钢中夹杂物的类型及控制技术发展要点
- 格式:doc
- 大小:61.50 KB
- 文档页数:13
底吹转炉钢中夹杂物的形态与性质分析底吹转炉钢是一种重要的钢铁生产工艺,其生产过程中夹杂物的形态与性质对钢材质量有着重要影响。
本文将对底吹转炉钢中夹杂物的形态与性质进行详细分析,以便更好地了解钢材质量与夹杂物之间的关系,并提出相应的改进措施。
夹杂物是指存在于钢材中的非金属颗粒或颗粒性物质,其形态与性质对钢材的力学性能、耐腐蚀性能和力学性能等起着重要作用。
夹杂物的形态主要分为两类:氧化物夹杂物和硫化物夹杂物。
氧化物夹杂物主要来源于炼钢过程中的氧化物,如氧化铁和氧化铝等;硫化物夹杂物则来自炼钢原料中的硫。
这两类夹杂物对钢材的质量具有重要的影响,因此需要进行详细的研究和分析。
夹杂物的性质研究主要包括夹杂物的尺寸、形状、分布以及组成等方面。
尺寸的大小直接影响夹杂物对钢材性能的影响程度,大尺寸的夹杂物易导致局部应力集中,从而引起裂纹和断裂等问题。
形状的不规则性也会影响其对钢材的影响,例如球形夹杂物比长状夹杂物对钢材的影响要小。
夹杂物的分布情况对钢材的均匀性和强度等性能起着决定性作用。
组成方面,夹杂物中的主要元素以及其含量也会对钢材的性能产生重要影响。
例如,氧化铁夹杂物的存在会降低钢材的脆性韧性和强度等指标。
为了对底吹转炉钢中夹杂物的形态与性质进行分析,可以采用多种检测和测试手段。
常用的手段包括金相显微镜观察、扫描电子显微镜(SEM)观察、能谱分析、X射线衍射等。
通过这些方法可以观察夹杂物的形态特征、尺寸大小以及组成成分,从而了解其对钢材性能的影响。
此外,还可以结合力学性能测试和化学分析等手段,深入分析夹杂物对钢材的影响机制。
根据对底吹转炉钢中夹杂物形态与性质的分析,我们可以提出一些改进措施来降低夹杂物对钢材性能的不良影响。
首先,炼钢过程中要对原料进行精细筛分和洗涤处理,以减少夹杂物的含量和尺寸。
其次,在转炉操作中,要加强渣化学性质的控制,减少渣中的氧化物含量,进而减少钢中的氧化物夹杂物。
另外,还可以通过改变转炉喷吹气体的压力和流速等参数,以调节夹杂物在转炉中的运移和分布。
304不锈钢中夹杂物的控制304不锈钢是一种广泛应用的奥氏体不锈钢,具有优良的耐腐蚀性和高温强度。
然而,夹杂物的存在可能会对其组织和性能产生不利影响。
因此,控制304不锈钢中的夹杂物对于保证其质量和性能具有重要意义。
本文将介绍夹杂物控制的重要性、夹杂物的来源和分类,以及夹杂物控制的措施和效果。
夹杂物是指存在于金属内部或表面的非金属杂质。
在304不锈钢中,夹杂物可能会破坏材料的连续性,导致应力集中,降低材料的耐腐蚀性和力学性能。
夹杂物对304不锈钢组织和性能的影响主要表现在以下几个方面:降低材料的耐腐蚀性:夹杂物能够破坏不锈钢表面的氧化膜,加速局部腐蚀,降低材料的耐腐蚀性。
降低材料的力学性能:夹杂物会破坏材料的连续性,导致应力集中,降低材料的强度和韧性。
影响材料的加工性能:夹杂物可能引起材料加工过程中的缺陷,如裂纹、折叠等,影响加工质量和精度。
夹杂物主要分为有意夹杂物和无意夹杂物。
有意夹杂物是人为添加的,如为了改善材料的某些性能而特意加入的合金元素。
无意夹杂物是在冶炼、加工过程中引入的,如炉渣、耐火材料、以及与炉气、熔剂、燃料等反应生成的产物。
为了控制304不锈钢中的夹杂物,可以采取以下措施:增加夹杂物球化处理:通过适当的热处理,使夹杂物呈球形颗粒分布,降低其对材料性能的不利影响。
控制原材料及熔炼过程:选用低杂质含量的原材料,严格控制熔炼工艺,避免过度氧化和污染。
精炼和净化处理:采用精炼技术,如电渣重熔、真空熔炼等,去除熔体中的夹杂物;同时,进行净化处理,如加入稀土元素细化晶粒,提高材料的纯净度。
合理安排工艺流程:在加工过程中合理安排工艺流程,避免过度变形和加热,以减少夹杂物的引入。
采取上述控制措施后,可以显著降低304不锈钢中的夹杂物数量和尺寸,改善材料的组织和性能。
具体效果如下:夹杂物形态:通过控制措施,可以使夹杂物呈球形或不规则形态分布,降低其对材料性能的不利影响。
夹杂物分布:采取控制措施后,夹杂物分布更加均匀,避免了局部浓度过高现象,降低材料脆性。
钢中夹杂物浅析1. 钢中夹杂物的分类1.1 根据钢中非金属夹杂物的来源分类(1)内生夹杂物钢在冶炼过程中,脱氧反应会产生氧化物和硅酸盐等产物,若在钢液凝固前未浮出,将留在钢中。
溶解在钢液中的氧、硫、氮等杂质元素在降温和凝固时,由于溶解度的降低,与其他元素结合以化合物形式从液相或固溶体中析出,最后留在钢锭中,它是金属在熔炼过程中,各种物理化学变化而形成的夹杂物。
内生夹杂物分布比较均匀,颗粒也较小,正确的操作和合理的工艺措施可以减少其数量和改变其成分、大小和分布情况,但一般来说是不可避免的。
(2)外来夹杂物钢在冶炼和浇注过程中悬浮在钢液表面的炉渣、或由炼钢炉、出钢槽和钢包等内壁剥落的耐火材料或其他夹杂物在钢液凝固前未及时清除而留于钢中。
它是金属在熔炼过程中与外界物质接触发生作用产生的夹杂物。
如炉料表面的砂土和炉衬等与金属液作用,形成熔渣而滞留在金属中,其中也包括加入的熔剂。
这类夹杂物一般的特征是外形不规则,尺寸比较大,分布也没有规律,又称为粗夹杂。
这类夹杂物通过正确的操作是可以避免的。
1.2 根据夹杂物的形态和分布,标准图谱分为A、B、C、D和DS五大类。
这五大类夹杂物代表最常观察到的夹杂物的类型和形态:(1)A类(硫化物类):具有高的延展性,有较宽范围形态比(长度/宽度)的单个灰色夹杂物,一般端部呈圆角;(2)B类(氧化铝类):大多数没有变形,带角的,形态比小(一般<3),黑色或带蓝色的颗粒,沿轧制方向排成一行(至少有3个颗粒);(3)C类(硅酸盐类):具有高的延展性,有较宽范围形态比(一般>3)的单个呈黑色或深灰色夹杂物,一般端部呈锐角;(4)D类(球状氧化物类):不变形,带角或圆形的,形态比小(一般<3),黑色或带蓝色的,无规则分布的颗粒;(5)DS 类(单颗粒球状类):圆形或近似圆形,直径>13μm的单颗粒夹杂物。
2. 钢中夹杂物主要类型及特征2.1 硫化物硫化物是钢液中所含的硫在凝固时以沉淀物析出形成的产物。
钢中夹杂物等级判定标准(一)钢中夹杂物等级判定标准钢中夹杂物是制约钢材质量的一个重要因素,其等级的判定直接影响钢材的使用性能。
以下是针对钢中夹杂物等级判定标准的相关内容。
1. 夹杂物的定义夹杂物是在均匀固态结构中所存在的未溶解的气体、气泡或其他的物质,如金属氧化物、金属硫化物等,常常会对钢材的性能和质量造成影响。
2. 夹杂物等级夹杂物等级分为5级,依次为A、B、C、D、E级。
其中A级夹杂物最严重,E级夹杂物最轻微。
具体判定标准如下:•A级夹杂物:夹杂物尺寸大于等于3毫米,夹杂物数量大于等于2个,或者夹杂物尺寸大于等于5毫米。
•B级夹杂物:夹杂物尺寸大于等于2毫米,夹杂物数量大于等于5个,或者夹杂物尺寸大于等于3毫米。
•C级夹杂物:夹杂物尺寸大于等于1毫米,夹杂物数量大于等于10个,或者夹杂物尺寸大于等于2毫米。
•D级夹杂物:夹杂物尺寸大于等于0.5毫米,夹杂物数量大于等于50个,或者夹杂物尺寸大于等于1毫米。
•E级夹杂物:夹杂物尺寸大于等于0.2毫米,夹杂物数量大于等于100个,或者夹杂物尺寸大于等于0.5毫米。
3. 夹杂物影响因素夹杂物的形成主要与以下因素有关:•原料质量:原料中夹杂物的含量和形态对钢中夹杂物的形成有一定的影响。
•冶炼过程:冶炼过程中的氧化物和其他杂质会在钢水中形成夹杂物。
•浇注过程:浇注过程中会产生气泡和其他夹杂物,影响钢的质量。
•热处理过程:热处理过程中也可能产生夹杂物。
4. 夹杂物控制方法为了控制钢中夹杂物的级别,需要采取以下措施:•提高原料质量,降低原料中夹杂物含量。
•优化冶炼过程中的工艺参数,减少夹杂物的产生。
•严格控制浇注过程中的气体及其他杂质。
•采取合适的热处理工艺,减少夹杂物的产生。
5. 结语钢中夹杂物等级对钢的性能和质量的影响十分明显,只有通过科学有效的措施来控制夹杂物的级别,才能保证钢材质量的稳定和优良。
6. 典型夹杂物类型夹杂物的种类众多,常见的有氧化物、硫化物、氮化物、碳化物等。
底吹转炉钢中夹杂物的形成与控制技术底吹转炉钢是目前钢铁工业中广泛采用的一种冶炼方法,它具有生产效率高、适应性强等特点。
然而,在钢铁生产过程中,钢中夹杂物的形成会对钢的质量和性能产生重大影响。
因此,如何有效地控制钢中夹杂物的形成成为钢铁生产中的一个重要课题。
夹杂物是指存在于钢中的非金属颗粒或气体物质,它们会影响钢的力学性能、塑性变形能力和耐蚀性能。
夹杂物的形成与控制技术是指通过优化冶炼工艺、合理控制原料、改进设备等手段,减少夹杂物在钢中的生成和降低其含量,从而提高钢的质量。
首先,控制钢中夹杂物的形成与原料选择密切相关。
一方面,应选择优质的原料,如优良的矿石和高品质的废钢。
这些原料中含有少量的有害元素,如硫、砷等,会促进夹杂物的生成。
另一方面,应注重原料的预处理工作。
例如,对矿石进行磁选、洗选等处理,可以有效去除其中的杂质。
对于废钢,可以采取预处理措施,如除锈、分选等,减少夹杂物的引入。
其次,在底吹转炉的冶炼过程中,需要通过优化工艺参数,降低夹杂物的形成。
底吹转炉的炉料冶炼过程中,氧吹气体吹入炉腔,与炉料中的元素发生反应,产生高温下的化学反应。
通过控制气体的流速、压力和温度等参数,可以调节反应的速率和强度,从而减少夹杂物的形成。
此外,还可以通过增加炉腔的搅拌力度,改善钢水的运动状态,促进夹杂物的脱渣,提高钢的质量。
此外,改进底吹转炉的设备和技术也是控制夹杂物的重要手段。
底吹转炉的设备中,喷吹枪头是一个关键部件。
通过改善喷吹枪头的结构设计和材料选择,可以实现更加均匀和稳定的氧吹送风,优化冶炼环境,减少夹杂物的生成。
同时,对设备中的过滤装置、保温装置等进行优化,可以有效控制夹杂物的形成和分离。
另外,通过监控和自动控制技术,如实时测温、测气体成分,可以实现对冶炼过程的精确控制,进一步提高钢的质量。
除了上述原料选择、工艺参数和设备技术的控制外,钢铁生产企业还可以通过改善管理和质量控制体系,进一步控制钢中夹杂物的形成。
钢夹杂物危害及应对措施一、前言钢铁业是几乎所有重工业的基础与支柱,在国民经济中的重要性不言而喻。
钢铁材料是人类社会最主要使用的结构材料,也是产量最大应用最广泛的功能材料,在经济发展中发挥着举足轻重的作用。
钢铁材料是人类社会的基础材料,是社会文明的标志。
从纪元年代前后,世界主要文明地区陆续进入铁器时代以后,钢铁材料在人类生产、生活、战争中起到了举足轻重的作用。
一直到今天,钢铁材料的这种作用不但没有减弱,而是在不断增强。
房屋建筑、交通运输、能源生产、机器制造等都是立足于钢铁材料的应用基础之上;钢铁材料是诸多工业领域中的必选材料,既是许多领域不可替代的结构材料,也是产量最大覆盖而极广的功能材料。
钢铁工业长期以来是世界各国国民经济的基础产业,在国民经济中具有重要的地位,钢铁工业发展水平如何历来是一个国家综合国力的重要指标。
洁净钢是一个相对概念,一般认为:洁净钢指钢中五大杂质元素(S 、P 、H 、N 、O) 含量较低,且对夹杂物(主要指氧化物和硫化物) 进行严格控制的钢种, 主要包括:钢中总氧含量低,夹杂物数量少、尺寸小、分布均匀,脆性夹杂物少及其合适的夹杂物形态。
钢的纯净化技术是生产高性能、高质量产品的基础,代表钢铁冶金企业的技术装备水平。
20 世纪80 年代以来,钢的洁净度不断提高。
日本2000年批量生产的洁净钢中,有害元素(P、S、N、O、H) 总量可达0.005 %,中国宝钢可达0.008 %,国内外钢厂生产洁净钢水平见表1 表1 国内外一些钢厂生产的洁净钢水平单位: ×10 - 6随着现代科技的进步和现代工业的发展对钢的质量要求越来越高,钢中夹杂物(主要是氧化物夹杂)严重影响钢材质量,随着洁净钢和纯净钢概念的提出,更是对钢中夹杂物的控制提出苛刻的要求。
钢中夹杂物能降低钢的塑性,韧性和疲劳寿命,使钢的加工性能变坏,对钢材表面光洁度和焊接性能有直接影响。
钢中的夹杂物对于钢材性能影响很大例如钢中夹杂物可导致汽车和电气产品用薄钢板的表面缺陷、DI罐用薄钢板裂纹、管线钢氢致裂纹、轮胎子午线加工过程断线、轴承钢疲劳性能恶化,同时钢中非金属夹杂物对于钢板抗撕裂性能和低温冲击韧性也有不利影响。
钢种夹杂全解析[引用2009-06-12 20:45:45]字号:大中小1、钢中夹杂物的长大、上浮与分离钢中尺寸较小的夹杂物颗粒不足以上浮去除,必须通过碰撞聚合成大颗粒,较大的夹杂物陆续上浮到渣层,离开钢液。
在强湍流下,夹杂物碰撞聚合非常迅速,例如在0.1m2/s3的强湍流条件下,夹杂物半径长大到100μm只要2min。
直径为100μm的Al2O3夹杂物从钢液表面下2.5m上浮到钢液表面需要4.8min,直径为20μm的夹杂物,上浮时间增加到119min。
从钢液中分离夹杂物的主要途径包括两种:(1)被表面的渣层吸附;(2)被壁面耐火材料吸附。
2、钢中夹杂物去除技术2.1气体搅拌2.1.1钢包吹氩吹氩搅拌是钢包炉重要的精炼手段之一,钢中夹杂物被气泡俘获去除的效率决定于吹入钢液中气泡数量和气泡尺寸。
钢包底吹氩用透气砖平均孔径一般为2~4mm,在常用的吹氩流量范围产生的气泡直径为10~20mm。
而有效去除夹杂物的最佳气泡直径为2~15mm,并且气泡在上浮过程会迅速膨胀。
因此,底吹氩产生的气泡捕获小颗粒夹杂物概率很小,对细小夹杂物去除效果不理想。
在钢包底吹氩过程中,过强的搅拌功会导致钢水的二次氧化及卷渣。
为了去除钢中的细小夹杂物颗粒,必须钢液中制造直径更小的气泡。
将氩气引入到足够湍流强度的钢液中,依靠湍流波动速度梯度产生的剪切力将气泡击碎,可将大气泡击碎成小气泡。
钢包与中间包之间的长水口具有高的湍流强度,在此区域钢水流速达到1~3m/s。
在长水口吹氩水模型研究表明,可获得0.5~1mm的细小气泡。
细小的气泡捕获夹杂物的概率很高。
这种方法可显著提高氩气泡去除夹杂物的效率。
2.1.2中间包气幕挡墙通过埋设于中间包底部的透气管或透气梁向钢液中吹入的气泡,与流经此处的钢液中的夹杂物颗粒相互碰撞聚合吸附,同时也增加了夹杂物的垂直向上运动,从而达到净化钢液的目的。
德国NMSG公司的应用结果表明,与不吹气相比,50~200μm大尺寸夹杂物全部去除,小尺寸夹杂物的去除效率增加50%。
钢的非金属夹杂物
钢的非金属夹杂物主要有氧化物、硅、磷、硫等。
1. 氧化物:钢材在高温下容易与氧气发生反应生成氧化物,主要有铝氧化物、铁氧化物、锰氧化物等。
氧化物夹杂物会降低钢材的强度和塑性,并且容易形成脆性氧化皮。
2. 硅:硅是钢材中常见的非金属夹杂物,主要来自原料和炼钢过程中的硅铁等添加剂。
硅夹杂物对钢的机械性能有较大影响,高硅含量会降低钢材的强度和韧性。
3. 磷:磷是钢材中的有害非金属夹杂物,容易导致钢的冷脆性增加,特别是在低温下会引起钢材的脆性断裂。
因此,钢材中磷含量的控制非常重要。
4. 硫:硫是钢材中常见的非金属夹杂物,主要来自原料和炼钢过程中的硫铁等添加剂。
高硫含量会降低钢的冷加工性能和焊接性能,还容易引起钢的脆性断裂。
为了降低非金属夹杂物对钢材性能的影响,炼钢过程中会采取适当的工艺措施和添加剂,如进行脱氧、脱硫等处理,以提高钢材的质量和性能。
钢中夹杂物的类型及控制技术发展XX(河北联合大学冶金与能源学院,唐山,063009)摘要:综合论述了钢中非金属夹杂物的按化学成分、形态、粒度、来源的分类以及控制夹杂物含量时所采用的气体搅拌-钢包吹氩、中间包气幕挡墙、电磁净化-钢包电磁搅拌、中间包离心分离和结晶器电磁制动、过滤器技术、超声处理技术和渣洗技术,并针对钢中夹杂物的控制技术的优、缺点进行了简要的归纳。
随着氧化物冶金工艺纯净钢产品的开发,夹杂物去除技术的不断进步,非金属夹杂物的控制技术仍面临着新任务。
关键词:非金属夹杂物;夹杂物类型;控制技术Types and Progress on Technique for Removel of inclusions in steelXX(College of Metallurgy and Energy Hebei United University, Tangshan 063009) Abstract:The behavior of inclusions in molten steel includes physical processes such as nucleation, growth, polymerization and transmission. The removal of inclusions can be seen as the result of transmission, which involves inclusion growth, floating and separating. The key progress on technique for removal of inclusions in steel is gas stirring-ladle argon blowing, gas shielding weir and dam in tundish, electromagnetic cleaning-ladle electromagnetic stirring, tundish centrifugal separating and mold electromagnetic braking, slag washing, ultrasonic technique ,and filter technique.Key words:non-metallic inclusions Typesof inclusions, Technique for Removel of inclusions1引言钢中非金属夹杂物是指钢中不具有金属性质的氧化物、硫化物、硅酸盐或氮化物。
它们是钢在冶炼过程中加入脱氧剂而形成的氧化物、硅酸盐和钢在凝固过程中由于某些元素溶解度下降而形成的硫化物、氮化物 ,以及炉渣或耐火材料来不及排出而留在钢中。
它们常作为衡量钢质量的重要指标 ,其类含量对钢性能产生重大的影响,近年来 ,钢中夹杂物去除技术的研究工作主要集中在两个方面 :提高钢的清洁度 ;改变夹杂物的形态和分布。
随着钢铁工业的进一步发展,钢的材质设计和应用技术的开发给冶金工业带来了极大的挑战。
钢铁产品将按着钢液洁净度高、成分控制精度高和产品性能稳定性能高的方向发展,其中高纯净度钢的生产是21世纪钢铁企业面临的重大课题,它的解决与钢的冶炼过程密切相关,而本文将介绍夹杂物的分类以及相关的控制技术。
2钢中夹杂物的类型2.1钢中夹杂物按化学成分分类钢中非金属夹杂物按化学成分主要分为氧化物系夹杂、硫化物系夹杂、氮化物夹杂三大类[1]。
(1)氧化物系夹杂简单氧化物有FeO,Fe2O3,MnO,SiO2,Al2O3,MgO和Cu2O等。
在铸钢中,当用硅铁或铝进行脱氧时,夹杂比较常见。
在钢中常常以球形聚集呈颗粒状成串分布。
复杂氧化物,包括尖晶石类夹杂物和各种钙的铝酸盐等,以及钙的铝酸盐。
硅酸盐夹杂也属于复杂氧化物夹杂,这类夹杂物有铁硅酸盐、锰硅酸盐和钙硅盐等这类夹杂物在钢的凝固过程中,由于冷却速度较快,某些液态的硅酸盐来不及结晶,其全部或部分以玻璃太的形式保存于钢中。
(2)硫化物系夹杂硫化物系夹杂主要是FeS, MnS和CaS等。
由于低熔点的FeS易形成热脆,所以一般均要求钢中要含有一定量的锰,使硫与锰形成熔点较高的MnS而消除FeS的危害。
因此钢中硫化物夹杂主要是MnS。
铸态钢中硫化物夹杂的形态通常分为三类:①形态为球形,这种夹杂物通常出现在用硅铁脱氧不完全的钢中;②在光学显微镜下观察呈链状的极细的针状夹杂;③呈块状,外形不规则,在过量铝脱氧时出现。
(3)氮化物夹杂当钢中加入与氮亲和力较大的元素时形成A1N,TiN,ZrN和VN 等氮化物。
在出钢和浇铸过程中钢液与空气接触,氮化物的数量显著增加。
2.2 按夹杂物的塑性变形能力分类按夹杂物的塑性变形能力分脆性夹物、塑性夹杂物、球状不变性夹杂、半塑性夹杂物四类[1]。
(1)脆性夹物脆性夹物热加工时形状和尺寸都不变化,但可能沿加工方向成串排列或呈点链状,属于这类夹杂物的有Al2O3和Cr2O3。
(2)塑性夹杂物塑性夹杂物热变形时具有良好范性,沿变形方向延伸成条带状。
属于这类的有硫化物及含量较低(40%~60%)的铁锰硅酸盐。
(3)球状不变性夹杂球状不变性夹杂呈球状,热加工后保持球状不变,如SiO2及含SiO2较高(>70%)的硅酸盐。
(4)半塑性夹杂物半塑性夹杂物指各种复相的铝硅酸盐夹杂。
基体铝硅酸盐有塑性,热加工时将产生塑性变形,但是其中包含着的析出相如氧化铝等是脆性的,加工时仍保持原状或只是拉开距离。
2.3钢中夹杂物按来源分类钢中夹杂物可分为内生和外来夹杂物,内生夹杂物主要是脱氧和合金化元素与溶解在钢液中的氧以及硫、氮的反应产物所形成的夹杂物。
外来夹杂物是钢液与空气、耐火材料、炉渣及保护渣相互作用的产物以及机械卷入钢中的各种氧化物[1]。
3钢中夹杂物去除技术从钢液中分离夹杂物的主要途径包括两种:(1)被表面的渣层吸附;(2)被壁面耐火材料吸附。
3.1.1 钢包吹氩吹氩搅拌是钢包炉重要的精炼手段之一,底吹氩可以均匀钢液的成分和温度,最重要的功能是促进钢液中夹杂物的去除[2]。
钢包底吹氢去除夹杂物主要依靠气泡的浮选作用,即夹杂物与气泡碰撞并粘附在气泡壁上,然后随气泡上浮而被去除。
具体过程分如下几步[2.3]:①具有一定压力的氢气通过透气砖输送到钢液中,形成气泡,气泡在上浮的过程中又因浮力的作用,将钢水抽引并使之在气液区内产生由下向上的流动;②气泡到达顶部时转入水平方向并流向包壁,之后在包壁附近向下回流,再次在钢包中下部被抽引至气液区内,如此循环流动形成环流;③在环流过程中,夹杂物向气泡靠近并发生碰撞,并与气泡间形成钢液膜;④夹杂物在气泡表面滑移,形成动态三相接触使液膜排除和破裂⑤夹杂物和气泡团稳定化合并上浮。
底吹氩去除钢中夹杂物的效率主要取决于氩气泡和吹入钢液的气体量。
小直径的气泡捕获夹杂物颗粒的概率比大直径气泡高。
增加底吹透气砖的面积、选用小透气砖孔径 (即在有限的吹氢时间内成倍地增加吹入钢液的气泡数量)可以降低透气砖出口处氢气表观流速,从而减小透气砖出口处氢气泡的脱离尺寸并增加气泡捕获夹杂物的概率。
合适的精炼渣和钢包耐火材料可以大大促进钢包吹氢去夹杂的效果。
3.1.2 中间包气幕挡墙中间包“气幕”挡墙是通过垂直于沿包底流动的液流布置的排列成列的吹氩孔口,向中间包内吹氩,吹入的氩气泡在中间包内钢液中产生一道“气幕”[4]。
气幕挡墙代替中间包内的挡渣堰或挡渣坝均可以有效延长钢液的停留时间,促进夹杂物上浮去除,其中代替坝时,效果更显著 [5],同时由于气幕挡墙本身对钢液的污染少因此该技术在生产洁净钢时有很大的应用潜力。
通过埋设于中间包底部的透气管或透气梁向钢液中吹入的气泡,与流经此处的钢液中的夹杂物颗粒相互碰撞聚合吸附,同时也增加了夹杂物的垂直向上运动,从而达到净化钢液的目的[6]。
德国NMSG公司的应用结果表明与不吹气相比,大尺寸夹杂物全部去除,小尺寸夹杂物的去除效率增加50~200m50%[7],本溪钢厂中间包底吹氩试验证实:底吹氩形成的气幕挡墙对夹杂物去除效果明显,同不吹氩相比,铸坯中夹杂物数量下降50%,的夹杂物[8]。
而且未观察到30-50m3.2电磁技术3.2.1 电磁制动(EMBR)利用电磁制动技术控制结晶器内的流场,去除非金属夹杂物已经引起了国内外学者的重视并取得了初步的进展[9~14]:1) 电磁制动作用于浸入式水口可以减小钢液偏流;2) 电磁制动作用于结晶器中浸入式水口出口流股上可以减缓其速率,扩大非金属夹杂物的上浮区;3) 电磁制动作用于弯月面区域对钢液的运动起抑制作用,磁感应强度越大,这种趋势越强;拉速提高,电磁场对弯月面区域钢液运动的抑制作用更好。
3.2.2 电磁搅拌(EMS)交变电磁场可在液体金属中产生电磁驱动力,根据此原理开发的连铸电磁搅拌技术使钢液产生强制流动,使铸坯的高温区与低温区充分混合,加快过热度的导出,并折断树枝晶,增加结晶核心及等轴晶数量,从而改善凝固组织,加快钢中夹杂物的去除,提高铸坯质量,能够使显微夹杂和宏观夹杂都得到明显改善[15-17]。
按搅拌位置,电磁搅拌可分为结晶器电磁搅拌(M-EMS)、二冷区电磁搅拌(S-EMS)和凝固末端电磁搅拌(F-EMS)[18]。
3.2.3 电磁连铸(EMC)采用电磁连铸时作用于铸坯壳上的电磁力可使坯壳与结晶器钢板不接触从而降低铸坯壳与铜板之间的传热,即冷却降低,这样防止了振痕的产生也能防止夹杂物和气泡的富集,由于没有振痕且可以防止纵裂纹的产生[19]。
3.3 过滤器技术J.M.Stemper用A1203做成的过滤网和蜂窝状过滤器过滤不锈钢和低碳钢均取得了明显效果。
市桥弘行对氧化铝、氧化锆过滤器进行了研究认为:夹杂物的去除率与过滤器的材质、网眼直径、过滤器厚度及钢水流速有关。
梅泽一诚[20]发现:钢水流速在6cm/sec以上时,随着钢水流速的增加,阻挡效果和惯性冲击效果提高了夹杂物的去除效果。
美国SELEE钢铁公司[21]研制的过滤器应用于中间包上,可经受5~515 h的冲刷与侵蚀,连铸钢水达330t去除总氧效率为40%~80%。
国内董履仁、叶荣茂[22]对钢水过滤器进行的研究取得了较好的效果。
宝钢在多年生产经验的不断积累中,逐步开发了多柱面组合式中间包钢水过滤器,为了增加钢水回流,促进夹杂物与钢水的分离,防止夹杂物在过滤柱聚集后堵塞钢水通道,过滤柱的截面形式有五种形式。
这种过滤器一方面通过增加过滤器单位体积与钢水接触的比表面积,提高夹杂物与过滤体碰撞的机率,另一方面通过过滤柱的结构形式以及过滤柱的排列形式的优化,改善中间包钢水流经过滤器时的流动形态,促进夹杂物与钢水分离,从而净化钢水[23]。