攻克解析几何综合题的几种策略
- 格式:docx
- 大小:769.44 KB
- 文档页数:9
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
解析几何大题的解题步骤和策略
当涉及解析几何大题时,下面是一般的解题步骤和策略:
1.阅读理解:仔细阅读题目,理解问题陈述、已知条件和要求,
确保对问题的要求和约束有清晰的理解。
2.建立坐标系:根据题目描述和已知条件,确定合适的坐标系。
选择适当的坐标可以简化问题的计算和分析。
3.列出方程:根据题目的几何关系,用已知条件建立方程。
可
以利用距离公式、斜率公式、点斜式等几何关系公式来列出方程。
4.解方程组:利用求解方程组的方法来找到未知变量的值。
可
以使用代入法、消元法、梯度下降法等方法来求解方程组。
5.分析图形特征:通过计算、分析和绘制图形,找出图形的性
质和特征。
可以利用角度、长度等几何性质来推断和解答问题。
6.检查和回答:在得出计算结果之后,进行合理性检查,确保
计算的准确性。
最后,回答问题,给出相应的解释和结论。
在解析几何大题时,要善于运用几何知识和创造性思维,注意问题的合理性和准确性。
同时,从不同的角度分析和解决问题,灵活运用几何性质和解题策略,可以更好地应对解析几何大题。
根据具体的题目和难度,可能需要使用不同的方法和技巧,因此灵活性和实践经验也是很重要的因素。
高考数学如何应对解析几何的难题解析几何是高考数学中一个相对较为复杂和困难的知识点,无论是平面解析几何还是空间解析几何,都需要同学们具备较高的数学思维和分析能力,才能够顺利解决问题。
在高考中,解析几何常常是一道能够考察学生综合运用多种数学知识与技巧的题目,因此,如何应对解析几何的难题成为学生备战高考的重要环节。
本文将从几个方面为同学们介绍高考数学解析几何题目的解题技巧与策略。
一、充分理解题意在解析几何的难题中,题目通常会给出一定的几何条件或图形描述,并要求求解一些未知的几何性质或者计算一些几何量。
因此,同学们首先要做的就是充分理解题目中给出的条件和要求,举一反三,将所学知识与题目相结合,形成自己的解题思路。
二、熟练掌握基本几何定理与公式解析几何的难题往往需要建立几何模型,运用几何定理和公式来求解。
因此,同学们需要熟练掌握基本的几何定理与公式,例如平面解析几何中的点与直线的关系、直线与直线的关系、平面与平面的关系等,还有空间解析几何中的点与直线的关系、直线与平面的关系、平面与平面的关系等。
只有当我们熟练掌握了这些基本的几何定理与公式,才能在解析几何的题目中游刃有余。
三、灵活应用坐标系在解析几何的题目中,坐标系是一种非常重要的工具。
通过建立适当的坐标系,可以把几何问题转化为代数问题,更加方便理解和计算。
同学们需要熟练掌握直角坐标系和参数方程两种坐标系的应用,能够根据题目的要求选择适当的坐标系,简化问题的求解过程。
四、细心分析图形性质在解析几何的题目中,图形性质的分析是非常重要的一步。
同学们需要根据题目给出的条件和要求,利用已知信息推导出更多的图形性质,从而为问题的解决提供更多线索。
同时,同学们还需要判断出哪些性质是关键性质,哪些是次要性质,避免陷入无用的计算中。
五、多做题,总结经验解析几何需要一定的练习积累,通过多做题目,可以更加熟悉各种典型的解题方法和技巧。
在解题过程中,同学们要注意总结分析,归纳各种解题的模式,形成自己的解题经验。
解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。
高三平面解析几何复习的教学策略高三平面解析几何是数学课程中的重要内容之一,也是考试中常考的题型。
为了帮助学生复习和掌握这一部分知识,教师需要制定相应的教学策略。
本文将从教学内容、教学方法和复习计划三个方面来介绍高三平面解析几何复习的教学策略。
一、教学内容在高三平面解析几何的复习中,教师需要重点复习以下内容:1. 平面方程的应用:包括点斜式、两点式、一般式等平面方程的互相转化和应用;2. 直线与平面的位置关系:直线的方程和位置关系、直线与平面的位置关系等内容;3. 空间几何体的平面截线:包括球、圆锥、圆柱等空间几何体与平面的截线问题;4. 空间向量的应用:包括向量的夹角、向量的共线、向量的运算等内容。
以上内容是高三平面解析几何的重点内容,复习时要注重学生的理解和掌握程度,尤其是与其他几何知识的联系和综合应用。
二、教学方法1. 综合性教学法:平面解析几何与向量、数学分析、几何等知识有很大的联系,复习时可以采用综合性教学法,将平面解析几何与其他知识点相结合,使学生能更好地理解和掌握知识。
2. 案例教学法:通过实际案例的讲解,让学生了解平面解析几何的应用,加深他们对知识点的理解。
学生可以通过解决实际问题来巩固和提升他们的解题能力。
3. 多维度教学法:平面解析几何涉及到三维空间的问题,教师需要引导学生将平面几何的题目转化为三维空间的问题,从多个角度来理解和解决问题。
4. 实践教学法:通过实践操作,比如利用几何软件进行模拟实验,让学生更直观地理解平面解析几何的内容,提高他们的学习兴趣和解题能力。
以上教学方法可以有效地帮助学生巩固和提高平面解析几何的学习成绩,加强和应用所学知识。
三、复习计划为了让学生更好地复习平面解析几何,教师可以制定以下复习计划:1. 明确复习内容:教师首先要明确定义好复习的内容和目标,包括重点、难点和易错点的整理和梳理。
2. 分阶段复习:根据复习内容的特点,可以将复习分为基础阶段、巩固阶段和强化阶段,逐步推进,循序渐进。
解析几何解答题的答题策略和技巧解析几何解答题答题策略和技巧解析几何题目的解答通常涉及到代数和几何原理相结合。
要有效解决这些问题,遵循以下策略和技巧至关重要:理解题意仔细阅读题目,并确保理解要求。
确定您需要找到的内容,例如点的坐标、线的方程或图形的性质。
选择适当的坐标系根据问题中的信息,选择合适的坐标系。
笛卡尔坐标系(直线坐标系)通常用于描述二维空间,而极坐标系则适用于某些涉及角度或极半径的问题。
建立方程或不等式使用代数和几何原理建立方程或不等式。
这可能包括使用点-斜率形式、斜截距形式、点-线距离公式或其他相关概念。
求解方程或不等式运用代数技巧求解方程或不等式。
这可能涉及因子分解、平方、化简或三角函数的使用。
验证解将找到的解代回原始方程或不等式中,以确保其满足问题条件。
几何直觉在求解过程中,运用几何直觉来了解图形的形状和位置。
这可以帮助您做出假设和做出明智的决策。
技巧和注意事项简化问题:如果可能,将复杂的问题分解成更简单的部分,以便更容易解答。
利用对称性:在某些情况下,图形或方程可能具有对称性。
利用这些对称性可以简化问题。
使用图形计算器:图形计算器可以用于可视化图形并检查解。
保持整洁和有条理:使用清晰的数学符号并以有条理的方式显示您的工作步骤。
复查解:在完成解决方案后,花时间复查您的工作,以确保准确性和一致性。
特定类型问题的技巧点和线:使用点-斜率形式、斜截距形式或点-线距离公式求解点的坐标或线的方程。
圆:使用标准圆方程或圆心和半径来确定圆的性质。
双曲线:使用双曲线的标准方程或渐近线来求解焦点、顶点和渐近线。
抛物线:使用抛物线的标准方程来确定顶点、焦点和准线。
椭圆:使用椭圆的标准方程来确定中心、半轴和焦距。
通过遵循这些策略和技巧,您可以大大提高解析几何问题的解答能力。
记住,熟能生巧,因此定期练习和学习相关概念至关重要。
高中数学解析几何题解策略解析几何是高中数学中的一大重点,也是学生们普遍认为比较难的部分。
在解析几何题目中,我们需要运用坐标系、向量、直线和曲线等概念来进行分析和解答。
本文将介绍一些解析几何题目的解题策略,帮助高中学生更好地应对这一考点。
一、直线方程的求解在解析几何中,直线是最基本的图形之一,因此直线方程的求解是解析几何题目中的常见考点。
对于一般形式的直线方程ax + by + c = 0,我们可以通过以下几种方法求解:1. 通过斜率和截距求解:如果直线已知斜率k和截距b,我们可以直接写出直线方程为y = kx + b。
如果直线已知两个点A(x1, y1)和B(x2, y2),我们可以通过斜率公式k = (y2 - y1) / (x2 - x1)和截距公式b = y - kx来求解。
2. 通过两点式求解:如果直线已知两个点A(x1, y1)和B(x2, y2),我们可以通过两点式公式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)来求解。
3. 通过点斜式求解:如果直线已知斜率k和一个点A(x1, y1),我们可以通过点斜式公式(y - y1) = k(x - x1)来求解。
二、直线与曲线的求交点在解析几何中,直线与曲线的交点是另一个常见的考点。
求解直线与曲线的交点可以通过以下几种方法:1. 代入法求解:将直线方程代入曲线方程,得到一个关于x的方程,然后解方程求解x的值,再代入直线方程求解y的值。
2. 消元法求解:将直线方程和曲线方程联立,通过消元法求解x和y的值。
3. 向量法求解:将直线方程和曲线方程转化为向量形式,通过向量的运算求解交点坐标。
三、平移、旋转和缩放在解析几何中,平移、旋转和缩放是解题时常用的策略。
通过平移、旋转和缩放可以改变图形的位置、方向和大小,从而简化题目的分析和解答。
1. 平移:通过将图形沿着x轴或y轴方向平移,我们可以改变图形的位置,从而使题目的分析更加简单。
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
攻克解析几何综合题的几种策略Revised on November 25, 2020收稿日期:2012-05-11作者简介:郭允远(1963—),男,山东沂南人,中学高级教师,临沂市教育局教科研中心高中数学教研员,山东省教学能手,山东省知名高考研究专家,主要从事中学数学教育与高考研究.攻克解析几何综合题的几种策略郭允远(山东省临沂市教育科学研究中心)摘要:解析几何综合题,在高考解答题中一般出现在最后两题之一的位置,以其综合性强、运算量大、区分度高等特点,成为常考常新、经久不衰的热点、难点问题.从破解难点的角度,以典型高考试题为例,给出全面审题、分部转化,设而不求、整体处理,数形结合、减少运算等一般性策略,在关键之处有点评,可有效解决这类难题之难点.关键词:解析几何;综合题;高考题例;解题策略解析几何综合题表现为题干长,条件多,往往要涉及几种曲线的组合,可能还要与平面向量、函数、不等式等其他内容综合,有两问或三问,第二问往往是探索性、开放性问题,如是否存在问题,定点、定值、最值等问题.这样的问题设计,特别有利于考查学生综合分析解决问题的能力,因而成为高考的主干内容之一, 而且常以压轴题呈现,常考常新,经久不衰.可以说,这几乎是所有学生的一个难点, 很多学生对其有惧怕感,有的只做第一问,第二问干脆放弃.对此,本文结合部分高考题中有相当难度的解析几何压轴题,分析攻克这类题目第二问、第三问的一般性策略,供广大师生参考.一、全面审题,分部转化由于解析几何综合题具有信息量大、字母符号多、图形复杂等特点,另一方面学生面对探索性、存在性等问法,缺少明确的解题目标,难以找到解题方向.因此,审清题意、找到解题的入口是解题的前提.全面审题要做好“三审”:审条件,审结论,审图形,并注意隐含条件.弄清题干给出的是哪一种或几种曲线,它们是怎样的位置关系,其方程是已知的还是含字母待求的,等等,要对照图形找到它们之间的关系(若题目没有给出图形,要边读题边画出图形),通过审结论明确解题目标。
但是,由于条件和结论距离甚远,很可能还找不到解题的方向,那么,就要对条件逐一进行转化,向着结论指示的解题目标转化,同时也转化结论,一旦“对接”,就找到了问题解决的入口。
例1(2011年湖南卷·理21)如图1,椭圆22221:by a x C +)0(1>>=b a 的离心率为23,x 轴被曲线22:x y c =b -截得的线段长等于1C 的长半轴长.(1)求21C C 、的方程;图1(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点MB MA B A 、、,分别与1C 相交于点D 、E .①证明:;ME MD ⊥②记MDE MAB ∆∆、的面积分别是,21S S 、问:是否存在直线l ,使得?321721=S S 请说明理由.解析:本题涉及椭圆、抛物线、直线的相关问题,本质是直线l 与2C 相交问题.第(1)问易得21C C 、的方程分别为.1,14222-==+x y y x第(2)问②,通过审图形、审条件,抓住问题的本质是直线l 与2C 相交于点A 、B ,实施如下转化即可使问题获得解决:1-=•⇔⊥⇔⊥MB MA k k MB MA ME MD . 第(2)问②为存在性问题,假设存在直线l 满足321721=S S ,需要分别求出1S 、2S 的表达式,由MD ME ⊥与MA MB ⊥,则求出点A 、B 与D 、E 的坐标即可.设直线MA 的斜率为1k ,则直线的方程为11y k x =-,由1211y k x y x =-⎧⎨=-⎩解得01x y =⎧⎨=-⎩或1211x k y k =⎧⎨=-⎩,则点A 的坐标为211(,1)k k - 又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)k k --. 【点评】利用类比推理,直接得到点B 的坐标,节省了运算.于是211111111||||||||.22||k S MA MB k k k +=⋅=-= 又由1221440y k x x y =-⎧⎨+-=⎩得2211(14)80k x k x +-=, 解得01x y =⎧⎨=-⎩或12121218144114k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,则点D 的坐标为2112211841(,)1414k k k k -++; 又直线的斜率为11k -,同理可得点E 的坐标211221184(,)44k k k k --++, 于是2112221132(1)||1||||2(14)(4)k k S MD ME k k +⋅=⋅=++,因此21122111(417)64S k S k =++. 由题意知,21211117(417)6432k k ++=,解得214k =或2114k =. 又由点A 、B 的坐标可知,21211111111k k k k k k k -==-+,所以3.2k =± 故满足条件的直线l 存在,且有两条,其方程分别为32y x =和32y x =-. 【点评】若直接设AB 的方程为y =kx 与抛物线2C 的方程联立,可以用k 表示出1S ,但用k 表示2S 的运算就复杂了.所以注意运用①的结论,即MD ME⊥与MA MB ⊥,转化为直线MA (MD )与1C 、2C 的关系,进而把1S 、2S 都用MA 的斜率1k 表示,通过点A 、B 的坐标完成了与k 的“对接”.二、设而不求,整体处理在解析几何解题中,恰当地设某些变量(尽量减少变量个数),如点的坐标、直线方程、圆锥曲线方程等,是解题的开始,而过程中的运算是解题能否完成的关键.要围绕解题的总目标,运用设而不求等运算技巧,实施整体代换、整体化简、整体求出等策略,往往可起到化繁为简、事半功倍的卓越功效.例2(2011年浙江卷·理21)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若过M 、P 两点的直线l 垂足于AB ,求直线l 的方程.解析:(1)易得圆心M (0,4)到准线的距离为417.(2)本题涉及三个动点P 、A 、B ,两条动直线AB ,l 两种位置关系:相切、垂直,要求直线l 的方程,需求l 的斜率或点P 的坐标,离已知条件甚远,所以要实施分部转化,先大胆设出三个动点的坐标,用坐标表示两种位置关系.设),(2a a P ,),(211t t A 、),(222t t B 由题意得0≠a ,1±≠a ,21t t ≠. 【点评】利用点P 、A 、B 在抛物线1:C 2x =y 上,巧设点的坐标,较少了变量个数,使得以下的解法优于试题原答案的解法;注意挖掘题目的隐含条件也是重要的一点.所以PA 方程为)(12212a x at a t a y ---=-,即0)(11=--+at y x a t .因为PA 与圆M 相切,所以11)(|4|211=++--=a t at d ,即0156)1(21212=-++-a at t a .同理0156)1(22222=-++-a at t a ,所以1t 、2t 是关于t 的方程0156)1(222=-++-a at t a 的两个根.所以16221--=+a at t ,1152221--=a a t t .而212221t t t t k AB --==16221--=+a at t .【点评】整体求出、整体代换的整体策略在这里得到了充分地体现!至此,问题的解决便水到渠成.又aa k MP 42-=,因为MP AB ⊥,所以1-=MP AB k k ,即141622-=-⋅--a a a a ,解得5232=a . 所以1151153523452342±=±-=-=a a k MP ,所以直线l 的方程为41151153+±=x y . 三、 数形结合,减少运算解析几何的核心方法是“用代数方法研究几何问题”,核心思想是“数形结合”,注意利用图形特点和性质,往往可以减少运算量,使问题获得简捷解决.例3(2010年陕西卷·理20)如图,椭圆22:a x C 122=+by 的顶点为,21A A 、,21B B 、焦点为,21F F 、,7||11=B A (1)求椭圆C 的方程;(2)设n 是过原点的直线,l 是与n 垂直相交于P 点且与椭圆相交于A 、B 两点的直线,|| 1.OP =是否存在上述直线l 使1AP PB ⋅=成立若存在,求出直线l 的方程;若不存在,请说明理由.解析: (1)易得13422=+y x . (2)由条件||1,1OP AP PB =⋅=,则有1||||||2==⋅OP BP AP , 即,||||||||BP OP OP AP =可得,~OBP Rt AOP Rt ∆∆所以BOP OAP ∠=∠,故 90AOB BOP AOP OAP AOP ∠=∠+∠=∠+∠=︒.当直线l 不垂直于x 轴时,设l :y =kx +m ,由||1OP =,得11||=+km ,即2m .12+=k将直线l 的方程代入椭圆方程,整理得3(.0124.8)4222=-+++m x km x k设点A 、B 的坐标分别为),(),(2211y x y x 、,则222122143124,438k m x x k km x x +-=+-=+. 由上得12120OA OB x x y y ⋅=+=,即)1(2k +0)(22121=+++m x x km x x ,再把2121x x x x 、+代人并化简,得)1(12722k m +=,将122+=k m 代入得0)1(52=+-k ,矛盾.即此时直线l 不存在.当l 垂直于x 轴时,可验证也不存在.【点评】由条件||1,1OP AP PB =⋅=得到2||||||AP BP OP ⋅=,再由三角形相似关系推得OA OB ⊥,从而得到12120x x y y +=,这是一个由数到形、又由形到数的推理过程,既为本题的解决找到了突破口,又大大减缩了运算过程.如果单纯从已知的向量等式出发,设出P 、A 、B 的坐标代入1AP PB ⋅=,来寻求坐标间的关系,虽然也能解决问题,但运算过程较为繁琐.也可用下列向量方法推得OA OB ⊥:,()OP l OA OB OP PA ⊥⋅=+⋅()1110,OP PB PA PB OA +=+⋅=-=∴.OB ⊥四、特“形”引路,先知后证在解析几何的定点、定值等问题中,常常要先研究图形的特殊情形、临界状态,由此先得到结论,再进行一般情形下的证明. 例4(2005年全国卷I ·理21)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与a =(3,-1)共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且OM =OA λ(,)OB μλμ+∈R ,求证:22μλ+为定值.解析:(1)易得离心率.36=e (2)设出M 点的坐标,将条件中的等式用坐标表示.112(,),(,)(,)(,M x y OM x y x y x λμ==+)2y ,则⎩⎨⎧⋅+=+=2121,y y y x x x μλμλ 由(1)问的结果,得椭圆方程为22233b y x =+,将点M 坐标代入即得展开,围绕解题目标:证明22μλ+为定值,故要分离出22μλ+.22221212()3(x y x μλ++22121223)3(2)3b y y x x y =+++λμ,于是再如何进行呢面对如此复杂的式子,很多考生往往不知所向.此时,如果先通过点M 的特殊位置猜出定值,可以为我们的解题指明方向.当点M 运动到点A 时,则1,0,122=+==μλμλ,即可发现定值是1 【点评】抓住问题的特殊性进行猜想是一种哲学方法.于是,只要证明032121=+y y x x ,这样解答方向明确,问题迎刃而解.过程如下:例5 以)1,0()1,0(21F F 、-为焦点的椭圆C 过点⋅)1,22(P (1)求椭圆C 的方程;(2)过点)0,31(-S 的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过点T 若存在,求出点T 的坐标;若不存在,请说明理由.解析:第(1)问易得椭圆C 的方程为1222=+y x . 第(2)问为定点问题,如果直接设定点T 的坐标,转化为恒成立问题去解决,则运算非常繁琐;若研究直线l 的两种特殊情况:当直线l 与x 轴重合时,以AB 为直径的圆是;122=+y x当直线l 垂直于x 轴时,以AB 为直径的圆是⋅=++916)31(22y x由⎪⎩⎪⎨⎧=++=+916)31(,12222y x y x 解得两圆相切于点(1,0)。