白质表达:酵母细胞具有较强的蛋白质折叠和修饰能力,能够高效地表达可溶性蛋白质。
应用酵母表达系统广泛应用于以下领域:1.蛋白质研究:酵母表达系统可用于大规模蛋白质表达和纯化,为蛋白质的结构、功能和相互作用研究提供了高效的工具。
2.药物筛选:酵母表达系统可用于药物靶点鉴定和药物分子筛选,加速药物研发过程。
3.疫苗研究:酵母表达系统可用于疫苗候选抗原的高效表达和产量大规模生产。
4.代谢工程:酵母表达系统可用于代谢工程领域,利用酵母细胞对外源代谢产物的高效合成能力,实现产生复杂化合物的目标。
5.生物制药:酵母表达系统已经被广泛应用于生物制药领域,用于生产重组蛋白和抗体等生物药物。
Pichia酵母表达系统使用心得甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。
虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。
不少人在操作中会遇到这样那样的问题,收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。
其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。
甲醇酵母部分优点:1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达;2.AOX强效启动子,外源基因产物表达量高,表达产物可以达到每升数克的水平;3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系统简单,非常适合大规模工业化生产;4.可以诱导表达,也可以分泌表达,便于产物纯化;5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以用工业甲醇替代葡萄糖作为碳源,生产成本低。
产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。
巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。
毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以分泌表达,并且在表达后α-factor可以自动被切除。
生物制药技术中的表达系统研究生物制药技术一直是医药行业的热门领域,在制药过程中,表达系统的研究是非常重要的一部分。
表达系统是生物制药技术中利用细胞合成目标蛋白的关键工具。
目前,表达系统主要被用于制造重要的药物和生物制剂。
1. 表达系统的概念和分类表达系统是通过改变细胞或微生物的基因,使其能够合成一个目标蛋白质的过程。
表达系统主要有两大类:原核表达系统和真核表达系统。
前者是指以细菌、酵母菌、噬菌体等微生物作为表达的载体的表达系统,后者是指以哺乳动物、昆虫、真菌等真核细胞作为表达载体的表达系统。
其中,细菌表达系统应用最为广泛。
2. 细菌表达系统的研究现状目前,大肠杆菌是最常用的细菌表达系统。
因为其简单易操作、高效、低成本、质量稳定等显著优势。
大肠杆菌表达系统的原理主要是:将细胞质中的基因组 DNA 转化为 RNA,然后将 mRNA翻译成蛋白质。
研究表明,大肠杆菌表达系统可以实现许多不同的表达目的,如疫苗生产、技术嵌入、工业酶生产等。
此外,大肠杆菌表达系统在改进和增强中也有很大的发展空间。
目前,研究人员正在进行大肠杆菌表达系统的优化,以提高表达效率并改善产品质量。
例如尝试提高细胞中目标蛋白质的产量,新的表达载体的设计和改进等。
3. 真核表达系统的研究进展在真核表达系统中,以哺乳动物作为载体的表达系统应用最为广泛。
目前,最常用的哺乳动物表达系统是CHO细胞。
CHO细胞是一类美国老鼠卵巢细胞,其表达性能优越,具有较高的表达效率和高质量的表达产物。
除此之外,人类胚胎肾细胞(HEK)是另一种被广泛应用的真核表达载体。
这种类型的表达系统能够产生大量的蛋白质,并且可快速扩展,更加适合于大规模的制剂生产。
总的来说,生物制药技术中的表达系统的研究对于医疗行业的发展起着非常重要的作用。
通过对表达系统的研究,我们能够使得生产更加高效、快速、有效。
另外,还可以提高医药制品的质量和稳定性,为医疗卫生行业提供更高质量的药品和治疗方案。
酵母单杂交的原理及应用1. 引言酵母单杂交是一种基因工程技术,通过将不同的酵母菌株进行杂交,实现基因的转移和重组。
这种技术在生物医药领域和食品工业等多个领域有广泛的应用。
本文将介绍酵母单杂交的原理,以及其在生物学研究和应用领域的具体应用。
2. 酵母单杂交的原理酵母单杂交是基于两个重要的生物学现象:酵母菌的性别和重组。
酵母菌是一种真核生物,有两种性别:雄性和雌性。
酵母菌的重组是指在有性生殖过程中,两个父本酵母菌的基因经过交换,重新组合成新的基因。
酵母单杂交的原理如下: - 首先,选择两个具有不同性别的酵母菌株。
- 将这两个株种分别培养在不同的培养基中,分别生成没有交配伴侣的单倍体细胞。
- 利用化学或物理方法将两种单倍体细胞融合在一起,形成杂交细胞。
- 将杂交细胞培养在适宜的培养基中,使其进行有性生殖。
- 在有性生殖的过程中,两个亲本酵母的基因进行交换和重组,形成新的基因组。
重组的结果可能是基因突变、基因删除、基因重复等。
- 通过筛选和鉴定,筛选出具有特定性状的酵母单杂交子代。
3. 酵母单杂交的应用3.1 用于基因功能研究酵母单杂交可以用于揭示基因的功能和相互作用关系。
通过将感兴趣的基因与其他酵母菌基因进行单杂交,可以确定该基因的功能和参与的生物过程。
此外,酵母单杂交也可以用于酵母基因组的大规模互作网络研究,帮助科学家理解复杂的生物调节网络。
3.2 用于疾病研究与药物筛选许多疾病与基因突变有关,通过酵母单杂交可以研究基因突变对蛋白质功能的影响,从而揭示疾病机制。
此外,酵母单杂交还可以用于药物筛选。
通过将药物与酵母菌基因进行单杂交,可以评估药物对基因的作用和效果,为新药的发现提供线索。
3.3 用于产酵母菌株的改良与优化酵母单杂交可以用于改良和优化产酵母菌株的特性。
通过筛选和鉴定具有特定性状的酵母单杂交子代,可以选择出高产酵母菌株或改良后的酵母菌株。
这对于酿酒、发酵食品和酶工程等产业具有重要意义。
酵母表达系统基因表达是分子生物学领域的重要内容之一,人们利用基因表达技术制备各种目的基因的重组蛋白质,在分析基因的表达与调控、基因的结构与功能、基因治疗以及生物制药等领域均取得了令人振奋的成果。
其中,酵母表达系统拥有转录后加工修饰功能,操作简便,成本低廉,适合于稳定表达有功能的外源蛋白质,而且可大规模发酵,是最理想的重组真核蛋白质生产制备用工具。
1、酵母表达系统的特点酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖速度迅速,能够耐受较高的流体静压,用于表达基因工程产品时,可以大规模生产,有效降低了生产成本。
酵母表达外源基因具有一定的翻译后加工能力,收获的外源蛋白质具有一定程度上的折叠加工和糖基化修饰,性质较原核表达的蛋白质更加稳定,特别适合于表达真核生物基因和制备有功能的表达蛋白质。
某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化。
应用酵母表达系统生产外源基因的蛋白质产物时也有不足之处,如产物蛋白质的不均一、信号肽加工不完全、内部降解、多聚体形成等,造成表达蛋白质在结构上的不一致。
解决内部降解的方法有三:一是在培养基中加入富含氨基酸和多肽的蛋白胨或酪蛋白水解物,通过增加酶作用底物来缓解蛋白水解作用;二是将培养基的pH值调成酸性(酵母可在pH3.0~8.0的范围内生长),以抑制中性蛋白酶的活性;三是利用蛋白酶缺失酵母突变体进行外源基因的表达。
另外,还时常遇到表达产物的过度糖基化情况。
因此,表达系统应根据具体情况作适当的改进。
2、常用酵母表达系统(宿主-载体系统)(1)酿酒酵母(Saccharomyces cerevisiae)表达系统酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。
因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。
酿酒酵母本身含有质粒,其表达载体可以有自主复制型和整合型两种。
真核细胞表达系统常用的真核表达系统有酵母、杆状病毒/昆虫细胞和哺乳动物细胞表达系统。
简而言之,酵母和昆虫细胞表达系统蛋白表达水平高,生产成本低,但加工修饰体系与哺乳动物细胞不完全相同;哺乳动物细胞产生的蛋白质更接近于天然蛋白质,但其表达量低、操作烦琐。
1.酵母表达系统最早应用于蛋白表达的酵母是酿酒酵母,后来相继出现其他种类酵母,其中甲醇酵母表达系统应用最广泛。
甲醇酵母的表达载体含有大肠杆菌复制起点和筛选标志,可在大肠杆菌大量扩增。
甲醇酵母表达载体中含有与酵母染色体中同源的序列,容易整合入酵母染色体中。
大部分甲醇酵母的表达载体中都含有醇氧化酶基因-1(AOX1),在强启动子作用下,以甲醇为唯一碳源的条件下诱导外源基因表达。
甲醇酵母表达蛋白一般需很长时问才能达到峰值水平,实验操作过程中有甲醇毒性和一定安全风险。
2.昆虫细胞表达系统杆状病毒载体广泛应用于培养的昆虫细胞中指导外源基因的表达,其中大多含有苜蓿银纹夜蛾核多角体病毒(AcNPV)中的多角体启动子。
杆状病毒系统蛋白表达量很高,而且大部分蛋白质能保持可溶性。
杆状病毒基因组较大(130kb),可容纳大的外源DNA片段;杆状病毒启动子在哺乳动物细胞中没有活性,安全性较高。
目前常用的是以位点特异性转位至大肠杆菌中增殖的杆状病毒穿梭载体,能快速有效地产生重组杆状病毒。
与通过外源基因重组在昆虫细胞中产生杆状病毒重组体相比,大大简化了操作步骤,缩短了鉴定重组病毒的时间,适于表达蛋白突变体以进行结构或功能的研究。
3.哺乳动物细胞表达系统哺乳动物细胞能够指导蛋白质的正确折叠,它所表达的真核蛋白通常能被正确修饰,在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质,几乎都能在细胞内准确定位,在医学研究中得到广泛应用。
虽然哺乳动物细胞表达比大肠杆菌表达难度大,更耗时,成本更高,但是对于熟悉细胞培养的研究人员表达小到中等量的蛋白非常实用。
哺乳动物细胞表达载体包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等。
生物大分子的生产和纯化技术研究生物大分子在生物技术领域中扮演着重要的角色,包括多肽、蛋白质、抗体、核酸等。
它们通常是由生物体中的细胞或器官内分泌分子、代谢物或病原体产生的,具有广泛的应用前景。
然而,如何快速、高效地生产和纯化生物大分子,一直是制约其应用的关键。
本文将围绕这一课题展开讨论。
一、生物大分子的生产技术生物技术已成为现代生命科学的主要分支之一,其核心在于将自然界中的生物分子进行检测、提取、合成、修饰、鉴定和应用。
这其中,生物大分子的生产是制定生物技术研究计划的重要环节。
常见的生物大分子生产技术有以下几种:1、原核表达系统细菌可以高效地表达大量的异源蛋白质,因此原核表达系统成为了最常见、最普遍的表达系统。
常见的原核表达系统有E. coli,Bacillus subtilis,Pseudomonas fluorescens等。
E. coli表达系统是目前广泛应用的,由于主机易于培养和大规模生产,而且具有较高的表达效率。
可以通过不同的表达载体来选择不同的启动子、信使RNA、连接器和标签,调节靶蛋白的表达量和纯度,并实现对多肽、蛋白质和抗体结构和功能的重组和改造。
2、真核表达系统真核表达系统适用于对膜蛋白、糖蛋白、酶和激素等复杂蛋白质的表达。
常见的真核表达系统有酵母菌、哺乳动物细胞、昆虫细胞等。
酵母表达系统具有高表达量、易操作、可大规模生产等优点。
哺乳动物细胞能够产生正确的蛋白质,并且在翻译、转运和修饰方面具有真正的生物学特性。
昆虫细胞能够表达膜蛋白和糖蛋白,并能够以低成本获得高纯度蛋白质。
3、泛微生物表达系统泛微生物表达系统可用于在单个细胞系统中表达多组分蛋白质,并能够同时进行多重显微镜成像和生物发光实验,具有应用前景。
4、植物表达系统植物表达系统成本低廉,表达蛋白质的速度快,并且具有较好的免疫原性。
但是,植物表达的蛋白质需要进行复杂的糖基化修饰。
二、生物大分子的纯化技术获得高纯度的生物大分子对于其后续研究和应用具有重要的意义。
真核表达系统原核表达系统因其工艺简单、速度快而为人类带来许多便利,eg制药业由原先的脏器提取→发酵制备(IFN),降低了本钱,扩大了来源,也缩短了生产周期。
可是由于原核细胞中没有转录后加工系统,不能识别、剪除内含子,因此很多真核基因就无法在原核细胞中表达;另外,原核细胞缺乏翻译后加工系统,不能对翻译的蛋白质进一步修饰加工。
因此许多糖蛋白在原核细胞中表达后,尽管一样形成蛋白质具有抗原性,却因为不能糖基化,而不产生功能。
例如,C1INH是一种高度糖基化的单链蛋白(49%分子量为糖基),因其不可逆结合C1q而阻断补体活化途径,是一种极好的补体抑制剂,若是C1INH缺点可致使遗传性血管神经性水肿(HANE),表现为全身水肿,尤其是喉头水肿,能够输血,以正常人血中的C1INH来补充医治,但长期输血价钱高,易引发副反映,故可用基因工程产品来医治HANE,但因C1INH为高度糖基化蛋白,在中表达没有活性,现已有人利用CHO表达C1INH,拟用于医治。
一、优势1.具转录后加工系统;2.具翻译后修饰系统;3.可实现真正的分泌表达,分泌至细胞外简化了纯化工艺。
二、真核基因结构及表达调控特点:(一)、基因结构特点:1.DNA极为丰硕,具全能性——mRNA丰度(选材)克隆真核基因的经常使用方式是提取细胞mRNA,反转录合成为cDNA。
尽管真核生物各类细胞中基因含量、种类相同,但却不是选择任一细胞提取其mRNA就可反转录合成出目的基因cDNA,因不同细胞间存在mRNA的丰度问题,基因在不同细胞中转录情形不一样,产生不同的功能蛋白,才表现出各类细胞的丰硕多样性。
故应选择mRNA丰度高的细胞为材料,eg. TNFα基因的克隆是以前髓细胞或早幼粒细胞为材料来源(Alice,1985)。
2.结构复杂,DNA与组蛋白结合,并在其外有核膜——真核生物转录、翻译不可能持续进行。
3.不持续性:内含子、外显子。
内含子可能参与基因调控,不同剪切方式产生不同蛋白质。