大气热力作用
- 格式:ppt
- 大小:892.50 KB
- 文档页数:15
大气热力作用原理大气热力作用原理(AtmosphericThermalActionPrinciple)是一种重要的热学原理,它可以解释一些大气现象的形成机理,包括风和温度的变化以及地表热量的移动等。
下面我们从原理的基本概念和原理的演变,还有在实践中的应用等几个方面来详细阐述大气热力作用原理。
大气热力作用原理的基本概念是指大气中的热量从高温区流向低温区,也就是说,热量通过大气及其组成物件之间传递,从而影响大气中的风、温度和地表热量分布等现象。
这就是大气热力作用原理的基本概念。
大气热力作用原理的演变可以追溯到17世纪,当时,格里高利牛顿(G. Newton)提出了“传热现象”的观点,即在分散的物质之间可以发生热量的传递。
后来,拉瓦锡(Lavoisier)提出了温度的定义,即温度是一种物理量,用来表示物质的热力。
到19世纪,热力学的发展,使大气热力作用原理发生了巨大的变化,使得它可以更好的解释大气中现象的形成机理,其中特别是道里斯费曼(D. Fermi)和罗伯特布劳恩(R. Brown)关于热辐射的理论和实验,使人们更加清楚地认识到了大气热力作用原理。
大气热力作用原理在实践中有很多应用,如气象预报和气候趋势的预测,都依赖于大气热力作用原理。
气象预报是预测未来一段时间内大气中温度、水汽和风的变化,这一预测结果依赖于大气热力作用原理,也就是太阳热量的传递原理。
同样,气候趋势的预测也需要依赖大气热力作用原理,因为气候趋势是大气中时间尺度长(如几个月)上温度、水汽和风的变化,都基本上是受大气热力作用原理的影响。
此外,大气热力作用原理也可以用来解释一些天气现象的形成机理,如热带气旋,山地阵风,眩晕等。
总而言之,大气热力作用原理是一个非常重要的热学原理,它可以解释大气中一些现象的形成机理,且在气象预报、气候趋势预测等实践中都十分重要。
第5课大气的受热过程和保温作用课程标准课标解读1.运用示意图等,说明大气受热过程,并解释相关现象1.能够通过示意图,说明大气的受热过程2.能够解释大气对地面的保温作用3.能根据所学知识解释生活中的相关现象知识点01 大气的受热过程1,大气中的一切物理过程都伴随着能量的转换。
是地球大气最重要的能量来源。
2,投射到地球上的太阳辐射,要穿过厚厚的大气才能到达地球表面。
太阳辐射在传播的过程中,小部分被大气或,到达地球表面。
3,到达地球表面的太阳辐射,被地面和。
地面因吸收太阳辐射而,同时又以的形式把热量传递给。
4,近地面大气吸收地面长波辐射以后,以、等方式层层向上传递能量。
5,从大气的受热过程看,大气对吸收较少,太阳短波辐射能够透过大气到达地面;大气对吸收较多,绝大部分地面长波辐射被大气截留。
所以,地面长波辐射是近地面大气、热源,的热量主要也是来源于此。
【知识拓展】逆温:在一定条件下,对流层某一高度会出现气温高于理论气温,甚至是气温随高度的上升而升高的现象。
逆温现象的形成及消失过程如下图所示:目标导航知识精讲逆温现象使大气垂直对流运动受阻,主要影响有:成雾、大气污染、影响航空【即学即练1】读下图“大气受热过程示意图”,完成下列小题。
1.图中序号含义正确的是()A.①太阳辐射B.②地面辐射C.③大气逆辐射D.④削弱作用2.近地面大气的主要直接热源是()A.①B.②C.③D.④知识点02 大气的保温作用1、对流层中的、等,吸收长波辐射的能力很强。
因此,地面长波辐射除极少部分穿过大气,到达宇宙空间外,绝大部分被对流层中的水汽、二氧化碳等吸收。
大气在吸收地面长波辐射后会。
2、大气在增温的同时,也向外辐射。
大气辐射除一小部分向上射向宇宙空间外,大部分,其方向与方向相反,故称。
3、大气逆辐射把热量传给地面,这就在一定程度上补偿了的热量,对地面起到了作用。
天空有云,特别是浓密的低云时,大气逆辐射。
【知识拓展】1,大气反射:起到削弱太阳辐射的作用(大气削弱作用)。
大气的热力作用原理的应用一、热力作用原理简介大气的热力作用是指空气在地球表面或空中运动时所具有的温度差异引起的现象。
这种热力作用是地球上大气环流和气候形成的重要原因之一。
热力作用原理的应用涉及气象学、地理学、能源等多个领域,其影响和作用非常广泛。
二、热力作用原理的应用1. 大气环流系统•热力作用原理对大气环流系统的形成和维持起着重要作用。
因为地球上不同地区的太阳辐射受到的角度和强度不同,导致地球表面温度差异巨大。
热空气会上升,冷空气则下沉。
这种温度差异引起的空气运动形成了大气环流系统,包括赤道低压带、副热带高压带、中纬度低压带和极地高压带等。
2. 风力发电•风力发电是一种利用热力作用原理的可再生能源技术。
当地面受到阳光的加热,空气就会膨胀,变得比较轻,而冷空气则比较密集。
这样的温度差异和空气的密度差异会产生气流,形成风。
风能通过风力发电机转化为电能。
因此,风力发电是利用大气的热力作用原理得以实现的。
3. 气象预测•大气的温度和压力变化是天气变化的重要指标。
利用热力作用原理,可以对气象进行预测。
当冷空气和热空气发生较大的温度差异时,就会形成气象现象,如台风、暴雨等。
通过观察大气的热力变化,气象学家可以预测天气的变化趋势,提供给人们做出相应的应对措施。
4. 温室效应•温室效应是指地球上的大气层对太阳辐射的吸收和反射导致的地球表面温度升高的现象。
大气中的温室气体(如二氧化碳、甲烷等)能够吸收并重新辐射地球上的长波辐射,使得热量在大气层中停留,增加了地球的整体温度。
这也是热力作用原理在地球气候变化中的应用之一。
5. 地质勘探•热力作用原理在地质勘探中也有应用。
地球表面的地热能主要来源于太阳辐射和地球内部的热能释放。
由于地壳中地下水和岩石的热化学作用,使得地下的温度差异较大。
通过观测地下温度的变化,可以判断地下的地热资源分布情况,为地热能的开发提供依据。
6. 空调制冷•空调制冷是利用热力作用原理实现的技术之一。
大气热力作用的表现形式大气热力是指在大气层中由于温度差异而产生的热力作用。
大气热力的表现形式多种多样,包括风、气压、热浪等。
风是大气热力作用的一种表现形式。
由于地球表面不同地区的气温差异,空气会形成压力梯度,从而产生气流。
风的产生与地球自转、地形、日照等因素有关。
风的强度和风向都受到大气热力的影响。
例如,当一个地区的气温升高,空气会上升形成低压,周围的冷空气会向低压区流动,形成风。
气压是大气热力的另一种表现形式。
气压是指单位面积上的气体重量,也可以理解为空气分子对单位面积的压力。
由于地球表面的温度差异,不同地区的气压也不同。
高温地区的空气密度较低,气压较低;低温地区的空气密度较高,气压较高。
气压梯度会导致空气的运动,形成风。
热浪也是大气热力作用的一种表现形式。
热浪是指气温异常升高,持续时间较长的天气现象。
热浪的产生与高压系统、逆温层等因素有关。
在热浪天气中,地面的高温会导致空气上升,形成高压,进而影响天气系统的稳定性。
热浪不仅会给人们的生活带来不便,还可能对农作物生长、生态环境等产生影响。
大气热力还会对气候产生影响。
大气热力的不均匀分布导致不同地区的气候差异。
例如,赤道地区的气温高,气压低,形成热带气候;极地地区的气温低,气压高,形成极地气候。
大气热力还会导致季风的形成,影响地区的降水分布。
大气热力作用的表现形式丰富多样,包括风、气压、热浪等。
这些现象都是由于大气层中温度差异所引起的。
大气热力不仅影响着天气变化,还对气候和人类生活产生重要影响。
了解大气热力的表现形式,有助于我们更好地理解和应对天气变化。