高数
- 格式:doc
- 大小:45.50 KB
- 文档页数:5
高数入门知识点高等数学(简称"高数")是大学数学的一门重要基础课程,为后续学习更高级数学及其他理工科学科打下坚实的基础。
本文将介绍一些高数的入门知识点,帮助初学者快速了解和掌握这门学科。
一、极限极限是高等数学的核心概念之一。
它描述的是函数在某一点无限接近于某个特定值的性质。
例如,当自变量x趋近于某个值时,函数f(x)的极限为L,可以用符号表示为:lim(x→a) f(x) = L在求解极限时,常常用到一些基本的极限公式,如:- 极限的四则运算法则:假设lim(x→a) f(x) = A,lim(x→a) g(x) = B,则(1) lim(x→a) [f(x) ± g(x)] = A ± B(2) lim(x→a) [f(x) · g(x)] = A · B(3) lim(x→a) [f(x) / g(x)] = A / B (如果B≠0)- 常见函数的极限:(1) lim(x→∞) 1/x = 0(2) lim(x→0) sin(x)/x = 1二、导数导数是高数中另一个重要概念。
它描述的是函数在某一点的变化率。
对于函数y = f(x),其导数可以表示为dy/dx,也可以用f'(x)来表示。
导数的求解可以通过计算函数的导函数来实现。
常见的一些导数公式包括:(1) 常数函数的导数为0(2) 形如y = x^n的函数的导数为ny'(x) = nx^(n-1)(3) 指数函数、对数函数和三角函数的导数公式导数在实际应用中具有广泛的意义,例如可以用来求解函数的最值、描绘函数的切线等。
三、积分积分是高数中的另一个重要概念,它描述的是函数与自变量之间的关系。
对于函数y = f(x),其积分可以表示为∫f(x)dx,表示对函数f(x)的自变量x进行求和。
常见的一些积分公式包括:(1) 基本积分法则:∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C是常数。
高等数学微积分
是。
高等数学简称高数,微积分是高等数学中的一部分,高等数学是指相对于初等数
学和中等数学而言,由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形
成的一门基础学科。
1、高等数学介绍
高等数学主要内容包含数列、音速、微积分、空间解析几何与线性代数、级数、常微
分方程。
做为一门基础科学,高等数学存有其固有的特点,这就是高度的抽象性、严格的
逻辑性和广为的应用性。
抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入
地揭示其本质规律,才能使之得到更广泛的应用。
严密的逻辑性是指在数学理论的归纳和
整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。
2、微积分了解
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数
学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的
运算,是一套关于变化率的理论。
它使函数、速度、加速度和曲线的斜率等均需用一套通用型的符号展开探讨。
积分学,包含谋分数的运算,为定义和排序面积、体积等提供更多一套通用型的方法。
3、怎么学好微积分
努力学习微积分重点是理确切音速、导数、分数的概念。
在自学以及解题过程中要不
断的展开总结、概括。
平时必须多练应用题,进一步增强实际解决问题的能力。
建议融合
原版的英文学书籍展开自学,开拓自学能力。
高考高数知识点高考高数是考试命题中的重点和难点之一,掌握高数知识点对于提高考试成绩至关重要。
下面将介绍一些高考高数的重要知识点,供同学们参考复习。
一、函数与极限1. 函数的定义与性质:函数的定义、自变量、因变量、定义域、值域等概念,函数的奇偶性、单调性的判定方法。
2. 一些常见函数的图像:常数函数、一次函数、二次函数、指数函数、对数函数等。
3. 极限的定义与性质:数列极限的定义、函数极限的定义、极限的运算性质。
4. 极限的计算方法:函数极限的四则运算、乘法法则、函数的复合等方法。
5. 无穷大与无穷小:正无穷大、负无穷大、无穷小的定义与性质,无穷小的比较、运算法则等。
二、导数与微分1. 导数的定义与性质:导数的定义、导数的几何意义,导数的四则运算、乘法法则、链式法则等。
2. 常见函数的导数:常函数、幂函数、指数函数、对数函数、三角函数等函数的导数公式。
3. 高阶导数与导数求解:高阶导数的概念与性质,利用导数求解极值和最值的问题。
4. 微分的理解与应用:微分的定义与性质,微分的几何意义,利用微分求解近似计算和误差估计。
三、不定积分与定积分1. 不定积分:不定积分的定义与性质,不定积分的基本公式,常见函数的不定积分公式。
2. 定积分:定积分的定义与性质,定积分与不定积分的关系,定积分的几何意义。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式的理解与应用,利用牛顿-莱布尼茨公式求解定积分。
四、微分方程1. 微分方程的基本概念:微分方程的定义、解的概念、常微分方程与偏微分方程。
2. 一阶微分方程:一阶微分方程的基本形式,一阶可分离变量微分方程、一阶线性微分方程的解法。
3. 高阶线性微分方程:高阶线性微分方程的定义与性质,常系数齐次线性微分方程的特征根法及其应用。
4. 微分方程的实际应用:微分方程在物理、生物、经济等领域中的应用案例。
以上是高考高数的一些重要知识点,通过深入学习和掌握这些知识,可以帮助同学们在考试中更好地应对高数题目,取得优异的成绩。
高数核心知识点高数(即高等数学)是大学教育中的重要学科之一,是培养学生分析问题、解决问题能力的基础数学课程。
本文将简要介绍高数的核心知识点,以帮助读者系统地理解和掌握这门学科。
1. 极限与连续极限是高数的核心概念之一,它可以理解为函数逼近某个值时的趋势。
极限的计算方法有很多,常用的有代数法、夹逼法和洛必达法则等。
极限的概念在微积分中起着重要的作用,是求导、积分等运算的基础。
连续是指函数在某一段区间内无间断地存在。
连续函数具有许多重要的性质,如介值定理和零点存在定理等。
在实际问题中,连续性的概念有助于分析和解决各种现象。
2. 导数与微分导数是描述函数变化率的概念,用于衡量函数在某一点附近的近似变化情况。
导数的计算方法包括基本求导公式、链式法则和隐函数求导等。
导数在几何中有重要的几何意义,可以表示函数曲线在某一点处的切线斜率。
微分是导数的微小变化量,用于描述函数在某一点的局部变化情况。
微分的概念常应用于极值、最优化等问题的求解中。
微分学是微积分的一个重要分支,与导数密切相关。
3. 积分与定积分积分是导数的逆运算,是将函数的局部变化累积为整体变化的过程。
积分的计算方法包括不定积分和定积分,其中不定积分是求函数的原函数,而定积分是计算函数在一定区间上的面积或曲线长度等。
定积分的计算方法包括基本积分公式、换元法和分部积分法等。
定积分在几何学中具有计算曲线长度、计算曲线下的面积等重要应用。
4. 一阶微分方程一阶微分方程是描述变量之间的关系的方程,包含未知函数及其导数的方程。
一阶微分方程的求解方法有很多,常见的有分离变量法、齐次方程的变量代换和一阶线性微分方程的常数变易法等。
一阶微分方程在物理、生物、经济等领域具有广泛的应用,可以用于描述和解决各种变化的现象和问题。
5. 多重积分多重积分是对多元函数在多维空间上的积分运算,与定积分类似,但积分区域和被积函数都需要考虑多维情况。
多重积分的计算方法包括二重积分和三重积分,其中二重积分用于计算平面区域上的面积,三重积分用于计算空间区域上的体积等。
学高数的顺序
学习高等数学(高数)的顺序通常遵循数学学科的自然发展逻辑和学生的学习能力。
以下是一个常见的高数学习顺序:
1. 微积分基础:首先学习函数的极限、连续性、导数和微分等基本概念和方法。
这是高数的基础,为后续内容打下基础。
2. 积分学:接下来学习不定积分、定积分以及积分的应用,如求解面积、体积等。
3. 多元函数微积分:在掌握了一元函数微积分的基础上,进一步学习多元函数的极限、偏导数、全微分、二重积分、三重积分等内容。
4. 微分方程:学习一阶、二阶以及高阶微分方程的解法,了解微分方程在实际问题中的应用。
5. 向量代数与空间解析几何:学习向量的概念、运算以及空间解析几何的基本知识,为后续的高级课程做准备。
6. 级数理论:学习无穷级数的概念和性质,掌握级数的收敛性判别方法以及级数求和的方法。
7. 线性代数:学习矩阵的基本概念和运算,了解线性方程组、线性变换、特征值与特征向量等内容。
8. 概率论与数理统计:学习随机事件、概率、随机变量、概率分布、参数估计、假设检验等统计学的基本概念和方法。
在实际学习过程中,学生可以根据自己的兴趣、专业需求以及教学安排等因素,适当调整学习顺序。
同时,建议在每个阶段都进行充分的练习和复习,以加深对知识点的理解和记忆。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数十大定理高数的十大定理包括有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)、微分中值定理等。
具体来说:1. 有界性:是指给定一个数集和一个常数M,存在一个确定的点,使得数集中的所有数都可以在某个区间上被这个点所限制,即数集中的所有数都不会超过这个常数M。
2. 最值定理:是指在实数集中,每一个函数都有一个最大值和一个最小值,即函数在某个区间内的最大值和最小值。
3. 零点定理:是指如果函数在区间[a,b]的两端取值异号,即f(a)⋅f(b)<0,那么在区间(a,b)内至少存在一个使f(x)=0的点。
4. 费马定理:是指对于实数n,如果有n个正整数a1,a2,...,an满足a1⋅a2...an=p(p为质数),那么对于任何正整数n,a1,a2,...,an都是p的倍数。
5. 罗尔定理:是指如果函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b),那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=0。
6. 拉格朗日中值定理:是指如果函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。
7. 柯西中值定理:是指如果函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且g'(x)≠0,那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=(f(b)-f(a))/(g(b)-g(a))。
8. 泰勒定理(泰勒公式):是指如果函数f(x)在区间[a,b]上存在n阶导数,那么对于任何x∈[a,b],都存在一个以x为中心的极小值点ξ,使得f(x)=f(ξ)+f'(ξ)(x-ξ)+f''(ξ)(x-ξ)^2/2!+...+f^(n)(ξ)(x-ξ)^n/n!+...。
高数基本概念
高等数学是大学数学的一门重要基础课程,主要涉及微积分、线性代数和概率统计等内容。
以下是高等数学中的一些基本概念:
1. 函数:函数是一种特殊关系,它将一个输入值映射到一个唯一的输出值。
函数通常记作f(x),其中x为自变量,f(x)为因变量。
2. 极限:极限是函数在某一点无穷接近于某个值的情况。
如果函数f(x)在x=a处的极限存在,就称函数在x=a处极限为L。
3. 导数:导数描述了函数在某一点的瞬时变化率。
一个函数f(x)在某一点x=a处的导数可以通过极限求得,表示为f'(a)或者dy/dx。
4. 积分:积分是导数的逆运算,用于求函数在某个区间内的累积量。
定积分表示函数f(x)在区间[a, b]上的面积,通常表示为∫f(x)dx。
5. 微分方程:微分方程是涉及未知函数及其导数的方程。
它描述了函数及其导数之间的关系,可以用于描述很多自然和物理现象。
6. 线性代数:线性代数研究向量空间、线性变换、矩阵等。
矩阵是一个二维数组,表示了一系列数的排列。
7. 概率统计:概率统计研究随机事件的概率及其分布的性质。
概率是描述事件发生可能性的数值,统计则是通过对观测数据的收集和分析,推断出总体的特征。
高等数学的基本概念是学习其他数学学科的基础,对于理解数学知识的运算规律和解决实际问题非常重要。
大学高数考试题及答案详解# 大学高数考试题及答案详解一、选择题1. 题目:函数 \( f(x) = x^2 \) 在区间 \( [0, 1] \) 上的定积分是:- A. \( \frac{1}{3} \)- B. \( \frac{1}{2} \)- C. \( \frac{3}{4} \)- D. \( \frac{2}{3} \)答案: C详解:根据定积分的计算公式,\( \int_{0}^{1} x^2 dx =\left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \)。
因此,正确答案为 C。
2. 题目:极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是: - A. 1- B. 0- C. \( \frac{1}{2} \)- D. \( \infty \)答案: A详解:利用极限的性质和三角函数的极限,我们有 \( \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1\)。
因此,正确答案为 A。
二、填空题1. 题目:如果 \( \int_{a}^{b} f(x) dx = 4 \),那么\( \int_{a}^{b} 2f(x) dx = \) ________。
答案: 8详解:根据定积分的性质,如果 \( c \) 是一个常数,那么\( \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx \)。
因此,\( \int_{a}^{b} 2f(x) dx = 2 \int_{a}^{b} f(x) dx = 2 \times 4 = 8 \)。
2. 题目:函数 \( g(x) = e^x \) 的导数是 \( g'(x) = \)________。
高数基础知识总结:掌握高数的核心要点
一、引言
高等数学(高数)是数学的一个重要分支,它涉及到更加抽象和深入的数学概念。
对于许多学生来说,高数是他们学术生涯中的一个挑战。
然而,只要掌握了高数的核心要点,学习高数也可以变得相对容易。
本文将总结高数的核心要点,帮助读者更好地理解和掌握这一学科。
二、高数的核心概念
1. 极限:极限是高数的基石,它描述了函数在某个点或无穷远处的行为。
理解极限的概念对于理解高数的其他概念至关重要。
2. 导数:导数是函数的局部变化率,它描述了函数值随自变量变化的速率。
导数的计算和应用在高数中非常广泛。
3. 积分:积分是微分的逆运算,它用来计算曲线与x轴之间的面积。
积分在高数中也有着重要的应用。
4. 微分方程:微分方程描述了函数随时间变化的规律,是解决实际问题的重要工具。
5. 多元函数:多元函数涉及到多个变量的函数,其导数和积分等概念也更加复杂。
三、如何掌握高数的核心要点
1. 理解概念:对于每个高数概念,都要深入理解其定义和性质,以及其在解决实际问题中的应用。
2. 练习计算:高数的概念比较抽象,需要通过大量的练习来熟悉和掌握。
3. 建立知识体系:高数的知识点是相互联系的,需要建立起知识体系,以便更好地理解和记忆。
4. 学习方法:好的学习方法可以提高学习效率,例如采用归纳总结、类比学习等学习方法。
四、结论
高数虽然是一门比较难的学科,但是只要掌握了其核心要点,就可以轻松地理解和应用高数的知识。
希望本文对读者掌握高数的核心要点有所帮助。
高數排列,组合·阶乘:n!=1×2×3×……×n,(n为不小于0的整数)规定0!=1。
·排列从n个不同元素中取m个元素的所有排列个数,A(n,m)= n!/(n - m)!(m是上标,n是下标,都是不小于0的整数,且m≤n)··组合从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。
所有不同组合的种数C(n,m)= A(n,m)/m!=n!/[m!·(n-m)!](m是上标,n 是下标,都是不小于0的整数,且m≤n)◆组合数的性质:C(n,k) = C(n,k-1) + C(n-1,k-1);对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数◆整次数二项式定理(binomial theorem)(a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+ ...+C(n,n)×a^0×b^n所以,有 C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n =(1+1)^n= 2^n编辑本段微积分学极限的定义:设函数f(x)在点x。
的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。
|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε那么常数A就叫做函数f(x)当x→x。
时的极限几个常用数列的极限:an=c 常数列极限为can=1/n 极限为0an=x^n 绝对值x小于1 极限为0导数:定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx几种常见函数的导数公式:① C'=0(C为常数函数);② (x^n)'= nx^(n-1) (n∈Q);③ (sinx)' = cosx;④ (cosx)' = - sinx;⑤ (e^x)' = e^x;⑥ (a^x)' = (a^x) * Ina (ln为自然对数)⑦ (Inx)' = 1/x(ln为自然对数 X>0)⑧ (log a x)'=1/(xlna) ,(a>0且a不等于1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)(tanh(x))'=sech^2(x)(coth(x))'=-csch^2(x)(sech(x))'=-sech(x)tanh(x)(csch(x))'=-csch(x)coth(x)(arcsinh(x))'=1/sqrt(x^2+1)(arccosh(x))'=1/sqrt(x^2-1) (x>1)(arctanh(x))'=1/(1+x^2) (|x|<1)(arccoth(x))'=1/(1-x^2) (|x|>1)(chx)‘=shx, (ch为双曲余弦函数)(shx)'=chx: (sh为双曲正弦函数)(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则):d f[u(x)]/dx=(d f/du)*(du/dx)。
[∫(上限h(x),下限g(x)) f(x)dx]’=f[h(x)]·h'(x)- f[g(x)]·g'(x)洛必达法则(L'Hospital):是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。
比如利用泰勒公式求解。
②洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等。
曲率K = lim(Δs→0) |Δα/Δs|当曲线y=f(x)存在二阶导数时,K=|y''|/(1+ y' ^2)^(3/2);曲率半径R=1/K;不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。
记作∫f(x)dx。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。
也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.·基本公式:1)∫0dx=c;∫a dx=ax+c;2)∫x^udx=(x^u+1)/(u+1)+c;3)∫1/xdx=ln|x|+c4))∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c;13)∫secxdx=ln|secx+tanx|+c14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c;16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;·分部积分法:∫u(x)·v'(x) dx=∫u(x) d v(x)=u(x)·v(x) -∫v(x) du(x)=u(x)·v(x) -∫u'(x)·v(x) dx.☆一元函数泰勒公式(Taylor's formula)泰勒中值定理:若f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!?(x-x0)^2,+f'''(x0)/3!?(x-x0)^ 3+……+f的n阶导数?(x0)/n!?(x-x0)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!?(x-x0)^(n+1)为拉格朗日型的余项,这里ξ在x和x0之间。
定积分形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
牛顿-莱布尼兹公式:若F'(x)=f(x),那么∫f(x) dx (上限a下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。
微分方程凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。
牛顿在建立微积分的同时,对简单的微分方程用级数来求解。
后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程特征根法是解常系数齐次线性微分方程的一种通用方法。
如二阶常系数齐次线性微分方程y''+py'+qy=0的通解:设特征方程r*r+p*r+q=0两根为r1,r2。
1 若实根r1不等于r2y=C1*e^(r1x)+C2*e^(r2x).2 若实根r=r1=r2y=(C1+C2x)*e^(rx)3 若有一对共轭复根r1, 2=λ±ib :y=e^(λx)·[C1·cos(bx)+ C2·sin(bx)]。