数学建模竞赛题目
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
中学生数学建模竞赛题目
题目:中学生数学建模竞赛题目
背景:小明是一名中学生,对数学建模很感兴趣。
最近,他参加了一场中学生数学建模竞赛。
竞赛有三个题目,分别是:
题目一:平均数的计算
小明班级共有30名同学,升学率是80%。
假设这30名同学的期末考试总成绩平均分为85分,小明想知道升学同学的平均成绩是多少?
题目二:几何图形的面积计算
小明看到一个园林设计图,其中有一个不规则图形,小明想计算其面积。
可是,这个图形没有标明具体的尺寸。
请问小明该如何计算这个图形的面积?
题目三:概率的计算
小明是一名篮球爱好者,他参加了10次的投篮练习,每次投篮成功的概率为60%。
小明想知道他至少投中5次的概率是多少?
要求:
对于题目一,小明需要通过给出数据和计算方法,得出升学同学的平均成绩的具体数值。
对于题目二,小明需要通过解释几何图形的特点和常用的几何公式,得出计算该图形面积的方法。
对于题目三,小明需要用概率的计算公式和相关知识,得出至
少投中5次的概率的数值,并给出计算过程。
注意:
题目的目的是考察中学生的数学建模能力和解决实际问题的能力,因此要求考生能够认真分析题目,并运用合适的数学知识进行建模和计算。
2023研究生数学建模竞赛d题摘要:一、引言1.2023年研究生数学建模竞赛背景2.题目D的概述二、题目D详细解析1.题目要求2.题目特点3.解题思路三、解题步骤1.数据收集与处理1.1 数据来源1.2 数据清洗1.3 数据预处理2.建立数学模型2.1 确定模型类型2.2 参数估计2.3 模型检验3.模型求解与优化3.1 求解方法3.2 结果分析3.3 模型优化4.模型应用与验证4.1 应用场景选择4.2 结果对比与分析4.3 模型验证四、结果与分析1.模型预测结果2.模型性能评估3.结果可靠性分析五、总结与展望1.题目D解决的意义2.不足与改进3.未来研究方向正文:随着科技的发展和数学应用的广泛性,数学建模竞赛越来越受到研究生的关注。
2023年研究生数学建模竞赛中,题目D引起了广大参赛者的兴趣。
本文将详细解析题目D,并给出解题思路和步骤,以期为大家提供实用的参考。
一、引言2023年研究生数学建模竞赛共有多个题目供参赛者选择,其中题目D以其实用性和挑战性吸引了众多选手。
题目D的概述如下:“某城市交通部门拟对市区范围内的交通流量进行监测与调控,以减轻拥堵现象。
现有历史数据表明,交通流量与时间、地点等因素有关。
请建立一个数学模型,预测未来某一时间段内的交通流量,并针对实际情况提出合理的调控策略。
”二、题目D详细解析1.题目要求题目D主要分为两部分:一是建立数学模型预测交通流量,二是提出合理的调控策略。
这就要求选手具备较强的数据分析能力和数学建模技能。
2.题目特点题目D的特点在于数据的真实性和复杂性。
选手需要处理大量的实时数据,考虑多种因素对交通流量的影響,如时间、地点、天气等。
此外,调控策略的提出需要结合实际交通状况,具有一定的挑战性。
3.解题思路针对题目D,我们可以采取以下步骤:(1)数据收集与处理:收集历史时间段内的交通数据,包括时间、地点、交通流量等信息。
对数据进行清洗、预处理,以便后续分析。
中国研究生数学建模竞赛试题汇总2021赛题汇总2021-A:相关矩阵组的低复杂度计算和存储建模2021-B:空气质量预报二次建模2021-C:帕金森病的脑深部电刺激治疗建模研究2021-D:抗乳腺癌候选药物的优化建模2021-E:信号干扰下的超宽带(UWB)精确定位问题2021-F:航空公司机组优化排班问题2020赛题汇总2020-A:芯片相噪算法2020-B:汽油辛烷值建模2020-C:面向康复工程的脑信号分析和判别建模2020-D:无人机集群协同对抗2020-E:能见度估计与预测2020-F:飞行器质心平衡供油策略优化2019赛题汇总2019-A: 无线智能传播模型2019-B:天文导航中的星图识别2019-C:视觉情报信息分析2019-D:汽车行驶工况构建2019-E:全球变暖?2019-F:多约束条件下智能飞行器航迹快速规划2018赛题汇总2018-A :关于跳台跳水体型系数设置的建模分析2018-B:光传送网建模与价值评估2018-C:对恐怖袭击事件记录数据的量化分析2018-D:基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用2018-E:多无人机对组网雷达的协同干扰2018-F:机场新增卫星厅对中转旅客影响的评估方法2017赛题汇总2017-A:无人机在抢险救灾中的优化运用2017-B:面向下一代光通信的VCSEL激光器仿真模型(华为命题)2017-C:航班恢复问题2017-D:基于监控视频的前景目标提取2017-E:多波次导弹发射中的规划问题2017-F:构建地下物流系统网络2016赛题汇总2016-A:多无人机协同任务规划2016-B:具有遗传性疾病和性状的遗传位点分析2016-C:基于无线通信基站的室内三维定位问题2016-D:军事行动避空侦察的时机和路线选择2016-E:粮食最低收购价政策问题研究2015赛题汇总2015-A:水面舰艇编队防空和信息化战争评估模型2015-B:数据的多流形结构分析2015-C:移动通信中的无线信道“指纹”特征建模2015-D:面向节能的单/多列车优化决策问题2015-E:数控加工刀具运动的优化控制2015-F:旅游路线规划问题2014赛题汇总2014-A:小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究2014-B:机动目标的跟踪与反跟踪2014-C:无线通信中的快时变信道建模2014-D:人体营养健康角度的中国果蔬发展战略研究2014-E:乘用车物流运输计划问题2013赛题汇总2013-A:变循环发动机部件法建模及优化2013-B:功率放大器非线性特性及预失真建模2013-C:微蜂窝环境中无线接收信号的特性分析2013-D:空气中PM2.5问题的研究2013-E:中等收入定位与人口度量模型研究2013-F:可持续的中国城乡居民养老保险体系的数学模型研究2012赛题汇总2012-A:基因识别问题及其算法实现2012-B:基于卫星无源探测的空间飞行器主动段轨道估计与误差分析2012-C:有杆抽油系统的数学建模及诊断2012-D:基于卫星云图的风矢场(云导风)度量模型与算法探讨2011赛题汇总2011-A:基于光的波粒二象性一种猜想的数学仿真2011-B:吸波材料与微波暗室问题的数学建模2011-C:小麦发育后期茎秆抗倒性的数学模型2011-D:房地产行业的数学建模2010赛题汇总2010-A:确定肿瘤的重要基因信息2010-B:与封堵溃口有关的重物落水后运动过程的数学建模2010-C:神经元的形态分类和识别2010-D:特殊工件磨削加工的数学建模2009赛题汇总2009-A:我国就业人数或城镇登记失业率的数学建模2009-B:枪弹头痕迹自动比对方法的研究2009-C:多传感器数据融合与航迹预测2009-D:110警车配置及巡逻方案2008赛题汇总2008-A:汶川地震中唐家山堰塞湖泄洪问题2008-B:城市道路交通信号实时控制问题2008-C:货运列车的编组调度问题2008-D:中央空调系统节能设计问题2007赛题汇总2007-A:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题2007-B:机械臂运动路径设计问题2007-C:探讨提高高速公路路面质量的改进方案2007-D:邮政运输网络中的邮路规划和邮车调度2006赛题汇总2006-A:Ad Hoc网络中的区域划分和资源分配问题2006-B:确定高精度参数问题2006-C:维修线性流量阀时的内筒设计问题2006-D:学生面试问题2005赛题汇总2005-A:Highway Traveling time Estimate and Optimal Routing 2005-B:空中加油2005-C:城市交通管理中的出租车规划2005-D:仓库容量有限条件下的随机存贮管理2004赛题汇总2004A:发现黄球并定位2004B:实用下料问题2004C:售后服务数据的运用2004D:研究生录取问题。
专科数学建模竞赛试题及答案试题:某工厂生产一种产品,该产品由三个不同的生产阶段组成,每个阶段的生产效率和成本不同。
第一阶段的生产效率为每小时生产10个单位,成本为每个单位5元;第二阶段的生产效率为每小时生产8个单位,成本为每个单位6元;第三阶段的生产效率为每小时生产6个单位,成本为每个单位7元。
假设工厂每天工作8小时,并且每个阶段的生产能力是独立的。
问题一:如果工厂希望每天生产至少100个单位的产品,那么每个阶段每天至少需要生产多少单位?问题二:在满足问题一的条件下,工厂每天的生产成本是多少?问题三:如果工厂希望降低生产成本,但每天至少需要生产100个单位的产品,那么每个阶段的生产效率需要提高多少?答案:问题一解答:为了满足每天至少生产100个单位的产品,我们可以设第一阶段每天生产x个单位,第二阶段生产y个单位,第三阶段生产z个单位。
根据题目条件,我们有以下方程组:\[ x + y + z \geq 100 \]\[ \frac{x}{10} + \frac{y}{8} + \frac{z}{6} \leq 8 \]解这个方程组,我们可以得到第一阶段至少需要生产40个单位(因为40是10的倍数且满足总生产量至少100的条件),第二阶段至少需要生产24个单位(因为24是8的倍数且满足总生产量至少100的条件),第三阶段至少需要生产33个单位(因为33是6的倍数且满足总生产量至少100的条件)。
问题二解答:在问题一的基础上,我们可以计算每天的生产成本。
第一阶段的成本为40单位 * 5元/单位 = 200元,第二阶段的成本为24单位 * 6元/单位 = 144元,第三阶段的成本为33单位 * 7元/单位 = 231元。
因此,每天的总生产成本为200元 + 144元 + 231元 = 575元。
问题三解答:为了降低生产成本,我们需要提高每个阶段的生产效率。
假设第一阶段的生产效率提高到每小时生产a个单位,第二阶段提高到每小时生产b个单位,第三阶段提高到每小时生产c个单位。
有关“数学建模”的赛题
数学建模赛题通常涉及到各种实际问题,需要通过建立数学模型进行解决。
有关“数学建模”的赛题如下:
1.人口预测问题:给定历史人口数据,要求预测未来人口数量和年龄结构。
2.传染病传播问题:给定传染病传播的参数和初始感染人数,要求预测疾病传播的趋势
和影响。
3.物流优化问题:给定运输网络和货物需求,要求设计最优的运输方案,降低运输成
本。
4.金融风险管理问题:给定投资组合和风险因子,要求评估投资组合的风险和回报,制
定最优投资策略。
5.生产计划问题:给定市场需求和生产成本,要求制定最优的生产计划,满足市场需求
并实现利润最大化。
6.资源分配问题:给定有限资源的数量和各种需求,要求分配资源以满足需求,并实现
资源利用的最大化。
7.交通运输问题:给定运输网络和货物需求,要求设计最优的运输方案,提高运输效率
并降低成本。
8.环境保护问题:给定环境污染数据和环境质量标准,要求制定最优的环境治理方案,
改善环境质量。
中国研究生数学建模竞赛题目
以下是中国研究生数学建模竞赛的一些题目示例:
1. 非线性规划问题:给定某工厂的生产和成本数据,要求优化产量和成本之间的关系,使得产量最大化同时成本最小化。
2. 最优调度问题:某电力公司需要安排多个发电机组的启动和停止时间,以满足不同时间段的电力需求和节约燃料成本等条件。
3. 网络流问题:某物流中心需要将多个物品从供应商通过不同的物流通道送达多个目的地,要求建立一个最优的运输方案,使得总运输时间最短。
4. 高等数学问题:给定一个复杂函数模型,要求推导该函数的极值点、驻点和拐点,并分析函数在不同区间的增减性和凹凸性。
5. 随机过程问题:某金融交易市场的交易量数据呈现随机波动,要求建立一个合适的随机模型,进行交易风险评估和预测。
6. 图论问题:某城市的交通网络由多个节点和边组成,要求分析城市中的交通拥堵情况,找到最短路径和最少换乘的出行方案。
以上只是一些示例题目,实际的竞赛题目会根据具体的考查内
容和难度设置。
每年竞赛的题目都会有所变化,考察的内容也会涵盖数学的不同领域和应用实践。
主题:2023研究生数学建模竞赛各题题目一、序号:A001题目:城市人口增长预测与规划内容:选定某一特定城市,基于历史人口数据和相关影响因素,建立数学模型预测未来该城市的人口增长情况,并提出相应的城市规划建议。
二、序号:A002题目:交通流量优化与调度内容:针对某一大型城市的交通拥堵情况,利用数学建模方法,优化道路交通流量分配和车辆调度,提高城市交通效率。
三、序号:A003题目:气候变化对农作物产量的影响内容:选取特定地区的气候数据和农作物产量数据,建立气候变化对农作物产量的数学模型,分析气候变化对农业生产的影响,提出相关的应对措施。
四、序号:A004题目:环境污染与健康风险评估内容:利用数学建模方法,分析某一地区的环境污染情况,评估环境污染对居民健康的影响,并提出相关的环境治理建议。
五、序号:A005题目:金融风险管理与预测内容:基于金融市场数据和相关经济指标,建立金融风险管理的数学模型,预测市场变化趋势并制定相应的风险管理策略。
六、序号:A006题目:大规模数据处理与挖掘内容:针对海量数据的处理和分析,利用数学建模技术,提出相应的数据挖掘方法,解决实际问题中的数据处理难题。
七、序号:A007题目:企业生产调度与优化内容:选取某一生产企业,基于生产流程和资源配置情况,建立企业生产调度与优化的数学模型,提高生产效率和资源利用率。
以上是2023研究生数学建模竞赛的各题题目,每道题目都涉及到实际的问题,需要参赛选手们充分发挥数学建模的能力,结合实际情况进行分析和解决,展现数学建模在解决现实问题中的重要作用。
希望各位选手能够认真对待比赛,不断提升自身的数学建模能力,为解决社会问题贡献自己的智慧和力量。
八、序号:A008题目:供应链优化与管理内容:选择某一行业的供应链环节,建立数学模型,优化供应链各个环节的管理与协调,提高供应链效率,降低成本,提升企业竞争力。
九、序号:A009题目:医疗资源分配与优化内容:针对某一地区医疗资源的配置情况,建立数学模型,优化医疗资源分配与利用,平衡医疗资源间的差异,提高医疗服务的公平性和效率。
2023亚太杯数学建模竞赛C题一、赛题背景2023亚太杯数学建模竞赛是一项旨在促进数学与实际问题相结合的国际性比赛,旨在挖掘青年学子的创新潜能,培养他们的实际问题求解能力。
C题是本次竞赛的重要组成部分,将涉及到实际问题的数学建模和解决方案。
二、赛题题目C题的具体题目为"城市交通拥堵及解决方案",要求参赛选手通过数学建模的方法分析城市交通拥堵的原因、现状和影响,并提出有效的解决方案。
三、赛题要求1. 参赛队伍需要收集相应城市的交通数据和相关资料,包括但不限于道路网络、车辆流量、交通规划等;2. 通过分析城市交通拥堵的原因,并结合数学模型进行定量分析;3. 提出切实可行的解决方案,并对解决方案进行模拟和验证。
四、赛题分析城市交通拥堵一直是一个困扰城市发展的重要问题,在城市化进程中,随着私家车的增加、人口集中度的提高以及交通网络的膨胀,交通拥堵问题日益凸显。
通过数学建模的方法,我们可以从交通流理论、优化理论、城市规划等角度进行分析,挖掘出交通拥堵的深层次原因,为解决问题提供有力的理论支撑。
五、解题思路1. 数据收集:参赛队伍首先需要对所选择的城市进行交通数据的收集,包括车辆密度、道路拥堵情况、交通信号灯的配时方案等相关数据;2. 原因分析:通过对数据的分析,结合交通流理论和城市规划相关知识,寻找城市交通拥堵的深层次原因,例如交通信号灯的配时是否合理、道路规划是否科学等;3. 模型建立:建立数学模型对城市交通拥堵进行定性和定量分析,揭示城市交通拥堵的规律;4. 解决方案提出:结合模型的分析结果,提出科学合理的解决方案,并进行模拟和验证。
六、解题步骤1. 数据收集与整理:搜集城市的交通数据,并对数据进行整理和清洗,确保数据的准确性和完整性;2. 原因分析与模型建立:利用统计学、图论、优化理论等工具,对城市交通拥堵的原因进行分析,建立合适的数学模型;3. 解决方案提出:根据模型分析结果,提出有效的解决方案,并进行模拟验证;4. 结果展示:将分析过程、模型和解决方案进行清晰的展示,包括数据可视化、数学模型的构建和验证过程等。
数学建模竞赛的题目类型多种多样,以下是一些常见的数学建模竞赛题目类型:
1. 真实问题建模:参赛者需要将真实世界中的问题转化为数学模型,通过建模和分析来解决现实问题。
这可能涉及到工程、科学、社会经济等领域的实际情境。
2. 优化问题:参赛者需要确定一个最佳方案或最优解,以满足给定的约束条件。
这可能涉及到线性规划、整数规划、非线性规划等优化方法。
3. 模拟与仿真:参赛者需要运用计算机模拟技术,对复杂的系统进行建模和仿真,以了解系统的行为、性能等方面。
4. 统计与数据分析:参赛者需要分析给定的数据集,使用统计学方法来揭示数据中的模式、趋势、相关性等信息,并提出合理的结论。
5. 图论与网络分析:参赛者需要通过图论和网络分析方法,研究和解决与网络、图结构相关的问题,如最短路径、网络流、图着色等。
6. 方程与动力学系统:参赛者需要建立数学模型描述一些变化过程,如物理系统的运动、人口增长等,通过求解方程或分析动力学系统的行为来获得结论。
7. 分布与概率模型:参赛者需要运用概率与统计知识,对给定问题中的分布和随机事件进行建模和分析,如概率模型、随机过程等。
以上只是数学建模竞赛中常见的题目类型之一,实际的竞赛可能会结合多种数学方法和技巧,要求参赛者有良好的数学建模能力、创造性思维和解决实际问题的能力。
每个竞赛都有其独特的题型和要求,参赛者应根据比赛规则和题目要求进行准备。
全国数学建模大赛题目
题目一:城市交通优化方案
某城市的交通状况日益拥堵,为了解决交通问题,需要制定一个交通优化方案。
假设该城市的道路网络呈现网状结构,拥有多个交叉口和道路,每个交叉口都有多个入口和出口道路。
现在需要你们设计一个算法,以找到最优的交通优化方案,使得城市的车辆数最小化,同时满足交通流量平衡和道路容量约束。
题目二:无人机配送路径规划
某公司使用无人机进行货物配送,无人机需要从指定的起点出发,依次经过多个目标点进行货物的投放,最后返回起点。
每个目标点有不同的货物量和不同的时间窗限制。
现在需要你们设计一个路径规划算法,以最小化无人机在配送过程中的总飞行距离,同时满足货物量和时间窗的要求。
题目三:自然灾害预测与应急响应
某地区常常受到洪水的威胁,为了及时应对洪水灾害,需要建立一个洪水预测和应急响应系统。
现有该地区多个监测站点,能够实时测量水位、降雨量等数据,并预测洪水的发生时间和范围。
现在需要你们设计一个预测模型,以准确预测洪水的发生时间和范围,并制定相应的应急响应措施,以最大程度地减少洪灾对人民生命和财产的威胁。
题目四:物流中心选址与配送路径规划
某公司计划在某区域新建一个物流中心,以提高货物配送的效率。
现在需要你们选取一个最佳的物流中心位置,并设计一个配送路径规划算法,以最小化货物配送的总距离和成本。
同时,
由于该区域存在不同的道路类型和限制条件,需要考虑不同道路类型的通行能力和限制,以确保货物配送的顺利进行。
2009高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题制动器试验台的控制方法分析
汽车的行车制动器(以下简称制动器)联接在车轮上,它的作用是在行驶时使车辆减速或者停止。
制动器的设计是车辆设计中最重要的环节之一,直接影响着人身和车辆的安全。
为了检验设计的优劣,必须进行相应的测试。
在道路上测试实际车辆制动器的过程称为路试,其方法为:车辆在指定路面上加速到指定的速度;断开发动机的输出,让车辆依惯性继续运动;以恒定的力踏下制动踏板,使车辆完全停止下来或车速降到某数值以下;在这一过程中,检测制动减速度等指标。
假设路试时轮胎与地面的摩擦力为无穷大,因此轮胎与地面无滑动。
为了检测制动器的综合性能,需要在各种不同情况下进行大量路试。
但是,车辆设计阶段无法路试,只能在专门的制动器试验台上对所设计的路试进行模拟试验。
模拟试验的原则是试验台上制动器的制动过程与路试车辆上制动器的制动过程尽可能一致。
通常试验台仅安装、试验单轮制动器,而不是同时试验全车所有车轮的制动器。
制动器试验台一般由安装了飞轮组的主轴、驱动主轴旋转的电动机、底座、施加制动的辅助装置以及测量和控制系统等组成。
被试验的制动器安装在主轴的一端,当制动器工作时会使主轴减速。
试验台工作时,电动机拖动主轴和飞轮旋转,达到与设定的车速相当的转速(模拟实验中,可认为主轴的角速度与车轮的角速度始终一致)后电动机断电同时施加制动,当满足设定的结束条件时就称为完成一次制动。
路试车辆的指定车轮在制动时承受载荷。
将这个载荷在车辆平动时具有的能量(忽略车轮自身转动具有的能量)等效地转化为试验台上飞轮和主轴等机构转动时具有的能量,与此能量相应的转动惯量(以下转动惯量简称为惯量)在本题中称为等效的转动惯量。
试验台上的主轴等不可拆卸机构的惯量称为基础惯量。
飞轮组由若干个飞轮组成,使用时根据需要选择几个飞轮固定到主轴上,这些飞轮
的惯量之和再加上基础惯量称为机械惯量。
例如,假设有4个飞轮,其单个惯量分别是:10、20、40、80 kg·m2,基础惯量为10 kg·m2,则可以组成10,20,30,…,160 kg·m2的16种数值的机械惯量。
但对于等效的转动惯量为45.7 kg·m2的情况,就不能精确地用机械惯量模拟试验。
这个问题的一种解决方法是:把机械惯量设定为40 kg·m2,然后在制动过程中,让电动机在一定规律的电流控制下参与工作,补偿由于机械惯量不足而缺少的能量,从而满足模拟试验的原则。
一般假设试验台采用的电动机的驱动电流与其产生的扭矩成正比(本题中比例系数取为1.5 A/N·m);且试验台工作时主轴的瞬时转速与瞬时扭矩是可观测的离散量。
由于制动器性能的复杂性,电动机驱动电流与时间之间的精确关系是很难得到的。
工程实际中常用的计算机控制方法是:把整个制动时间离散化为许多小的时间段,比如10 ms为一段,然后根据前面时间段观测到的瞬时转速与/或瞬时扭矩,设计出本时段驱动电流的值,这个过程逐次进行,直至完成制动。
评价控制方法优劣的一个重要数量指标是能量误差的大小,本题中的能量误差是指所设计的路试时的制动器与相对应的实验台上制动器在制动过程中消耗的能量之差。
通常不考虑观测误差、随机误差和连续问题离散化所产生的误差。
现在要求你们解答以下问题:
1. 设车辆单个前轮的滚动半径为0.286 m,制动时承受的载荷为6230 N,求等
效的转动惯量。
2. 飞轮组由3个外直径1 m、内直径0.2 m的环形钢制飞轮组成,厚度分别为
0.0392 m、0.0784 m、0.1568 m,钢材密度为7810 kg/m3,基础惯量为10 kg·m2,
问可以组成哪些机械惯量?设电动机能补偿的能量相应的惯量的范围为[-30, 30] kg·m2,对于问题1中得到的等效的转动惯量,需要用电动机补偿多大的惯量?
3. 建立电动机驱动电流依赖于可观测量的数学模型。
在问题1和问题2的条件下,假设制动减速度为常数,初始速度为50 km/h,制动5.0秒后车速为零,计算驱动电流。
4. 对于与所设计的路试等效的转动惯量为48 kg·m2,机械惯量为35 kg·m2,主
轴初转速为514转/分钟,末转速为257转/分钟,时间步长为10 ms的情况,用某种控制方法试验得到的数据见附表。
请对该方法执行的结果进行评价。
5. 按照第3问导出的数学模型,给出根据前一个时间段观测到的瞬时转速与/
或瞬时扭矩,设计本时间段电流值的计算机控制方法,并对该方法进行评价。
6. 第5问给出的控制方法是否有不足之处?如果有,请重新设计一个尽量完善
的计算机控制方法,并作评价。