电场与磁场的区别
- 格式:wps
- 大小:11.00 KB
- 文档页数:1
什么是电场和磁场它们之间的关系是什么电场和磁场是物理学中两个重要的概念,它们分别描述了电荷和磁荷所产生的力场。
本文将会详细介绍电场和磁场的基本概念,以及它们之间的关系。
一、电场的概念与性质电场是由电荷所产生的力场,描述了电荷对其他电荷或物质所施加的力。
电荷在空间中产生电场,电场的强度和方向受到电荷的大小和符号的影响。
假设有一个点电荷q位于空间中的某一位置P,那么在离该点电荷一定距离r处,点电荷所产生的电场强度E的大小与距离r的平方成反比,即E∝1/r^2。
根据库仑定律,电场强度的大小还与电荷的大小q成正比,即E∝q/r^2。
因此,电场强度的大小与点电荷的大小和距离的平方成反比。
二、磁场的概念与性质磁场是由磁荷所产生的力场,描述了磁荷对其他磁荷或物质所施加的力。
磁荷是一种基本的物理概念,但在目前的物理学中并没有发现单个的磁荷存在,我们所讨论的磁场主要是由电流所产生的。
磁场的强度和方向由电流的大小和方向决定。
根据安培定律,电流元产生的磁场强度dH对距离r的矢量短元dL的影响与电流元的大小和方向有关,可以表示为dH=kI(dL×r)/r^3,其中I为电流的大小,dL×r为矢量叉乘,k为比例常数。
根据电流元对磁场的贡献是矢量叠加的原理,可以得到磁场强度H的大小和方向。
三、电场和磁场的关系电场和磁场在物理学中经常会相互作用,它们之间有着密切的关系。
根据麦克斯韦方程组,电场和磁场之间的相互作用可以用法拉第电磁感应定律和安培定律来描述。
法拉第电磁感应定律指出,磁场的变化可以产生感应电压,即电磁感应现象。
而安培定律则表明,电流元所产生的磁场可以影响到电荷的运动,进而改变电荷所受的力。
另外,从电场和磁场的数学表示可以看出它们之间的相互关系。
电场可以用电势表示,而磁场则可以用矢量磁势表示。
根据麦克斯韦方程组的推导可以发现,电场的旋度为零,而磁场的散度为零,这意味着电场是保守场,而磁场是无源场。
因此,在稳恒情况下,电场可以通过势函数来描述,而磁场则需要通过磁通量来描述。
静电场与稳恒磁场的异同
静电场和稳恒磁场是两种不同的物理场,它们具有一些相似之处,但也存在一些显著的差异。
相似之处:
1.无源性:静电场和稳恒磁场都是无源场,它们不依赖于电荷或电流的变化而产生。
差异之处:
1.作用粒子不同:静电场与电荷粒子(例如电子或质子)相互作用,而稳恒磁场则与运动带电粒子(电流)相互作用。
2.相关物理量不同:静电场与电荷的位置和电荷量有关,通常用电场强度(单位电荷受到的力)来描述;而稳恒磁场与电流的位置和大小有关,通常用磁感应强度(单位电流受到的力)来描述。
3.引力与斥力:静电场中的电荷之间可以相互吸引或排斥,根据电荷的正负性质决定;而稳恒磁场中的磁荷(即电流)之间不存在引力或斥力的作用。
4.能量流动方式:静电场中的能量流动是通过电磁辐射进行的,即光的形式;而稳恒磁场中的能量流动主要是通过电流在导体中的传输进行的。
总体而言,静电场和稳恒磁场在物理特性和相互作用方面存在一些重要的区别,但它们都是电磁场的重要组成部分,共同构成了电磁学的基础。
1/ 1。
电场线和磁场线的异同点
电场线和磁场线是描述电场和磁场的可视化工具。
它们在某些方面有相似之处,但也存在一些重要的区别。
相似之处:
1. 可视化工具:电场线和磁场线都是用来可视化电场和磁场的工具,通过图形化的方式展示电场和磁场的分布情况。
2. 基于场的概念:电场线和磁场线都是基于场的概念而存在的。
电场线描述了电荷周围的电场分布情况,磁场线则描述了磁场的分布情况。
不同之处:
1. 物理性质:电场线描述的是电荷周围的电场分布情况,而磁场线则描述的是磁场的分布情况。
电场是由电荷产生的,而磁场是由电流或磁体产生的。
2. 方向性质:电场线是从正电荷出发,指向负电荷的方向。
它们始终指向电荷周围的电场的方向。
磁场线则是形成闭合回路的环线,从磁南极流向磁北极,形成一个环绕磁体的闭合路径。
3. 数量与强度:电场线的数量和强度与电荷的量和强度有关。
在电场线中,线的密度越大,表示电场强度越大。
磁场线的数量和强度与电流的强度和磁体的强度有关。
综上所述,电场线和磁场线都是用来可视化电场和磁场的工具,它们都基于场的概念。
然而,它们描述的物理性质、方向性质以及数量和强度都有所不同。
高中物理磁场和电场的知识点1.磁场1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相互作用.4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的指向就是那一点的磁场方向.2.磁感线1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.3几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/A?m.2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:1地磁场的N极在地球南极附近,S极在地球北极附近.2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力1安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.2安培力的方向由左手定则判定.3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力1洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.4在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计,1若带电粒子的速度方向与磁场方向平行相同或相反,带电粒子以入射速度v做匀速直线运动.2若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动1带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.2带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.1.两种电荷1自然界中存在两种电荷:正电荷与负电荷.2电荷守恒定律2.库仑定律1内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.2适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线1电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.2电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.3电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷或无穷远处,终止于负电荷或无穷远处;②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.4匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.5电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.1电势是个相对的量,某点的电势与零电势点的选取有关通常取离电场无穷远处或大地的电势为零电势.因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.2沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电势为零处电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.1等势面上各点电势相等,在等势面上移动电荷电场力不做功.2等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.3画等势面线时,一般相邻两等势面或线间的电势差相等.这样,在等势面线密处场强大,等势面线疏处场强小.8.电场中的功能关系1电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算此公式只适合于匀强电场中,或由动能定理计算.2只有电场力做功,电势能和电荷的动能之和保持不变.3只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动1带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.2带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动3是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力但不能忽略质量.②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.4带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
电磁场考试试题及答案一、选择题1. 下列哪个物理量不是描述电磁场的基本量?A. 电场强度B. 磁感应强度C. 电势D. 磁化强度2. 静电场的本质特征是:A. 磁场产生于电场B. 电场产生于静电荷C. 电场与磁场相互作用D. 电场与静电荷相互作用3. 关于电磁场的能量密度,以下说法正确的是:A. 电磁场的能量密度只与电场强度有关B. 电磁场的能量密度只与磁感应强度有关C. 电磁场的能量密度与电场和磁感应强度都有关D. 电磁场的能量密度与电荷和电流有关4. 电磁波中电场和磁场的相互关系是:A. 电场和磁场以90°的相位差波动B. 电场和磁场以180°的相位差波动C. 电场和磁场处于同相位波动D. 电场和磁场没有固定的相位关系5. 有一根长直导线,通有电流,要使其产生的磁场最强,应将观察点放置在:A. 导线的外侧B. 导线的内侧C. 导线的中央D. 对称轴上二、填空题1. 电荷为2μC的点电荷在距离它10cm处的电场强度大小为______ N/C。
2. 一根长度为50cm的直导线通有5A的电流,它产生的磁感应强度大小为______ T。
三、简答题1. 什么是电磁场?它的基本特征是什么?电磁场是一种通过电荷和电流相互作用而产生的物质场。
它基于电荷和电流的特性,表现为电场和磁场的存在和相互作用。
电磁场的基本特征包括:电场与静电荷相互作用,磁场与电流相互作用,电磁场遵循麦克斯韦方程组等。
2. 电场与磁场有何区别和联系?电场是由电荷产生的一种物质场,描述电荷对其他电荷施加的作用力的特性。
而磁场则是由电流产生的一种物质场,描述电流对其他电流施加的作用力的特性。
电场和磁场之间存在密切的联系,根据麦克斯韦方程组的推导可知,变化的电场会产生磁场,而变化的磁场也会产生电场。
3. 什么是电磁波?其特点是什么?电磁波是由电场和磁场相互耦合在空间中传播的波动现象。
其特点包括:- 电磁波是横波,电场与磁场的振动方向垂直于波传播方向。
电场强度和磁场强度比较
电场强度和磁场强度是两种不同的物理量,它们的性质和应用方式也不同。
1. 电场强度:是描述电场中电荷作用力的物理量。
电场强度的大小与电荷的数量和分布有关,单位是“牛顿/库仑”(N/C)。
电场强度可以通过库仑定律计算得到。
2. 磁场强度:是描述磁场中磁力作用力的物理量。
磁场强度的大小与磁铁的性质和形状有关,单位是“特斯拉”(T)。
磁场强度可以通过安培定律计算得到。
相比较而言,电场强度和磁场强度的具体性质和应用有以下几点不同之处:
1. 作用对象不同:电场强度作用于电荷,产生静电相互作用力;而磁场强度作用于电流,产生磁力相互作用力。
2. 磁场强度有极性:磁场强度有方向,通常以磁力线的走向表示;而电场强度则没有极性,只有大小。
3. 磁场强度与速度相关:磁场强度的大小与电流运动的速度有关,速度越快,磁场强度越大;而电场强度与电荷本身的属性有关,与速度无关。
4. 应用场景不同:电场强度常被用于描述电场中电荷间的相互作用力和电势差;
而磁场强度被用于描述电流在磁场中的受力情况和电感等现象。
总结来说,虽然电场强度和磁场强度都是描述力的物理量,但是它们的性质和应用方式不同,需要根据具体的物理场景进行选择和运用。
磁场与电场的比较和关系自人类对物质与能量的探索以来,磁场和电场一直被广泛研究。
磁场和电场是两种基本的力场,它们在物理世界中扮演着重要角色。
本文将探讨磁场和电场的比较与关系,帮助我们更好地理解它们之间的联系。
一、磁场与电场的定义和性质磁场是指能够对具有磁性物质施加力的区域。
它由磁铁或电流产生,并围绕源产生磁力线。
磁场的强度通过磁感应强度来描述,单位为特斯拉(T)。
电场是指某一空间区域内感受到电荷作用力的区域。
它由电荷或电流产生,并以电场线的形式表示。
电场的强度通过电场强度来衡量,单位为伏特每米(V/m)。
磁场和电场都是矢量场,具有方向和大小。
在磁场中,正电荷和负电荷都受到洛伦兹力的作用,而在电场中也是如此。
磁场和电场的力都是相对静止的电荷或电流产生的。
二、磁场与电场的相似点虽然磁场和电场是不同的力场,但它们也存在一些相似之处。
1. 形成原理相似:磁场的形成离不开磁体或电流,而电场的形成离不开电荷或电流。
无论是磁场还是电场,都需要物质或电荷的存在才能产生。
2. 力的性质相似:磁场和电场都能对电荷产生力的作用。
在磁场中,电荷受到洛伦兹力的作用;在电场中,电荷受到库仑力的作用。
无论是磁场还是电场,它们都是作用于电荷的力场。
3. 数学形式相似:磁场和电场的方程形式相似。
磁场的方程由麦克斯韦方程组中的法拉第电磁感应定律和安培环路定理给出;而电场的方程由库仑定律和高斯定律给出。
这些方程描述了磁场和电场的分布和性质。
三、磁场与电场的区别尽管磁场和电场有相似之处,但它们也存在一些明显的区别。
1. 作用对象不同:磁场主要作用于运动带电粒子,在磁场中,电荷会受到洛伦兹力的作用;而电场作用于任何带电粒子,无论是否运动。
无论电荷是否运动,都会受到电场的作用力。
2. 方向不同:磁场和电场的方向性质不同。
磁场的磁力线是形成闭合环的,形状类似于磁铁的磁力线;而电场的电场线是从正电荷指向负电荷的,或从正电荷呈放射状。
磁场和电场的方向性质决定了它们对电荷施加力的方式。
电场方向和磁场方向的关系电场和磁场是两种不同的物理场。
电场是由带电粒子产生的物理场,它的作用是对其它带电粒子施加电力,即电场力。
而磁场则是由运动带电粒子产生的物理场,它的作用是对其它运动带电粒子施加磁场力。
电场和磁场都是向量场,它们都有方向。
电场的方向与电荷的正负有关,正电荷所在的位置电场方向指向外,负电荷所在的位置电场方向指向内。
而磁场的方向则与运动带电粒子的方向有关,具体来说,磁场方向是垂直于运动带电粒子运动方向和磁场线方向的方向。
电场和磁场的方向并没有直接的关系。
可以通过下面两个方面进一步解释这个问题:1. 电场和磁场的源不同电场和磁场的源不同,导致它们的作用方式和方向也不同。
电场是由静止电荷或者运动的电荷产生的。
当电荷处于静止状态时,所产生的电场是静电场,其方向垂直于静电荷位,由正电荷指向负电荷。
当电荷以一定速度运动时,其周围就会产生磁场,如电流为I的直线导线的磁场就是一个圆周磁场,其方向沿着圆周,垂直于传导电流的方向。
2. 电场和磁场的相互作用方式不同电场和磁场与带电粒子的相互作用方式也不同,这也导致了它们在方向上有不同的特征。
电场以电荷为源,与带电粒子的距离平方成反比,必须与带电粒子之间存在相同或相反的电荷,才能产生电场力。
磁场以电流为源,与带电粒子的距离成正比,必须与带电粒子之间的磁相互作用,才能产生磁场力。
因此,在同一区域内,电场可能有不同的方向分量,而磁场总是有垂直于电流方向的方向组成。
总的来说,电场和磁场是两种不同的物理场,它们的方向和特征并没有直接的关系。
因此,我们需要根据实际情况去分析具体的作用和相互关系。
在电子学中,电磁场的特性被广泛地应用,黑体辐射、场源和调制环形单元、波导器件、电极等等都是电磁场的典型应用。
专题4---电场与磁场福建省普通教育教学研究室物理学科编写组【材料导读】本专题包括高中物理的两个关键问题“电场的性质”与“磁场的性质”。
对于“电场的性质”问题,高考中常以选择题的形式出现,考查利用电场线和等势面确定场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等,电场力做功与电势能的变化及带电粒子在电场中的运动与牛顿运动定律、动能定理、功能关系相结合的题目是考查的另一热点,电场知识与生产技术、生活实际、科学研究等的联系,如示波管、电容式传感器、静电分选器等,都可成为新情景题的命题素材,应引起重视。
而“磁场的性质”在高考中呈现题型主要为选择题,偶尔也为会在计算题中组成考点,要求考生重点掌握:通电直导线和通电线圈周围的磁场;安培力公式、安培定则及磁感应强度的叠加;通电直导线或线框在磁场中的平衡和运动问题。
本专题通过具体试题呈现这两个关键问题在高考中的考查特点,并以问题串形式引导学生体会用不同方法解决物理问题的异同,再从中归纳问题解决过程中的关键线索和一般方法。
材料中的例题和练习按难度从易到难分为A、B、C三个层次,使用者可根据自身情况选用。
【典例分析】【A】例1(2019年全国Ⅰ卷第15题)如图,空间存在一方向水平向右的匀强电场,两带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则() A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷P Q D.P带负电荷,Q带正电荷【答案】D【解析】对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q 必带等量异种电荷,选项AB错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.【A】变式1:在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示。
电场和磁场的区别和联系电场和磁场的区别和联系电场和磁场的区别和联系,一、物理学中电场强度和磁感应强度是两个不同的概念。
1.我们通常所说的电场就是电荷周围存在的电场。
2.物体的磁性来源于原子内部的电子运动产生的,当有带电粒子移近它时会与电子相互作用使得它失去或获得能量而具备电磁特性。
二者虽然都属于物质本身的固有属性,但是对其进行研究却需要引入新的参数——电场强度 e 和磁感应强度 b 来描述。
因此,有必要将这些概念重新定义如下:1.在规定条件下某点上电场强度的大小与电势差的绝对值成正比,即 E= u (φ);磁感应强度的大小与磁化强度的绝对值成正比,即 B= iBiφ,式中φ为电场的空间分量, i 为单位电荷的定向移动速率, i= n·V。
这里的 v 是指某点沿半径的切线方向的速率。
在真空中的电场 e= u(φ)/ R,磁感应强度 B=μe/2πt,实验表明,真空中某处任意两点之间的磁感应强度是这两点之间电场强度大小的矢量和。
因此电场强度与磁感应强度的比值可以写做 E/ B,也称为场强比。
电场强度和磁感应强度均可用直角坐标系来表示,当这种表示法简化后则统一地采用无量纲的表达式: E= B|φ,显然, e 和 B 是同一量纲,即 B= U1/ V2,磁感应强度的符号是 b,所以叫做电流的相量,也被称为安培常数。
2.电场与磁场的关系: E= B|φ是研究电场和磁场问题的基础。
二、 E= B|φ描述了电场与磁场的共同特征及彼此之间的关系。
1.电场和磁场的这种特殊的联系和结合在日常生活中有着广泛的应用。
如手机电池具有很好的导电性能,充满电时电池外壳发热;磁悬浮列车的磁极就像两块磁铁;变压器把高压电变成低压电输送到各家各户等。
三、磁场不仅具有上述普遍性的共同特征,还具有自己独特的特征:1.由于静止电荷周围存在的电场都是与无限大的空间共轭的,所以它的大小与距离无关。
例如:当几十千米远的两点之间没有电阻时,那么这两点之间的空间中的电场可看作是无穷大。
电场和磁场
1、产生不同:电场是静止的电荷周围存在的一种场,磁场是运动的电荷周围存在的场;
2、性质不同:电场基本性质就是会对放入其中的电荷有力的作用,而磁场会对放入其中的磁极或电流有力的作用;
3、描述物理量不同:电场能从力的性质和能的性质两方面描述,磁场只能从力的性质描述;
4、电场线和磁感线不同:电场线不闭合而磁感线是闭合的。
电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。
电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。
电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷做功(这说明电场具有能量)
磁场是一种看不见、摸不着,而又客观存在的特殊物质,能对放入其中的小磁针有磁力作用。
磁体周围存在磁场,磁体间的相互作用是以磁场作为媒介的,磁体不用在物理层面接触就能发生作用。
磁场与电场力磁场与电场力是物理学中重要的力,它们在电磁学和电动力学的研究中起着至关重要的作用。
本文将分析磁场与电场力的特性和应用,并探讨它们对自然界和人类生活的影响。
一、磁场力的特性和应用磁场力是由磁场对带电粒子或其他带磁物体施加的力。
磁场力遵循洛伦兹力定律,该定律描述了由磁场和电场相互作用产生的力。
磁场力的大小与带电粒子的电荷量、电荷的速度、磁场的强度和方向都有关。
人们常常能够观察到磁场力的应用,例如电动机、电磁铁和磁共振成像等。
电动机利用磁场力产生机械运动,将电能转化为机械能。
电磁铁则利用磁场力的吸附作用,将带磁的物体吸附在铁磁体上。
磁共振成像是一种利用磁场和电场力的技术,可以用来观察人体内部结构,并在医学诊断中起到重要的作用。
二、电场力的特性和应用电场力是由电场对带电粒子施加的力。
根据库伦定律,电场力与电荷量、电场的强度以及电荷之间的距离有关。
正电荷和负电荷之间会相互吸引,同类电荷之间则会相互排斥。
电场力在生活和工业中有广泛的应用。
例如,静电喷涂技术利用电场力将带电颗粒喷涂到物体表面,可以实现高效、均匀的喷涂效果。
静电除尘器利用电场力吸附空气中的粉尘颗粒,从而净化空气。
三、磁场力与电场力的区别和联系磁场力和电场力在物理性质上有一些显著的区别。
首先,磁场力只对带电粒子施加力,而电场力对任何带电粒子都有效。
其次,在作用范围上,磁场力的有效距离相对较小,而电场力的作用范围相对较大。
然而,磁场力和电场力也有联系。
它们都是由相互作用的磁场和电场产生的。
此外,磁场力和电场力之间还存在一种相互转换的现象,即洛伦兹力定律中的电动机效应和电磁感应。
四、磁场与电场力的应用磁场力和电场力在现代社会的许多方面都得到了应用。
1.电子设备:电脑、手机、电视等电子设备中的电路板和芯片都利用了电场力和磁场力的原理进行工作。
它们能够传输和处理信息,实现各种功能。
2.能源发电:电场力和磁场力被用于发电厂中的发电机,将机械能转化为电能。
电场与磁场的对比电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”;究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等;为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场万有引力场相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比;现选择性对比如下:二、概念对比:表2注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关;⒉磁感应强度三种定义的条件;电场线与等势面处处正交;三、 对比规律、公式 Ⅰ、电场力⑴、F qE = 0q >时F 与E 同向,此式具有一般性,可计算点电荷在任何电场中的受到的电场力;在n 个点电荷形成的静电场中1ni i E E ==∑矢量式;在真空中,点电荷场强2ii i Q E kr = ;在匀强电场中4U kQE d Sπε==Q 为电容器的电量,ε为介电常数; ⑵、库仑定律122Q QF k r=1Q 与2Q 同号相斥,异号相吸,可计算真空中两个点电荷间的静电力;n 个点电荷之一q 所受库仑力大小121n ii i qQ F kr -==∑矢量式 注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别;Ⅱ、磁场力⑴、洛伦兹力sin L f q B υθ=Lf 、υ、B 三者方向关系遵从左手定则,Lf 垂直于υ和B 所决定的平面,Lf 与电荷运动相联系;当υ与B 同向或反向时,L f =;当υ与B 垂直时L f q Bυ=;⑵、安培力sin A F ILB θ=AF 、I 、B 三者方向关系遵从左手定则,AF 垂直于I 与B 所决定的平面;当I 与B 同向或反向时,0A F =;当I 与B 垂直时A F ILB=;注:E 为未引入q 时的场强;B 为未置入载流导体时的磁感强度;AF 与Lf 的关系:AF 是Lf 的合力;Ⅲ、做功对比注:中学物理涉及安培力的定量分析、计算问题大多为力平衡类问题,关于安培力做功含功率的讨论与计算题目并不多,一般仅限于简单恒力情况,运用功的公式cos W Fs θ=即可解决之,故可不给出上面的公式;至于安培力做功的特点教材从未述及,所见习题一般也不涉及此问题,若想阐明之,可以通电线圈在辐向分布磁场中转动为例论证之;对于能量转换情况可举实例如电动机、发电机等阐明之;Ⅳ、冲量对比:不论电场力、磁场力是否恒力,其冲量均可依据动量定理I p =∆合处理已知初、末动量的话;对于恒定电场力、磁场力,还可应用冲量公式I Ft =直接确定其冲量;此类题目也不多,教师可据学情适当补充之,特别是安培力的瞬时冲量问题;。
麻烦帮我解释一下,什么是介电常量,相对介电常量和真空介电常量?电容器的极板间充满电介质时的电容与极板间为真空时的电容之比值称为(相对)介电常数。
介电系数,是一个在电的位移和电场强度之间存在的比例常量。
这一个常量在自由的空间(一个真空)中是8.85×10的-12次方法拉第/米(F/m)。
在其它的材料中,介电系数可能差别很大,经常远大于真空中的数值,其符号是eo。
在工程应用中,介电系数时常在以相对介电系数的形式被表达,而不是绝对值。
如果eo表现自由空间(是,8.85×10的-12次方F/m)的介电系数,而且e是在材料中的介电系数,则这个材料的相对介电系数(也叫介电常数)由下式给出:ε1=ε / εo=ε×1.13×10的11次方很多不同的物质的介电常数超过1。
这些物质通常被称为绝缘体材料,或是绝缘体。
普遍使用的绝缘体包括玻璃,纸,云母,各种不同的陶瓷,聚乙烯和特定的金属氧化物。
绝缘体被用于交流电(AC),声音电波(AF)和无线电电波(射频)的电容器和输电线路。
好:通俗来说就是电容两极之间介质对极板间电场影响的程度,介质不同,介电常数不同,极板间没有任何物质时的介电常数称为真空介电常数,相对介电常数是指一种介质相对于另一种介质的介电常数,一般来说是相对于真空的介电常数介电常数与导电系数有什么关系【介电常数】又称为“电容率”或“相对电容率”。
在同一电容器中用某一物质作为电介质时的电容与其中为真空时电容的比值称为该物质的“介电常数”。
介电常数通常随温度和介质中传播的电磁波的频率而变。
电容器用的电介质要求具有较大的介电常数,以便减小电容器的体积和重量。
导电系数就是电阻率.电阻率是用来表示各种物质电阻特性的物理量。
某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。
陶瓷在室内装饰中的应用2、介电性能大多数陶瓷具有优异的介电性能,表现在其较高的介电常数和低介电损耗。
电场与磁场区别
电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。
电场具有通常物质所具有的力和能量等客观属性。
电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。
电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电场具有能量)。
静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。
静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。
普遍意义的电场则是静电场和有旋电场两者之和。
电场是一个矢量场,其方向为正电荷的受力方向。
电场的力的性质用电场强度来描述。
对放入其中的小磁针有磁力的作用的物质叫做磁场。
磁场是一种看不见,而又摸不着的特殊物质。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。
由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。
磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。
而现代理论则说明,磁力是电场力的相对论效应。
与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。
然而,作为一个矢量场,磁场的性质与电场颇为不同。
运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。
换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。
随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。
电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。
电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。