单稳态触发器与施密特触发器原理及应用
- 格式:docx
- 大小:132.01 KB
- 文档页数:7
总结单稳态电路,多谐振荡器及施密特触发器的功能和各自的
特点
1. 单稳态电路
功能:单稳态电路常用于产生固定时长的脉冲电信号,可广泛应用于定时、计数、测量等领域。
特点:单稳态电路一般由一个RC电路和一个触发器构成,工
作原理是在一定条件下,输入信号变化时,电路产生一个输出电平迅速上升或下降,保持一段时间后自动恢复原状态。
其特点是操作简单、时序控制准确、设计灵活。
2. 多谐振荡器
功能:多谐振荡器是一种可产生多种频率的电路,可用于产生多个频率的信号,广泛用于电子音乐合成、声光效果等领域。
特点:多谐振荡器由一个或多个谐振回路、放大器和反馈电路组成。
它的特点是可以产生多种频率的正弦波、方波、三角波等信号,并且可以在调节参数的情况下改变频率、幅度和波形。
3. 施密特触发器
功能:施密特触发器是一种用于信号整形、判别与转换的电路,可广泛应用于计算机和通讯等领域。
特点:施密特触发器是基于正反馈电路的,通过自身正反馈的作用,使得输入信号在电路的输出端被整形。
其特点是能够使得输入信号稳定地转换为数字信号,且通过调节电路参数,可实现滤波、判别、增益控制等功能。
上海大学本科生课程作业题目:数字电子技术课程实践项目二课程名称:数字电子技术学院:机电工程与自动化学院*名:**学号:********题目要求:用555定时器构成的单稳态触发器、多谐振荡器、施密特触发器进行设计和仿真 1.单稳态触发器:1.1 工作原理:单稳态电路的组成和波形下图所示。
当电源接通后,Vcc 通过电阻R 向电容C 充电,待电容上电压Vc 上升到2/3Vcc 时,RS 触发器置0,即输出Vo 为低电平,同时电容C 通过三极管T 放电。
当触发端2的外接输入信号电压Vi <1/3Vcc 时,RS 触发器置1,即输出Vo 为高电平,同时,三极管T 截止。
电源Vcc 再次通过R 向C 充电。
输出电压维持高电平的时间取决于RC 的充电时间,当t=t W 时,电容上的充电电压为;CC RC tCC C V e V v w 321=⎪⎪⎭⎫ ⎝⎛-=-,所以输出电压的脉宽 t W =RCln3≈1.1RC 。
一般R 取1k Ω~10M Ω,C >1000pF 。
值得注意的是:t 的重复周期必须大于t W ,才能保证放一个正倒置脉冲起作用。
由上式可知,单稳态电路的暂态时间与VCC 无关。
因此用555定时器组成的单稳电路可以作为精密定时器。
单稳态电路的电路图和波形图1.2 555单稳态触发器的设计:1.2.1 电路设计基本原理:单稳态触发器具有稳态和暂稳态两个不同的工作状态。
在外界触发脉冲作用下,它能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,在自动返回稳态;暂稳态维持时间的长短取决于电路本身的参数,与触发脉冲的宽度和幅度无关。
由于单稳态触发器具有这些特点,常用来产生具有固定宽度的脉冲信号。
按电路结构的不同,单稳态触发器可分为微分型和积分型两种,微分型单稳态触发器适用于窄脉冲触发,积分型适用于宽脉冲触发。
无论是哪种电路结构,其单稳态的产生都源于电容的充放电原理。
用555定时器构成的单稳态触发器是负脉冲触发的单稳态触发器,其暂稳态维持时间为T w=lnRC=1.1RC,仅与电路本身的参数R、C 有关。
单稳态触发器与施密特触发器原理及应用1.单稳态触发器的原理:单稳态触发器,也称为单稳多谐振荡器,是一个能够在输入信号发生变化时,产生一个固定时间的输出脉冲的元件。
它有两个稳态,一个是触发态,另一个是稳定态。
在触发态时,输出保持一个较低的电平;在稳定态时,输出保持一个较高的电平。
当输入信号发生变化时,触发器进入触发态并产生一个固定宽度的输出脉冲,然后返回稳定态。
单稳态触发器的原理是通过RC电路的充放电过程实现的。
当输入信号变为高电平时,电容开始充电,直到电压达到了触发器的门限电压。
这时,触发器进入稳定态。
而当输入信号变为低电平时,电容开始放电,直到电压降到触发器的触发电平。
这时,触发器进入触发态并产生一个固定宽度的输出脉冲。
2.单稳态触发器的应用:-消抖器:将机械开关产生的抖动信号转换为一个稳定的输出信号。
-一次性多谐振荡器:使用单稳态触发器的稳定脉冲输出来控制多谐振荡器的频率,实现一个稳定的脉冲输出。
-电平传递:将一个短时脉冲信号转换为一个稳定的电平信号输出。
3.施密特触发器的原理:施密特触发器,又称为滞回比较器,是一种具有正反馈的比较器。
它的输入信号必须经过两个不同的阈值电平才能改变输出状态。
施密特触发器有两个稳态,一个是高稳态,另一个是低稳态。
当输入信号超过上阈值电平时,触发器从低稳态切换到高稳态;当输入信号低于下阈值电平时,触发器从高稳态切换到低稳态。
施密特触发器的原理是利用正反馈产生滞回特性。
当输入信号超过上阈值电平时,正反馈会加强这个变化,使得输出电平更快地从低电平切换到高电平。
而当输入信号降低到下阈值电平时,正反馈会加强这个变化,使得输出电平更快地从高电平切换到低电平。
4.施密特触发器的应用:施密特触发器常用于数字信号处理中的滤波和门控电路等应用。
具体应用包括:-模数转换器:将模拟信号转换为数字信号时,需要滤除输入信号中的噪声和抖动。
施密特触发器可以用来实现这个滤波功能。
-数字信号选择器:当多个数字信号输入时,施密特触发器可以用来实现对一些信号的优先级选择。
斯密特触发器斯密特触发器又称斯密特与非门,就是具有滞后特性得数字传输门、①电路具有两个阈值电压,分别称为正向阈值电压与负向阈值电压②与双稳态触发器与单稳态触发器不同,施密特触发器属于"电平触发"型电路,不依赖于边沿陡峭得脉冲、它就是一种阈值开关电路,具有突变输入——输出特性得门电路、这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起得输出电压得改变、当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后得现象,可以瞧出对于要求一定延迟启动得电路,它就是特别适用得、从IC内部得逻辑符号与“与非”门得逻辑符号相比略有不同,增加了一个类似方框得图形,该图形正就是代表斯密特触发器一个重要得滞后特性。
当把输入端并接成非门时,它们得输入、输出特性就是:当输入电压V1上升到VT+电平时,触发器翻转,输出负跳变;过了一段时间输入电压回降到VT+电平时,输出并不回到初始状态而需输入V1继续下降到VT-电平时,输出才翻转至高电平(正跳变),这种现象称它为滞后特性,VT+—VT-=△VT。
△VT称为斯密特触发器得滞后电压。
△VT 与IC得电源电压有关,当电源电压提高时,△VT略有增加,一般△VT值在3V左右。
因斯密特触发器具有电压得滞后特性,常用它对脉冲波形整形,使波形得上升沿或下降沿变得陡直;还可以用它作电压幅度鉴别。
在数字电路中它也就是很常用得器件。
施密特触发器施密特波形图施密特触发器也有两个稳定状态,但与一般触发器不同得就是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减与正向递增两种不同变化方向得输入信号,施密特触发器有不同得阀值电压。
门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路得状态将发生变化。
施密特触发器就是一种特殊得门电路,与普通得门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压与负向阈值电压。
习题八答案1. 试比较多谐振荡器、单稳态触发器、施密特触发器的工作特点,并说明每种电路的主要用途。
答:多谐振荡器是一种自激振荡电路,不需要外加输入信号,它没有稳定状态,只有两个暂稳态。
暂稳态间的相互转换完全靠电路本身电容的充电和放电自动完成。
改变外接R 、C 定时元件数值的大小,可调节振荡频率。
施密特触发器具有回差特性,它有两个稳定状态,有两个不同的触发电平。
施密特触发器可将任意波形变换成矩形脉冲,输出脉冲宽度取决于输入信号的波形和回差电压的大小。
单稳态触发器有一个稳定状态和一个暂稳态。
输入信号起到触发电路进入暂稳态的作用,其输出脉冲的宽度取决于电路本身 R 、C 定时元件的数值。
改变 R 、C 定时元件的数值可调节输出脉冲的宽度。
多谐振荡器是常用的矩形脉冲产生电路。
施密特触发器和单稳态触发器是两种常用的整形电路。
施密特触发器可用来进行整形、幅度鉴别、构成多谐振荡器等。
单稳态触发器常用于脉冲的延时、定时和整形等。
2.在图8.2所示555集成定时器中,输出电压uo 为高电平UOH、低电平UOL及保持原来状态不变的输入信号条件各是什么?假定UCO端已通过0.01μF 接地,u D 端悬空。
答:当1=R 时, TR U <3V CC ,则C 2输出低电平, 1=Q ,OH o U u =。
当1=R 时, TH U >32V CC ,TR U >3V CC ,则C 1输出低电平、C 2输出高电平,1=Q 、0=Q ,OL o U u =。
当1=R 时, TH U <32V CC,TR U >3V CC ,则C 1C 2输出均为高电平,基本RS 触发器保持原来状态不变,因此o u 保持原来状态不变。
3.在图8.3所示多谐振荡器中,欲降低电路振荡频率,试说明下面列举的各种方法中,哪些是正确的,为什么?1) 加大R 1的阻值; 2) 加大R 2的阻值; 3) 减小C 的容量。
答:根据式(8-2)()ln221121C R R T f +==可知,1)2)两种方法是正确的。
CD4047BE
单稳态触发器原理及应用
多谐振荡器是一种自激振荡电路。
因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。
具体地说,如果一开始多谐振荡器处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。
和是两个反相器,和是两个耦合电容,和是两个反应电阻。
只要恰当地选取反应
电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。
上电时,电容器两端的电压和
均为0。
假设某种扰动使有微小的正跳变,那么经过一个正反应过程,迅速跳变为,
迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。
电容和开
始充电。
的充电电流方向与参考方向相同,正向增加;的充电电流方向与参考方向相反,
负向增加。
随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。
因为经和两条支路充电而经一条支路充电,所以充电速度较快,上升到时
还没有下降到。
上升到使跳变为。
理论上,向下跳变,也将向
下跳变。
考虑到输入端钳位二极管的影响,最多跳变到。
下降到使跳
变为,这又使从向上跳变,即变成,电路进入第二个暂
稳态。
经一条支路反向充电〔实际上先放电再反向充电〕,逐渐下降。
经和两条
支路反向充电〔实际上先放电再反向充电〕,逐渐上升。
的上升速度大于的下降速度。
当上升到时,电路又进入第一个暂稳态。
此后,电路将在两个暂稳态之间来回振荡。
和一个耦合电容。
反应电阻使的静态工作点位于电压传输特性的转折区,就是说,静态时,
的输入电平约等于,的输出电平也约等于。
因为的输出就是的输入,所以静
态时也被迫工作在电压传输特性的转折区。
的矩形波。
根据傅里叶分析理论,频率为的矩形波可以分解成无穷多个正弦波分量,正弦波分量的频率为〔〕,如果石英晶体的串联谐振频率为,那么只有频率为的正弦波分量可以通过石英晶体〔第个正弦波分量,〕,形成正反应,而其它正弦波分量无法通过石英晶体。
频
率为的正弦波分量被反相器转换成频率为矩形波。
因为石英晶体多谐振荡器的振荡频率仅仅取决于石英晶体本身的参数,所以对石英晶体以外的电路元件要求不高。
HEF4093BP
施密特触发器原理及应用
我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。
施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。
在输入信号从低电平上升到高电平的过程中使电
路状态发生变化的输入电压称为正向阈值电压〔〕,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压〔〕。
正向阈值电压与负向阈值电压之差称为回差电压
〔
〔a〕电路〔b〕图形符号
〔a〕同相输出〔b〕反相输出
的输入端可以近似的看成开路。
把叠加原理应用到和构成的串联电路上,我们可以推导出这个电路的正向阈值电压和负向阈值电压。
当时,。
当从0逐渐上升到时,
从0上升到,电路的状态将发生变化。
我们考虑电路状态即将发生变化那一时刻的情况。
因为此时电路状态尚未发生变化,所以仍然为0,,于是,。
与此类似,当时,。
当从逐渐下降到时,从下降到,电路的状态将发生变化。
我们考虑电路状态即将发生变化那一时刻的情况。
因为此时电
路状态尚未发生变化,所以仍然为,
,于是,。
通过调节或,可以调节正向阈值电压和反向阈值电压。
不过,这个电路有一个约束条件,就是。
如果,那么,我们有及,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态〞,不能正常工作。
金属化聚酯膜!
参考如下:
欧洲对薄膜电容的命名,会用MK开头!
MKP = 金属化聚丙烯介质电容
MKC = 金属化聚碳酸酯介质电容
MKT = 金属化聚酯介质电容
MKS = 金属化聚苯乙烯电容〔德国WIMA产也为聚酯介质〕MKV = 金属化油浸式交流电力电容
MKL = 金属化漆膜介质电容
MKY = 金属化低损耗聚丙烯电容
MKT-P = 金属化聚酯纸介电容。