matlab语音识别系统(源代码)最新版
- 格式:docx
- 大小:177.65 KB
- 文档页数:24
所謂「音訊」(Audio Signals),泛指人類可以聽到的聲音,這些聲音可已有很多不同的分類方式,例如,若以發音的來源,可以大概分類如下:• 生物音:人聲、狗聲、貓聲等。
• 非生物音:引擎聲、關門聲、打雷聲、樂器聲等。
若以訊號的規律性,又可以分類如下:• 規律音:波形具有規律性,可以看出週期的重複性,人耳可以感覺其穩定音高的存在,例如單音絃樂器、人聲清唱等。
• 不規律音:波形不具規律性,看不出明顯的週期,人耳無法感覺出穩定音高的存在,例如打雷聲、拍手聲、敲鑼打鼓聲、人聲中的氣音等。
本課程將以人聲與音樂聲的處理與辨識為探討重點。
一般人聲的特性如下:1. 長期(一個句子):變化劇烈且無規律性,例如下圖(a)2. 短期(一個音框):變化不大且有規律性,例如下圖(b)聲音代表了空氣的密度隨時間的變化,基本上是一個連續的函數,但是若要將此訊號儲存在電腦裡,就必須先將此訊號數位化。
一般而言,當我們將聲音儲存到電腦時,有下列幾個參數需要考慮:• 取樣頻率(Sample Rate):每秒鐘所取得的聲音資料點數,以 Hertz(簡寫 Hz)為單位。
點數越高,聲音品質越好,但是資料量越大,常用的取樣頻率如下:8 kHz (電話音質、一般玩具IC音質)2.11.025 KHz3.16 KHz(一般語音辨識所採用)4.44.1 KHz (CD 音質)• 單點解析度(Bit Resolution):每個聲音資料點所用的位元數,常用的數值如下:1.8-bit:可表示的數值範圍為 0~255 或 -128~1272.16-bit:可表示的數值範圍為 -32768~32767• 聲道:一般只分單聲道(Mono)或立體聲(Stereo)。
以我所錄的「清華大學資訊系」來說,這是單聲道的聲音,取樣頻率是 16000(16 KHz),解析度是 8 Bits(1 Byte),總共包含了 64960 點(等於 64960/16000 = 4.06 秒),所以檔案大小就是大約 65 KB 左右。
声源定位matlab程序在MATLAB中进行声源定位的程序通常涉及到信号处理和声学定位技术。
声源定位的目标是确定声音的方向,通常使用麦克风阵列来实现。
以下是一个简单的MATLAB程序示例,用于声源定位:matlab.% 定义麦克风阵列参数。
numMics = 4; % 麦克风数量。
micSpacing = 0.1; % 麦克风间距(以米为单位)。
% 模拟接收到的声音信号。
fs = 44100; % 采样率。
t = (0:1/fs:1-1/fs)'; % 时间向量。
f1 = 1000; % 第一个声源的频率。
f2 = 2000; % 第二个声源的频率。
signal1 = sin(2pif1t); % 第一个声源的信号。
signal2 = sin(2pif2t); % 第二个声源的信号。
% 模拟麦克风接收到的声音。
micSignals = zeros(length(t), numMics);for i = 1:numMics.distance = (i-1) micSpacing; % 麦克风到声源的距离。
delay = distance/340; % 延迟(声音传播速度为340m/s)。
micSignals(:,i) = [zeros(round(delayfs),1);signal1(1:end-round(delayfs))] + [zeros(round(delayfs),1); signal2(1:end-round(delayfs))];end.% 声源定位。
[azimuth,elevation] =locateSource(micSignals,fs,micSpacing);% 显示结果。
disp(['声源方位角: ', num2str(azimuth), '°']);disp(['声源俯仰角: ', num2str(elevation), '°']);需要注意的是,以上代码中的`locateSource`函数是一个虚构的函数,实际上需要根据具体的声源定位算法来实现。
在MATLAB环境下实现的语音识别
龙银东;刘宇红;敬岚;乔卫民
【期刊名称】《微计算机信息》
【年(卷),期】2007(023)034
【摘要】介绍了一种基于MATLAB的多个特定人连接词语音识别的方法,并提出
了在进行端点检测时,引入平均的概念能进一步提高识别率.此设计是以LPCC系数、DTW算法为核心的基于图形界面的设计.通过大量的实验测试,表明该方法基本达
到屏蔽外界环境的影响,具有非常高的精度识别.
【总页数】3页(P255-256,276)
【作者】龙银东;刘宇红;敬岚;乔卫民
【作者单位】730000,甘肃兰州,中国科学院近代物理研究所;550025,贵州贵阳,贵
州大学;550025,贵州贵阳,贵州大学;730000,甘肃兰州,中国科学院近代物理研究所;730000,甘肃兰州,中国科学院近代物理研究所
【正文语种】中文
【中图分类】TP311.52
【相关文献】
1.MATLAB环境下的语音识别系统 [J], 杨熙;苏娟;赵鹏
2.利用DSP实现的实际环境下语音识别方法 [J], 肖圣兵;赵力;刘海滨;吴镇扬
3.MATLAB下的基于HMM模型的语音识别技术的实现 [J], 马帅;高岳;何翔宇
4.MATLAB环境下的基于HMM模型的语音识别系统 [J], 郭圣权;连晓峰
5.利用智能语音处理器实现嘈杂环境下的语音识别 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
(威海)《智能仪器》课程设计题目: MATLAB实现语音识别功能班级:学号:姓名:同组人员:任课教师:完成时间:2012/11/3目录一、设计任务及要求 (1)二、语音识别的简单介绍语者识别的概念 (2)特征参数的提取 (3)用矢量量化聚类法生成码本 (3)的说话人识别 (4)三、算法程序分析函数关系 (4)代码说明 (5)函数mfcc (5)函数disteu (5)函数vqlbg (6)函数test (6)函数testDB (7)函数train (8)函数melfb (8)四、演示分析 (9)五、心得体会 (11)附:GUI程序代码 (12)一、设计任务及要求用MATLAB实现简单的语音识别功能;具体设计要求如下:用MATLAB实现简单的数字1~9的语音识别功能。
二、语音识别的简单介绍基于VQ的说话人识别系统,矢量量化起着双重作用。
在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。
在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。
语音识别系统结构框图如图1所示。
图1 语音识别系统结构框图语者识别的概念语者识别就是根据说话人的语音信号来判别说话人的身份。
语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。
用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。
因此,近几年来,说话人识别越来越多的受到人们的重视。
与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。
因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。
清华大学电子工程系MATLAB高级编程与工程应用实验二语音处理1.2.1(1)给定e(n) 假设e(n) 是输入信号,s(n) 是输出信号,上述滤波器的传递函数是什么?如果a1 = 1.3789,a2 = 0.9506 ,上述合成模型的共振峰频率是多少?用zplane ,freqz ,impz 分别绘出零极点图,频率响应和单位样值响应。
用filter 绘出单位样值响应,比较和impz 的是否相同。
分析:上述滤波器的传递函数是:H=11−1.3789z−1+0.9506z−2可以求出传递函数的极点为p = 0.6895 ±0.6894 i由此可以计算出模拟频率为Ω = pi/4,又因为T = 1/8000s,则可以得到共振峰频率f = 1000Hz。
使用zplane函数画出零极点图如下:使用freqz函数画出频率响应如下:使用impz函数画出单位样值响应如下:最后使用filter函数画出其单位样值响应如下:编写文件sounds_2_1.m,画出所有图像如下,可以直接比较filter函数和impz函数画出的单位样值响应几乎是一模一样的:sounds_2_1.m:clear;clc;close all;b = 1;a = [1,-1.3789,0.9506];n = [0:1:50];freqz(b,a); %画出频率响应图figure; %新建画布subplot(3,1,1);zplane(b,a); %画出零极点图subplot(3,1,2);impz(b,a,n); %利用impz函数画出单位样值响应subplot(3,1,3);x = (n == 0);stem(n,filter(b,a,x)); %利用filter函数画出单位样值响应(3)运行该程序到27 帧时停住,用(1)中的方法观察零极点图。
添加代码如下:运行程序得到零极点图如下:(4) 在循环中添加程序:对每帧语音信号s(n) 和预测模型系数fa i g ,用filter 计算激励信号e(n) 。
如何使用Matlab进行语音识别和自然语言理解语音识别和自然语言理解是人工智能领域的重要研究方向之一。
随着计算机处理能力的不断提升和深度学习技术的发展,这两个领域的研究也取得了显著的进展。
本文将介绍如何使用Matlab进行语音识别和自然语言理解的相关工作。
一、语音识别基础语音识别是将人类的语音信号转化为计算机可处理的文本形式的过程。
它通常涉及到声学模型和语言模型两个重要的组成部分。
在Matlab中,我们可以使用语音处理工具箱来实现语音识别。
首先,在进行语音识别之前,我们需要将语音信号进行预处理,包括去除噪声、进行特征提取等。
Matlab提供了丰富的函数和工具,如音频滤波、时频分析等,可用于实现这些预处理步骤。
接下来,我们需要设计声学模型来对语音信号进行建模。
常用的声学模型包括隐马尔可夫模型(Hidden Markov Model,HMM)和深度神经网络(Deep Neural Network,DNN)。
在Matlab中,我们可以使用统计和机器学习工具箱来构建并训练这些声学模型。
最后,我们需要根据语言模型对识别结果进行解码和修正。
语言模型用于对识别结果的语言合理性进行评估,帮助我们选择最佳的识别结果。
Matlab提供了自然语言处理工具箱,可用于对文本进行分析和处理。
二、自然语言理解基础自然语言理解是指计算机对人类自然语言进行理解和解释的过程。
它涉及到文本分析、语义解析、语义推理等多个任务。
在Matlab中,我们可以利用自然语言处理工具箱来实现自然语言理解的相关任务。
首先,我们可以使用文本分析工具箱对文本进行分词、词性标注和命名实体识别等处理。
这些预处理操作有助于建立文本的语义表示,并为后续的任务提供基础。
接下来,我们可以使用语义解析和语义推理技术来对文本进行语义分析和推理。
语义解析的目标是将自然语言表达式转化为语义表示,而语义推理则旨在根据这些语义表示进行推理和推断。
Matlab提供了一些自然语言处理算法和模型,如词向量模型、句法分析模型等,可用于实现这些任务。
基于MATLAB的特定人语音识别软件开发与设计本文将详细介绍基于MATLAB的特定人语音识别软件的开发与设计,从数据采集、数据预处理、特征提取、训练模型以及测试评估等方面进行介绍。
同时,本文还会对该软件的实时性、准确性、稳定性进行分析并进行改进优化。
一、数据采集数据采集是语音识别系统开发的第一步,也是最为关键的一步。
采集到的数据质量将直接影响后续的预处理、特征提取以及模型训练。
在采集数据时,应该尽可能保证采集设备的统一性,以便后续的数据处理与模型训练。
同时,采集的语音数据应具有较高的覆盖率和多样性,以便让模型具有更好的泛化能力。
二、数据预处理在数据预处理阶段,需要对采集到的语音数据进行一系列的预处理操作,例如去除背景噪音、去除重复数据、平衡数据分布等。
这些操作有助于提高预处理的效果,从而提高后续的特征提取以及模型训练的准确度。
三、特征提取特征提取是语音识别系统中最为复杂的一步,其目的是将原始的语音信号转化为易于处理的数学特征。
在特征提取中,需要使用一些特征提取算法,例如短时傅里叶变换、梅尔倒谱系数、线性预测系数等。
这些算法可以大大减少语音信号的冗余信息,提取出信号的主要特征,从而提高模型的分类准确度。
四、训练模型在模型训练中,需要选择适当的模型算法以及调整算法的超参数。
在语音识别中,常用的模型算法有隐马尔可夫模型、深度神经网络、循环神经网络等。
训练模型的过程中,需要使用一些评估指标,例如准确率、召回率、F1值等,以评估模型的优劣。
同时,在训练过程中,需要使用一些技巧,例如交叉验证、正则化、学习率衰减等,以优化模型的泛化能力。
五、测试评估在模型训练完成后,需要使用测试数据对模型进行评估。
在测试评估中,需要使用一些评估指标,例如准确率、召回率、误判率等,以评估模型的性能。
同时,还需要针对测试结果进行分析,从而找出模型存在的问题并进行改进优化。
六、实时性、准确性、稳定性改进优化在实际应用中,需要保证语音识别系统的实时性、准确性以及稳定性,否则无法满足用户需求。
使用Matlab进行实时语音处理与语音识别的实践指南实时语音处理与语音识别是人工智能领域一个重要而复杂的研究方向。
而Matlab作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,为语音处理与语音识别的研究和实践提供了极大的便利。
本文将介绍如何使用Matlab进行实时语音处理与语音识别并给出一些实践指南。
一、Matlab的语音处理工具箱Matlab的语音处理工具箱(Speech Processing Toolbox)是Matlab中专门用于语音信号的处理和分析的工具箱。
它提供了一系列函数和工具,包括语音信号的录制和播放、声音特征提取、声音增强和去噪、语音识别等。
在进行实时语音处理与语音识别之前,我们需要先安装并激活语音处理工具箱。
二、实时语音处理的基本步骤实时语音处理通常由以下几个基本步骤组成:声音录制、语音信号分帧、对每帧信号进行加窗处理、进行傅里叶变换得到频谱信息、对频谱信息进行处理和特征提取、进行语音识别。
1. 声音录制Matlab提供了`audiorecorder`函数来实现声音的录制功能。
下面是一个简单的示例代码:```fs = 44100; % 采样率nBits = 16; % 采样精度nChannels = 1; % 声道数recorder = audiorecorder(fs, nBits, nChannels);record(recorder);pause(5); % 录制5秒stop(recorder);y = getaudiodata(recorder); % 获取录音数据```2. 语音信号分帧语音信号在进行处理之前需要进行分帧处理,将连续的语音信号分成若干个小的时间窗口。
分帧的目的是提取局部语音特征,常用的窗口函数包括矩形窗、汉明窗等。
Matlab提供了`buffer`函数用于分帧处理。
示例代码如下:```frameSize = 256; % 窗口大小overlap = 128; % 帧之间的重叠部分frames = buffer(y, frameSize, overlap);```3. 加窗处理加窗处理是对每一帧信号进行加窗操作,以减少频谱泄漏。