机械制造基础知识点总结
- 格式:docx
- 大小:32.25 KB
- 文档页数:8
第1章 金属材料及热处理概论1.1 金属及合金的基本性能2、强度指标:屈服点σs ;屈服强度σ0.2;抗拉强度σb (判别金属材料强度高低的指标)3、塑性:金属发生塑性变形但不破坏的能力。
5、硬度:金属材料抵抗局部变形的能力。
布氏硬度:用符号HBW 洛氏硬度:用符号表示 HR表示二、习题1、单项选择题(1)符号σb 表示材料的 ()A 、屈服强度B 、抗拉强度C 、疲劳强度D 、断裂强度(2)拉伸实验时,试样拉断前能承受的最大应力称为材料的(B ) A 、屈服点 B 、抗拉强度 C 、弹性极限 D 、疲劳极限2、多项选择题(1)以下说法正确的是()A 、布氏硬度用符号HBW 表示B 、洛氏硬度用符号HR 表示C 、洛氏硬度用符号HBW 表示D 、布氏硬度用符号HR 表示(2)以下说法正确的是(BCD )A 、布氏硬度的压痕面积大,数据重复性好,用于成品的测定B 、洛氏硬度的操作简便,硬度值可以直接读出,压痕较小C 、金属材料抵抗冲击载荷作用而不被破坏的能力称为冲击韧度D 、金属材料在指定循环基数的变荷作用下,不产生疲劳断裂所能承受的最大应力称为疲劳强度3、判断题金属材料在外力作用下抵抗变形和断裂的能力称为强度()4、填空题强度按力的性质有___、___、___。
5、简答题简述拉伸低碳钢过程,拉伸曲线的变化以及金属变形答案:1、B B 2、AB BCD 3、√4、屈服强度 抗拉强度 抗弯强度 抗剪强度5、在力到达Fe 之前处于弹性变形阶段△L 线性增加,超过Fe 以后不仅有弹性变形还有塑性变形,形成永久变形,到Fs 以后出现塑性变形,出现屈服现象,进入强化阶段。
1.2 金属和合金的晶体结构及结晶过程一、知识点整理1、内部原子在空间按一定次序有规律的排列的物质称为晶体,反之为则为非晶体晶体具有。
固定的熔点和各向异性等特征,非晶体则反之。
2、晶体中源于排列规律具有明显的周期性征的最小几何单元,称为晶胞。
《机械制造基础》基础知识点1.制造系统:制造过程及其所涉及的硬件,软件和人员组成的一个将制造资源转变为产品的有机体,称为制造系统。
2.制造系统在运行过程中总是伴随着物料流,信息流和能量流的运动。
3.制造过程由技术准备,毛坯制造,机械加工,热处理,装配,质检,运输,储存等过程组成。
4.制造工艺过程:技术准备,机械加工,热处理,装配等一般称为制造工艺过程。
5.机械加工由若干工序组成。
6.机械加工中每一个工序又可分为安装,工位,工步,走刀等。
7.工序:一个工人在一个工作地点对一个工件连续完成的那一部分工艺过程。
8.安装:在一个工序中,工件在机床或夹具中每定位和加紧一次,称为一个安装。
9.工位:在工件一次安装中,通过分度装置使工件相对于机床床身改变加工位置每占据一个加工位置称为一个工位。
10.工步:在一个工序内,加工表面,切削刀具,切削速度和进给量都不变的情况下完成的加工内容称为工步。
11.走刀:切削刀具在加工表面切削一次所完成的加工内容。
12.按生产专业化程度不同可将生产分为三种类型:单件生产,成批生产,大量生产。
13.成批生产分小批生产,中批生产,大批生产。
14.机械加工的方法分为材料成型法,材料去除法,材料累加法。
15.材料成型法是将不定形的原材料转化为所需要形状尺寸的产品的一种工艺方法。
16.材料成型工艺包括铸造,锻造,粉末冶金,连接成型。
17.影响铸件质量关键因素是液态金属流动性和在凝固过程中的收缩性。
18.常用铸造工艺有:普通砂型铸造,熔模铸造,金属型铸造,压力铸造,离心铸造,陶瓷铸造。
19.锻造工艺分自由锻造和模膛锻造。
20.粉末冶金分固相烧结和含液相烧结。
21.连接成型分可拆卸的连接和不可拆卸的连接(如焊接,粘接,卷边接和,铆接)。
22.材料去除成型加工包括传统的切削加工和特种加工。
23.金属切削加工的方法有车削,钻削,膛削,铣削,磨削,刨削。
24.切削运动可分主运动和进给运动。
25.主运动使刀具与工件产生相对运动,以切削工件上多余金属的基本运动。
机械制造基础知识点机械制造是指通过一系列的加工工艺将材料加工成为具有一定形状和尺寸的零部件或产品的过程。
机械制造广泛应用于各个行业,如汽车制造、电子设备制造、航空航天、船舶制造等。
下面将介绍一些机械制造的基础知识点。
1.材料:机械制造过程中使用的主要材料有金属、塑料和复合材料。
金属常用的有钢铁、铝、铜等,塑料常用的有聚乙烯、聚氯乙烯等。
机械制造还使用到了一些特殊材料,例如高强度材料和高温材料。
2.加工方法:机械制造的主要加工方法有切削加工、热加工、冷加工和非传统加工。
切削加工是通过将刀具对工件进行切削,常见的有车削、铣削、钻孔等。
热加工是通过加热材料使其达到可塑性的状态,然后通过压力来改变材料的形状,常见的有锻造、冲压等。
冷加工是在室温下对材料进行塑性变形,常见的有拉伸、压缩等。
非传统加工是一些特殊的加工方法,如电火花加工、激光加工等。
3.数控加工:数控加工是将加工路径和参数由人工操作改为由计算机控制的加工方式。
数控加工具有高精度、高效率、稳定性好等优点,广泛应用于各个行业。
常见的数控机床有数控车床、数控铣床、数控钻床等。
4.装配技术:装配是机械制造中将各个零部件组装成为整机的过程。
装配技术包括手工装配和自动化装配两种。
手工装配需要操作工人根据装配图纸进行逐步组装,而自动化装配则是通过机器人等自动设备进行组装。
装配技术的关键是准确、高效、可靠地完成组装任务。
5.设计软件:机械制造过程中常用到的设计软件有计算机辅助设计软件(CAD)和计算机辅助制造软件(CAM)。
CAD软件可以帮助设计人员快速绘制出产品的三维模型,并进行分析和优化。
CAM软件则可以根据CAD 模型生成相应的加工程序,自动控制数控机床进行加工。
6.质量控制:质量控制是机械制造过程中至关重要的环节。
常用的质量控制方法包括抽样检验、统计控制、质量管理等。
抽样检验是通过对产品进行随机抽样,检验样品是否符合质量标准。
统计控制是通过收集和分析加工过程中的数据,及时调整和纠正加工参数,以保证产品质量稳定。
机械制造基础知识概述机械制造基础知识是指了解和掌握机械制造造领域中的基本概念、原理和技术要点。
了解机械制造基础知识可以帮助我们更好地理解和应用于机械设计和制造过程中的相关技术和方法。
本文将对机械制造基础知识进行概述,包括材料选取、机械元件、机械传动和机械加工几个方面。
一、材料选取在机械制造造过程中,材料是至关重要的因素之一。
材料的选取需要根据机械设计的要求和使用环境来确定。
常见的机械材料有金属材料和非金属材料两大类。
1. 金属材料:包括钢、铝、铜、铁等,在机械制造造中常用于制作机械元件和结构部件,具有强度高、导电性好、耐磨等特点。
2. 非金属材料:包括塑料、橡胶、陶瓷等,在机械制造造中常用于密封件、绝缘件等方面,具有重量轻、绝缘性好、耐腐蚀等特点。
二、机械元件机械元件是构成机械装置的基本部件,根据其功能可以分为传动元件、支撑元件和连接元件三类。
1. 传动元件:主要包括齿轮、皮带、链条等,用于传递动力和实现速度转换。
2. 支撑元件:主要包括轴承、滑动轴承等,用于支撑、限制和定位运动部件。
3. 连接元件:主要包括螺栓、联轴器等,用于连接机械元件并传递力和转矩。
三、机械传动机械传动是指通过机械元件将动力从一个地方传递到另一个地方的过程。
根据传动方式的不同,机械传动可以分为直接传动和间接传动两类。
1. 直接传动:直接将动力从一个部件传递到另一个部件,如通过轴传递动力。
2. 间接传动:通过机械元件进行传递,如通过齿轮传递动力。
四、机械加工机械加工是指利用机械设备对工件进行切削、锻造、焊接等加工过程。
常见的机械加工方法包括铣削、钻孔、车削、研磨等。
在机械加工中,需要注意加工精度、表面光洁度以及刀具的选择和维护等方面。
总结:机械制造基础知识是机械制造造领域中至关重要的一部分。
通过了解和掌握材料选取、机械元件、机械传动和机械加工等方面的知识,我们可以更好地应用于机械设计和制造的实践中。
在实际的机械制造造过程中,我们需要根据具体的要求选择合适的材料、设计合理的机械元件、选择合适的传动方式、并采用适当的机械加工方法来完成所需的产品。
机械制造基础考点整理机械制造是现代工业生产中至关重要的一环,它涵盖了众多领域,如机械设计、加工工艺、材料学等。
为了更好地了解和掌握机械制造的基础知识,下面将对机械制造的一些重要考点进行整理和归纳。
一、机械设计1.机械零件尺寸与公差:机械零件的尺寸设计和公差的确定对产品质量和使用寿命有着重要影响。
在机械设计中,需要考虑零件的尺寸和公差,以确保装配的精度和可靠性。
2.机械连接:机械连接是机械设计中的重要内容,它包括螺栓联接、键连接、销连接等。
在机械设计中,需要根据不同的连接要求选择适合的连接方式,并合理设计连接零件的尺寸和结构。
3.机械传动:机械传动是机械设计中的核心内容,它包括齿轮传动、带传动、链传动等。
在机械设计中,需要根据传动要求选择合适的传动方式,并进行传动比的计算和齿轮参数的设计。
二、加工工艺1.机械加工方法:机械加工是将原材料通过机械力的作用进行形状改变和尺寸加工的过程。
常见的机械加工方法包括车削、铣削、钻削等。
在选择加工方法时,需要综合考虑材料的性能和加工要求等因素。
2.数控机床:数控机床是现代机械制造中的重要设备,它能够通过计算机控制实现高精度的加工过程。
在使用数控机床进行加工时,需要编写相应的加工程序,并对机床进行正确的操作和维护。
3.焊接工艺:焊接是将金属材料通过加热或压力等方式进行连接的工艺。
在焊接过程中,需要掌握不同材料的焊接方法和工艺参数,以确保焊接接头的质量和强度。
三、材料学1.金属材料:金属材料是机械制造中常用的材料,它具有良好的导电性和导热性,且强度高、可塑性好。
在机械制造中,需要了解不同金属材料的性能和应用范围,并根据实际需求进行选择。
2.非金属材料:非金属材料广泛应用于机械制造中,如塑料、复合材料等。
在选择非金属材料时,需要考虑其耐久性、耐热性、耐化学腐蚀性等特性。
3.材料力学性能:材料力学性能是评价材料性能的重要指标,包括材料的强度、硬度、韧性等。
在机械制造中,需要准确测定材料的力学性能,并将其应用于设计和加工过程中。
机械制造基础知识点归纳大一机械制造是现代工业中的重要环节,它涉及到了众多的基础知识点。
本文将对大一学习机械制造过程中的一些基础知识点进行归纳总结,以帮助读者更好地理解和掌握这些知识。
1. 材料科学基础在机械制造过程中,材料的选择和使用是至关重要的。
因此,了解材料的基本性质是学习机械制造的第一步。
材料科学基础包括材料的组成、结构、性能以及其它相关的知识。
例如,金属材料的结构和性质可以通过晶体结构、晶格常数和晶体缺陷等来描述。
2. 机械制图机械制图是机械制造的基础工具,它用于表达设计、工艺和加工等各个环节的信息。
学习机械制图,需要掌握常用的制图符号和图形的绘制方法。
例如,了解尺寸标注、断面图、装配图和零件图等内容。
3. 机械加工工艺机械加工工艺是机械制造的核心环节,它包括了各种加工方法和工具的应用。
学习机械加工工艺,需要了解常见的加工方法,如铣削、车削、钻孔和磨削等。
同时,还需要熟悉各种加工工具的使用和操作要点。
4. 机械传动机械传动是机械运动的重要方式之一,它通过传递力和运动来实现不同部件之间的协调工作。
学习机械传动,需要了解各种传动方式的特点和应用场景。
例如,带传动、齿轮传动和联轴器等。
5. 自动控制基础机械制造过程中的自动化控制是提高生产效率和质量的重要手段。
学习自动控制基础,需要了解传感器、执行器和控制系统等的基本原理和工作过程。
同时,还需要掌握常见的控制方法,如PID控制和逻辑控制等。
6. 质量管理在机械制造中,质量管理是确保产品质量的关键环节。
学习质量管理,需要了解常见的质量检测方法和标准。
例如,测量仪器的选择和使用、统计质量控制的方法和品管流程等。
7. 机械设计基础机械设计是机械制造的重要环节,它涉及到了各种机械元件的设计与选择。
学习机械设计基础,需要了解材料力学、机械原理和设计原则等。
例如,了解应力、应变和变形的计算方法,掌握材料选择的原则以及机械零件的设计规范。
通过以上对大一学习机械制造过程中的基础知识点进行的归纳总结,希望读者能够对机械制造有更深入的了解。
机械制造基础知识机械制造是指通过机械设备对原材料进行加工和加工过程中的其他工序,最终生产出各种机械产品的过程。
机械制造行业是现代工业的重要组成部分,涉及到诸多领域和技术。
在本文中,我们将介绍机械制造的基础知识,包括机械加工、工艺流程、常见机械设备和相关标准。
一、机械加工机械加工是机械制造的核心环节,通过去除原材料表面的一层物质,使其形状、尺寸和表面质量满足要求。
常见的机械加工方法包括车削、铣削、钻削、镗削、刨削、磨削和锯削等。
1. 车削:是利用车床将工件固定在主轴上,然后以旋转的刀具将工件的一部分去除,从而得到所需的形状和尺寸。
2. 铣削:是利用铣床将工件夹持在工作台上,通过刀具的上下、左右移动来进行加工,常用于切削平面、曲面和齿轮等。
3. 钻削:是通过钻床或钻头进行的加工,用于加工圆孔。
通过旋转切削将工件上的物质去除并形成孔洞。
4. 镗削:是通过镗床进行的加工,主要用于加工孔的精度要求较高的工件。
镗削可以得到高度精度和表面质量好的孔。
5. 刨削:是利用刨床将刀具安装在推表的工作台上,通过上下往复运动进行加工。
适用于加工大型平面。
6. 磨削:是通过磨床进行的加工,通过磨粒旋转或振动摩擦工件表面,削除工件上的一层物质,以得到所需的精度和表面质量。
7. 锯削:是通过锯床进行的加工,通过锯齿刀片进行锯割,适用于加工金属或非金属的切割。
二、工艺流程机械制造通常包括设计、加工、装配和检验等工艺流程。
不同的产品和行业有各自的工艺流程,下面是一个通用的流程示例:1. 设计:根据产品的功能需求和性能要求,进行设计。
设计包括产品结构、尺寸、材料、工艺等方面的考虑。
2. 加工:根据设计方案,选择合适的加工方法进行加工。
加工过程中需要控制尺寸精度、表面质量和生产效率等因素。
3. 装配:将各个零部件按照设计要求进行组装。
装配过程需要保证零部件的配合间隙、紧固力矩和装配顺序等。
4. 检验:对成品进行检验和测试,以确保产品满足设计要求和质量标准。
机械制造技术基础知识点壹金属切削原理一、切削运动:使刀具和工件产生相对运动以进行切削的运动,通常速度最大。
二、切削中的工件表面:1、待加工面:加工时即将被切除的表面.2、已加工面:已被切除多余金属的工件新表面。
3、过渡表面:刀具正在切除的工件表面。
三、切削用量(三要素):1、切削速度V c:V c=2、进给量f(进给速度V f):V f=fn3、背吃刀量(切削深度)a p:a p=四、刀具切削部分的结构三要素1、前刀面Aγ:切屑流出的表面。
2、主后刀面Aα:刀具上与工件过渡表面相对的表面.3、副后刀面A'α:刀具上与已加工表面相对的表面。
4、主切削刃S:前刀面与主后刀面的交线,完成主要的切削工作.5、副切削刃S':前刀面与副后刀面的交线,配合主切削刃并完成已加工面五、刀具标注角1、参考系(1)基面p r通过切削刃某一指定点,并与该点切削速度相垂直的平面.(2)切削平面p s通过主切削刃某一指定点,与主切削刃相切并垂直于基面.(3)正交平面p o 通过主切削刃某一指定点,同时垂直于基面和切削平面。
2、标注角(1)前角γo正交平面内测量的前刀面与基面的夹角(2)后角αo正交平面内测量的主后刀面与切削平面的夹角(3) 刃倾角λs切削平面内测量的主切削刃与基面的夹角(4) 主偏角κr基面内测量的主切削刃在基面上的投影与进给运动方向的夹角(5)副偏角κ'r基面内测量的副切削刃在基面上的投影与进给运动反方向的夹角六、金属切削变形区及特点1、第一变形区: 从OA线开始发生塑性变形,到OM线剪切滑移结束2、第二变形区:前刀面排出时受到挤压和摩擦,靠近前刀面处金属纤维化3、第三变形区:已加工表面受挤压和摩擦,产生变形和回弹,造成表层金属纤维化与加工硬化七、积屑瘤1、现象:在切削速度不高又可以产生连续性切屑,加工钢等塑性材料.(即低速切削塑性材料产生连续性切屑时).2、产生原因:切屑与前刀面发生强烈摩擦形成新鲜表面接触,在适当温度及较高压力下产生粘结(冷焊)。
机械制造技术基础知识点整理1.制造工艺过程包括技术准备、机械加工、热处理和装配等。
2.机械加工由多个工序组成,包括安装、工位、工步和走刀。
3.根据生产专业化程度的不同,生产可分为单件生产、成批(小批、XXX、大批)生产和大量生产。
4.材料去除成型加工包括传统的切削加工和特种加工。
5.金属切削加工的方法有车削、钻削、镗削、铣削、磨削和刨削。
6.工件上有三个不断变化的表面,包括待加工表面、过渡表面(切削表面)和已加工表面。
7.切削用量是指切削速度、进给量和背吃刀量的总称。
8.形成表面的发生线包括母线和导线。
9.形成发生线的方法包括成型法、轨迹法、展成法和相切法。
10.表面的成型运动是保证工件得到要求表面形状的运动。
11.机床可按万能性程度、精度、自动化程度、重量、主要工作部件数目和数控功能等分类。
12.机床包括动力源部件、成型运动执行件、变速传动装置、运动控制装置、润滑装置、电气系统零部件、支承零部件和其他装置。
13.机床上的运动包括切削运动和辅助运动,如分度运动、送夹料运动、控制运动和其他各种空程运动。
14.刀具可按类型、主切削刃数量、切削部分的复杂程度、尺寸和构造等分类。
刀具的类型和材料刀具根据切削部分和夹持部分的结构关系分为整体式刀具和装配式刀具。
切刀主要包括车刀、刨刀、插刀和镗刀。
孔加工刀具有麻花钻、中心钻、扩孔钻和铰刀等。
刀具材料中,高速钢和硬质合金钢是最常用的。
高速钢又分为普通高速钢和高性能高速钢,高性能高速钢包括钴高速钢、铝高速钢和高钒高速钢。
刀具的参考系和结构要素刀具的参考系分为静止(标注)角度参考系和工作角度参考系。
静止(标注)角度参考系由主运动方向确定,工作角度参考系由合成切削运动方向确定。
构成刀具标注角度参考系的参考平面有基面、切削平面、正交平面、法平面、假定工作平面和背平面。
外圆车刀切削部分的结构要素包括前刀面、后刀面、副后刀面、主切削刃、副切削刃和刀尖。
角度的标注和选择原则刀具角度包括在正交平面内标注的前角、后角和楔角,在副平面内标注的副前角和副后角,在切削平面内标注的刃倾角,在基面内标注的主偏角、副偏角和刀尖角。
现代机械制造基础以控制论和系统工程为先导,综合考虑物质流、信息流和能量流。
机械制造系统是离散的动态系统。
零件加工的方法:铸造、锻造、粉末冶金、钣金加工、焊接、切削与磨削、特种加工、热处理。
生产类型是指企业生产专业化程度的分类。
单件生产、成批生产、大量生产。
影响产品质量的主要因素:1.各个时期技术进步的程度。
2.生产管理的组织形式和方式。
3.产品设计质量的优劣。
4.员工的综合工作能力和敬业精神。
5.拥有的加工设备精度、检验手段的可靠程度和检验观念。
产品的经济性涉及的主要因素:1.产品的销售量与销售方式以及产品投入生产批次的大小。
2.产品设计的创新程度和设计方式、成本等。
3.组织产品生产使用车床、工具、员工的优化程度。
4.生产系统和经营思想与产品最佳效益的认知和贴合程度。
材料按物质结构分:金属材料、无机非金属材料、有机高分子材料、复合材料、陶瓷材料等。
金属材料的力学性能:强度、塑性、硬度、韧性、疲劳强度等。
强度:金属材料抵抗永久变形和断裂破坏的能力。
刚度:金属材料在受力时抵抗弹性变形的能力。
抗拉强度:金属在拉断前承受的最大拉应力。
伸长率是指试样拉断后其标距长度的相对伸长值。
δ=l−l0l0×100%断面收缩率是指试样拉断后断口处横截面积的相对收缩值。
ψ=S0−SS0×100%布氏硬度——不适于测量薄件和对表面要求严格的成品件,通常用于测定铸铁、有色金属、低合金结构钢。
HB=F(实验力N)A(压痕表面积mm2)×0.102 A=π2D(D−√D2−d2)(D钢球直径mm;d压痕直径mm)F:施加的实验力(N)洛氏硬度(HR)——操作简便、迅速,可直接读出。
适用于检验成品、小件、薄件,在钢件热处理质量检验中应用最多。
维氏硬度——精确,不适合成批生产的常规检查。
HV=FA=1.8544×0.102Fd2冲击韧度:金属材料抵抗冲击载荷作用下断裂的能力。
a K(J/cm2)=A K(折断试样所消耗的冲击功J) A0(试样缺口出的原始截面积cm2)材料承受多次重复冲击的能力,主要取决于强度、塑性。
而不是冲击韧度。
疲劳强度:技术材料在经受无数次重复或交变载荷作用而不发生疲劳破坏的最大应力。
断裂韧度:材料抵抗裂纹失稳扩展的能力。
体心立方晶格:a=b=c,α=β=γ=90°,包含2个原子。
高强度、硬度、熔点,一定的冷脆性,具有一般的韧性和塑性。
铬、钼、钨等。
面心立方晶格:包含4个原子。
具有良好的塑性和韧性,没有低温脆性,良好的低温合金材料的基础。
金、银、铜、铝等。
密排六方晶格:a=b≠c,α=β= 90°,γ=120°,包含6个原子。
强度低,塑性、韧性较差,很少做重要结构材料。
铍、镁、锌、镉等。
过冷现象:金属的实际结晶温度低于其理论结晶温度的现象。
二者之差(∆T),称为过冷度。
金属结晶的冷却速度越大,则过冷度越大,金属在结晶时产生的晶核就越多,每个晶核生长的时间越小,获得的晶粒也就越细。
同素异构转变:固态金属由一种晶格转变为另一种晶格的变化过程。
固溶体:置换固溶体、间隙固溶体固溶强化:固溶体中由于溶质原子与溶剂原子的尺寸不同,固溶体会因为溶质原子的融入而造成晶格畸变。
溶质的含量越大,溶剂金属的晶格的畸变越大,使晶面间的相对滑移阻力增加,因而固溶体的强度、硬度比溶剂有所提高,塑性和韧性稍有下降。
金属化合物:在合金中,当溶质含量超过固溶体的溶解能力,由于各组元之间的相互作用将形成金属化合物。
铁碳合金的几种相结构:1)液相:高温下铁和碳的溶液。
2)δ相:碳在δ-Fe中的固溶体。
体心立方晶格。
1394~1538℃。
3)铁素体相:碳在α-Fe中溶解所形成的固溶体。
体心立方晶格。
3)奥氏体相:碳在γ-Fe中溶解所形成的股容易。
面心立方晶格。
是热变形加工所需要的相。
4)渗碳体相:铁与碳形成的稳定化合物Fe3C。
含碳量6.69%。
熔点1227℃。
晶格复杂,无同素异构转变。
数量、形态、大小、分布对钢的性能起很大作用。
含量适当、分布合理时,可提高合金的强度。
高温长期保存可以分解成铁和石墨。
钢中杂质元素的影响:硅:提高强度、硬度、弹性。
降低塑性、韧性,0.4%。
锰:提高强度、硬度,0.8%。
硫:有害,1000~1200℃进行加工时导致钢沿晶界开裂(钢的热脆性)。
磷:有害,室温下,塑性和韧性急剧降低,使钢的脆性转化温度升高,低温更严重(冷脆性)。
氧、氢、氮:有害,氧——力学性能降低,特别是疲劳强度,氢——脆性增加,氮——“蓝脆”现象。
碳素钢:在Fe-Fe3C状态图中碳的含量在0.02%~2.11%范围内的铁碳合金。
·低碳钢<0.25% 塑性和可焊性较好,强度较低。
·中碳钢0.25%~0.6% 塑性和可焊性较差,热处理后强度和硬度显著提高。
·高碳钢>0.6% 塑性和可焊性很差,热处理后有很高的强度和硬度。
铸铁:含碳量大于2.11%的铁碳合金铜+锌=黄铜;铜+镍=白铜;其他铜合金称为青铜热处理只改变组织和性能,不改变形状和尺寸奥氏体化:把钢加热到临界温度之上,使钢在室温下的组织全部或部分转变为奥氏体。
退火:将钢的加热到临界点A1以上或以下某温度,保温一段时间,然后随炉缓慢冷却,使其组织结构达到平衡状态的热处理工艺。
·完全退火:用于亚共析钢。
改善组织、细化晶粒、降低硬度、消除内应力。
·等温退火:对于亚共析钢,可替代完全退火;对于共析钢、过共析钢,可替代球化退火。
·球化退火:用于共析钢、过共析钢及合金工具钢。
降低硬度,提高塑韧性,改善切削加工性能,使钢中碳·化物球化,为淬火做组织准备。
·均匀化退火:消除某些具有化学成分偏析的铸钢及锻轧件。
因加热温度高,晶粒粗大,需要完全退火细化。
·去应力退火:无相变退火,消除工件在铸、锻、焊、热轧、冷拉及切削加工中的残余内应力,稳定尺寸,防止后续工序中工件变形和开裂正火:将刚加热到A C3或A cm以上30~50℃,保温一段时间,然后在空气中冷却到室温并使组织结构达到或接近平衡状态的热处理操作。
与退火作用相似,冷却速度不。
淬火:将钢加热到临界点A C1或A C3以上的某一个温度,保持一段时间,然后快速冷却到室温而获得马氏体组织或贝氏体组织的热处理操作。
提高钢的硬度。
关键是淬火温度的确定与淬火冷却介质的选择。
·单液淬火:放入一种淬火介质中连续冷却到室温。
操作简单、应用广泛。
水淬容易变形和开裂,油淬容易硬度不足。
·双液淬火:水淬(M S)油)冷。
冷却条件理想、操作复杂。
水淬空冷、油淬空冷等。
·分级淬火:将工件奥氏体化后,放入温度稍高于M S温度的冷却介质中2~5min,取出空冷。
工件内外温差小,产生内应力小,变形轻微,有效防止开裂。
适于尺寸小工件。
·等温淬火:将工件奥氏体化后,快冷到贝氏体转变区,保持足够长的时间,使过冷奥氏体转变为下贝氏体,取出空冷。
强度高,塑性韧性好,淬火应力小,变形小。
适于形状复杂尺寸较小的工件。
回火:将淬火后的钢加热到A C1以下温度,保持一段时间,再冷至室温的热处理工艺。
为了消除因淬火是冷却过快二产生的内应力,降低淬火钢的脆性,稳定工件的组织和尺寸。
·低温回火(150~250℃)得到回火马氏体组织。
降低钢中残余应力和脆性,保持钢在淬火后得到的高硬度和高耐磨性。
刀具、量具、冷冲磨具、滚动轴承及精密偶件。
·中温回火(350~500℃)得到回火托氏体组织。
较高的弹性极限、屈服极限和一定的塑性、韧性。
各种弹簧钢及热锻模的处理。
·高温回火(500~650℃)得到索氏体组织。
强度、塑性、韧性都较好。
传动轴、齿轮、连杆等。
调制处理=淬火+高温回火表面淬火:快速加热和立即激冷是表面产生强化。
适合中碳钢。
球墨铸铁工艺性最好。
·感应加热表面淬火电磁感应迅速加热,喷水冷却。
加热快,脆性小,不易脱氧脱碳,变形小,生产率高。
·火焰加热表面淬火氧炔焰加热,水或乳化液冷却。
设备简单、成本低。
适用于单件、小批生产,或大型零件和需要局部淬火的零件。
·电接触加热表面淬火提高工件表面的耐磨性、抗擦伤能力,设备及工艺费用低,工件变形小,不需回火。
机床导轨、气缸套等形状简单的工件。
化学热处理:将工件置于一定温度的活性介质中保温,使一种或几种元素渗入到他的表层,以改变表层化学成分、组织和性能的热处理工艺。
·渗碳介质:气体、液体、固体、真空。
主要工艺参数:加热温度和保温参数。
低碳钢渗碳后淬火低温回火,使工件“表硬心韧”。
·渗氮更高的表面硬度、耐磨性、疲劳强度、红硬性及抗咬合性,耐蚀性。
工件变形小。
高速转动的精密齿轮和高精度机床主轴。
热处理工艺与零件结构:避免厚薄悬殊,避免尖角和棱角,增加工艺肋,采用组合结构(各部分工作条件要求不同,热处理时容易变形和开裂,分别加工、热处理再镶拼起来,制造简单,合格率高)。
表面工程:热喷涂技术、气相沉淀技术、高能束表面改性等。
铸造的优点:可以生产形状复杂,特别是具有复杂内腔的毛坯或零件;几乎不受毛坯重量、尺寸、材料种类以及生产批量的限制;铸造所用原材料来源广泛,并可直接利用废件、废料,成本较低。
影响合金充型能力主要因素:·合金的流动性:合金的种类(熔点、热导率、合金液的粘度等物理性质),合金成分。
(以“螺旋形流动性试样”的长度来衡量)·浇注条件:浇注温度(温度越高,粘度越低,流动时间增长,充型能力增强),充型压力(压力越大,充型能力越好)。
·铸型填充条件:蓄热能力、温度、铸型中的气体、铸件结构。
铸件的凝固方式:逐层凝固方式(纯铜、纯铝、灰铸铁、低碳钢),糊状凝固(球墨铸铁、高碳钢、锡青铜),中间凝固(中碳钢、白口铸铁)。
影响合金凝固的因素:合金凝固温度范围,逐渐温度梯度。
铸件的收缩三个阶段:液态收缩—(液相线温度)—凝固收缩—(固相线温度)—固态收缩。
液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因;固态收缩是铸件产生应力、裂纹和变形等缺陷的主要原因影响收缩的因素:化学成分(不同合金收缩率不同,铸铁最大,灰口铸铁最小);浇注温度(温度越高,过热度越大,液态收缩量越大);铸件结构与铸型条件。
收缩对铸件质量的影响:1.缩孔与缩松;2.铸造应力变形;3.铸件的裂纹。
缩孔与缩松:液态合金在冷凝的过程中,若其液态收缩和凝固收缩所减少的体积得不到及时的补充,则在逐渐最后的凝固部位形成一些不规则的孔洞,大而集中的称为缩孔,细小而分散的称为缩松。
·对质量的影响:使铸件力学性能、气密性和物理化学性能大大降低,以至成为废品。
·防止措施:合理选择铸造合金(共晶或接近共晶成分的合金,易形成缩孔而不易形成缩松,合理设置冒口将缩孔转移至冒口);采用顺序凝固原则,用冒口补缩;满足充型能力的前提下,尽量降低浇注温度和速度,是防止产生缩孔的有效措施之一。