水系沉积物测量地球化学图制作
- 格式:pdf
- 大小:482.74 KB
- 文档页数:4
77矿产资源M ineral resources摩洛哥El Menizla 地区水系沉积物地球化学特征及找矿预测吴彦彬1,2(1.河北华勘地质勘查有限公司,河北 廊坊 065201;2. 华北地质勘查局综合普查大队 河北 廊坊 065201)摘 要:研究区位于摩洛哥El Menizla地区,地处摩洛哥大阿特拉斯山西部、萨哈拉沙漠西北部,构造活动特征显著,尤以海西期和阿尔卑斯期构造作用最为强烈,形成了褶皱构造和断层构造耦合伴生,NS向构造与EW向构造叠加改造的格局。
本文采用水系沉积物地球化学测量的方法在El Menizla地区进行找矿研究,圈定组合异常并提出找矿预测。
关键词:水系沉积物;地球化学;找矿预测;摩洛哥中图分类号:TD12 文献标识码:A 文章编号:1002-5065(2023)16-0077-3Geochemical characteristics and prospecting prediction of stream sediments in El Menizla area, MoroccoWU Yan-bin 1,2(1.Hebei Huakan Geological Exploration Co., Ltd., Hebei Langfang 065201; 2.North China Geological Exploration Bureau Comprehensive Survey Brigade Hebei Langfang 065201)Abstract: The study area is located in the El Menizla region of Morocco, which is located in the west of Morocco 's Great Atlas Mountains and the northwest of the Sahara Desert. The tectonic activity characteristics are significant, especially in the Hercynian and Alpine tectonics. The most intense, forming a pattern of coupling of fold structures and fault structures, and superposition of NS-trending structures and EW-trending structures. In this paper, the method of stream sediment geochemical survey is used to carry out prospecting research in El Menizla area, delineate combination anomalies and propose prospecting prediction.Keywords: stream sediment ; geochemistry ; prospecting prediction ; Morocco收稿日期:2023-06作者简介:吴彦彬,男,生于1995年,汉族,河北廊坊人,硕士研究生,助理工程师,从事勘查地球化学工作。
1∶5万水系沉积物测量1、采样密度阳明山地区以中低山—丘陵为主,雨水充沛,河沟极为发育,大部分地区水流速度中等,水系沉积物测量采样密度定为4~5点/ km2,在1:20万区化浓集中心地带、多元素异常复合部位或矿点分布较集中的地带,采样密度可适当增加,以每小格(0.25km2)不超过2个采样点为原则。
2、采样物质与采样部位本次调查的采样物质以淤泥和粉砂为主,粒度要求取-0.216mm(≤60目)筛孔粒径的物质。
为减少测区内元素的跳动,采样物质要尽量保持一致,要避免采集表层物质,以减少有机物质及铁锰类物质的影响。
样品装入布样袋后,应用手缓慢挤干,以避免某些元素以溶液形式相互渗透造成样品的污染。
过筛后的样品重量应保证不少于120克。
水系沉积物采样部位应选择在河流底部或河道岸边与水面接触之处,在间歇性水流地区或很少水流的干河道或沟谷中应主要在其底部采样。
在水流湍急的河道中要选择在水流变缓处,转石后或河道拐弯的内侧有较多细粒物质聚集之处采样。
如果采样小格中实无水系,则可在较小的干沟底部采样。
为提高样品的代表性,应在采样点水系上下20~30m范围内进行多点取样,然后混合在一起组合成一个样品。
3、采样点的布置与定点水系沉积物测量野外采样点位采用GPS与1:5万地形图结合确定。
先在地形图上将工作范围框出,然后在工作区范围内将整数公里网加密成长宽都为0.5km的方格网。
以四个小方格作为一个大格(1km2),为便于资料整理和数据处理,大格编号顺序按一个1∶5万图幅为一个单元,单元号冠于大格编号的千位,每幅1∶5万图幅的大格编号顺序自左而右自上而下。
每个大格的四个小格编号顺序自左而右自上而下标为a、b、c、d,每个小格中采集的第一个样品为1,第二个样品标为2(如1001a1),每个采样点根据其所处的位置按上述规定进行编号。
采样点位预先按设计采样点位布置在地形图上,在野外采样过程中可以根据现场实际情况作适当的修改,并将实际采样位置标注在图上。
一、水系沉积物测量的基本原理在水系中取其中的冲击物作为样品,对样品的分许结果进行各种统计,之后圈定异常、进行地球化学分区、建立地质—地球化学找矿模型、研究各元素之间的关系、确定找矿指示元素(直接和间接)及其伴生元素等等。
其中最常用的是圈定异常,并对异常(同生异常)溯源追踪,最终发现异常源(矿体或矿化体),以达到找矿的目的。
水系沉积物测量工作比例尺为1:200000及其以下的部分称为区域化探,工作比例尺为1:50000的称为地球化学普查,目前最大比例尺的水系沉积物测量为1:25000。
在地球化学普查或1:25000水系沉积物测量工作之后的溯源追踪工作通常是各种方式(1:1万、1:2万或1:2.5万的土壤剖面或土壤测量工作)的土壤测量工作,在黑龙江省最常用的是1:1万土壤剖面(点距20米,线距视异常和地质情况而定)、1:2万(网度200×40—线距200米、点距40米)土壤测量工作。
本次设计的追踪异常源的工作主要是1:2万土壤测量工作(面积是18km2),其次是1:2万土壤剖面工作(长度是18km)。
二、1/5万水系沉积物测量基本知识1、本次矿调按文件要求的采样密度为4~8个/km2,实际工作中的采样密度大多在4~5个/km2,大部分是4个/km2。
按规范要求每个采样点控制的汇水面积在0.125~0.25Km2之间,并且主要布置在一级水系上,二、三级水系视具体情况只布设少量的控制性采样点。
2、关于水系级别:按规范规定在地形图上超过300米的沟谷无论有无水流都为一级水系,两个一级水系会合处的下游为二级水系,同理两个二级水系会合处的下游为三级水系,以此类推可划分出4、5、6级水系。
3、水系沉积物测量的取样物质是未受污染的冲击物,而不是采样点两侧及周围的塌积物。
为避免于水系不发育的局部地段出现连续的空白区目前的作法是:采用水系沉积物与网格法土壤采样相结合的方法,以避免空白区域的出现。
土壤样品采集残坡积层中物质,具体是残积物还是坡积物根据现场确定,不好确定的可定为残破积物。
.1/5万水系沉积物测量野外工作方法一.1/5万水系沉积物测量布点原则以区内景观条件、地质及地球化学特征为依据,并根据任务书要求完成本次布点:⑴以1:5万地形图为工作手图,采样密度控制在6-8个点/Km2以内,一般按每平方公里不少于7个点/Km2布置。
主水系中均不布点,特别难以通行区可适当放稀布点。
样点分布力求最大限度控制汇水域,兼顾样点均匀一、水系沉积物布点原则合理布设。
⑵采样点主要布置在地形图上可以辨认的最小水系(>300m)即一级水系口上,对长度大于500米的水系,应溯源追加布点,二三级水系可适当控制。
对原1:20万区域化探采样点应进一步布点。
⑶最上游的采样点控制汇水域面积不小于0.125km2,不大于0.25km2,要求每个样点都应控制一片特有的汇水域,力求采样点控制汇水域面积的均匀性。
⑷避免不必要的重复控制及机械布点,布点时尽量兼顾减轻劳动强度,采样点尽量布置在易通行处。
⑸在自然条件允许的情况下,尽量使95%以上的小格内都有样点分布,不得连续出现五个以上的空白小格。
⑹综合考虑上述原则的基础上,剔除不布样点格子之后,布点大格总数135个。
测区平均采样密度7。
1/km2,采样总面积113km2。
设计采样点805个,样品931件(12元素),布点情况见表12。
采样大格编码、布点、分配一览表表12二、样品编号1、在放大1:5万地形图上,以高斯坐标网线划分成1Km2的采样大格,大格编号顺序从左到右,自上而下依次编排;每个大格再以奇数方里网为界,划分成0.25Km2的四个小格,编号顺序从左到右,自上而下划分为a、b、c、d,每个小格有两个样点时,按从上而下的顺序,以阿拉伯数字脚注,如8A2 为第8大格A小格2号样品。
采样点预先设计标绘于地形图上。
2.含重复采样格子确定,在考虑图幅中均匀分布和不同地质构造单元的前提下,预先随机确定重复采样格且随机确定一重复样点。
实际采样43个样品为一批,其中随机留取7个号,3个插入重复分析样品,4个供实验室插入二级标样作质量监控,以衡量各批次间的分析偏差,每个1:5万图幅内随机抽取一批,供实验室插入12个一级标样。
地球化学普查水系沉积物测量记录卡图幅名称(或地区):青海称多县托洛涌地区图幅号: □I47E011002 □I47E011003 □I47E012003 采样日期:2014年月日记录:采样:审核:第页记录卡填写说明1地球化学普查水系沉积物测量记录卡填写说明图幅代号:√。
1:50000地形图图幅号,在相应的图幅号前□内“打勾”。
A 样品号:N7。
图幅名拼音代码+采样大格编号+小格代码+小格样号,如:MP234B1。
该样品号中:MP-茅坪幅代码;234-大格号;B-小格号;1,B小格第一个样号)。
B 样袋号:野外实地编号。
C 横坐标: N8。
统一确定为高斯6度带,记录带号+横坐标精确到m。
如17428303D 纵坐标:N7。
高斯6度带精确到m。
如3395158E 海拔高程:N4。
采样点高程坐标,以米为单位。
从地形图等高线或通过GPS直接读取。
F 水系级别:C1。
记录代码:1 、一级水系;2、二级水系;3、三级水系。
G 采样部位:C1。
采样点位于水系的位置,用代码表示:1:河底;2:水线附近;3:河漫滩上;4:水塘入口处H 样品组分:C3。
记录3位数:分别代表样品中粗砂(第1位)、细砂(第2位)和淤泥及有机物(第3位)含量。
此三项为样品的沉积物组分,以编码方式分级填写,分为:0:无;1:少量(<30%);2:中量(30~70%);3:大量(>70%),三者之和不能超过100%。
I 样品颜色:C2。
1、灰黑色;2、灰色;3、褐色;4、灰黄色;5、红色;6、砖红色;7、灰绿色。
J 地质时代:C4。
记录所控汇水域内地质时代。
记录地质时代符号。
沉积地层按出露情况适当并层;侵入岩记录主要侵入期。
(Q、E3y、T1-2gd、T3q、ηγT3、γδT3、δοT3等)K 岩石类型:C4。
填写该点所控制汇水面积内占优势的基岩类型,参见“区域地球化学勘查规范”附录B表B2。
L 矿化蚀变:C1。
记录矿化蚀变程度。
数字地质调查系统制作地球化学元素等值线图及异常图杨宏图;刘军省;鞠林雪;邓宇飞;王春光;韦钊;王凡;刘星旺;王健【摘要】数字地质调查信息综合平台(DGSS)在我国地质调查中逐渐占据主导地位.以1∶5万水系沉积物化探测量后期成图的实际应用为例,通过迭代法计算背景值和标准偏差,求得异常下限,进而绘制出地球化学元素等值线图及异常图;通过软件集成的数据分析功能分析各元素相关系数,确定元素组合,绘制组合异常图、综合异常图.展示数字地质调查信息综合平台在处理数据及数据成图两方面所具有的功能强大、方便快捷、高效精准的优点.【期刊名称】《地质学刊》【年(卷),期】2017(041)001【总页数】6页(P85-90)【关键词】数字地质调查系统;元素等值线图;异常图;天山山脉;新疆【作者】杨宏图;刘军省;鞠林雪;邓宇飞;王春光;韦钊;王凡;刘星旺;王健【作者单位】中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750;中化地质矿山总局地质研究院,河北涿州072750【正文语种】中文【中图分类】P623数字地质调查信息综合平台(DGSS)是中国地质调查局以MapGIS为基础自主研发的集室内数据采集、数据综合处理、地质图编辑与综合、地质矿产调查综合数据采集与研究、探矿工程数据管理等功能于一体的数字地质调查系统(李超龄,2011)。
该软件改进了地质找矿工作在野外测图、室内成图等方面的技术手段,既节约了工作时间,又保证了空间数据的精确性(朱莉莉等,2013)。
以新疆西天山1∶5万水系沉积物化探数据处理为例,从初步点位数据处理、背景值和异常下限确定以及不同地球化学图件绘制等方面分析DGSS软件在化探数据处理方面的特点。
1/5万水系沉积物测量工作流程及相关软件应用
吴兴宏
(辽宁省第十地质大队)
摘要在区域化探中获得的各类省、区域或局部地球化学异常范围内,以及根据化探、物探、遥感、地质资料等所圈定的找矿远景区内,常用的工作比例尺为1/25000-1/50000,正确无误的工作方法配合方便有效的计算机制图及相关软件才能够清晰合理的反映该区域的成矿有利地段和与找矿有关的地球化学特征,从而进一步缩小多金属成矿带找矿靶区。
关键词工作流程 MapGis Section
0. 前言
1/5万水系沉积物测量工作流程分三个阶段:室内准备阶段、野外工作阶段和室内数据整理阶段,其中室内准备与室内数据整理阶段常借助计算机办公软件Excel以及计算机制图软件MapGis、Sction等。
下面就1/5万水系沉积物测量的工作流程以及相关的计算机软件应用做简单阐述。
1. 室内准备
1.1 测网及采样点位布设
在1/5万地形图上框出工作范围,利用MapGis投影变换功能,生成与工作区相同图幅的标准1/5万图框,图框网间距设置为0.5Km(默认为1Km),线参数与工作区图框区分,将MapGis线文件保存添加至工作区工程文件内,形成1/4Km 网格。
(效果如图XX)
根据规范要求,在工作区MapGis工程文件内根据地形合理布设采样点,除特殊情况外,原则上不出现5个以上的连续空白小格,每个小格的采样点不超过2个。
1.2 大格号编号
每1个公里网为一大格,每1/4公里网为一小格,将编排好的Excel表格(图xx)利用Sction软件内的[Excel功能]-excel→Mapgis1(首行首列为自定义数据)投影至工程文件内,对其大格进行编号。
(效果如图x)
1.3 样品编号。
水系沉积物地球化学测量在凉城地区的应用效果水系沉积物地球化学测量是一种应用于环境地球化学研究中的方法,通过分析水系沉积物中的元素组成和同位素比值,可以揭示地表环境的变化和污染来源。
在凉城地区,水系沉积物地球化学测量已经得到了广泛的应用,极大地提高了人们对该地区环境变化和污染情况的了解。
本文将从样品采集、实验分析和结果解释三个方面对水系沉积物地球化学测量在凉城地区的应用效果进行详细介绍。
样品采集是水系沉积物地球化学测量的第一步。
在凉城地区,研究人员选择了几个典型的水系沉积物样点,包括河流、湖泊和水库等地点,然后使用钻孔等方法采集了深度不同的沉积物样品。
在采集过程中,研究人员注意保持样品的完整性和代表性,避免样品受到外界污染的影响。
通过合理的样品选择和采集方法,保证了后续实验的准确性和可靠性。
实验分析是水系沉积物地球化学测量的关键环节。
在凉城地区,研究人员使用了多种实验方法来分析水系沉积物样品中的元素组成和同位素比值。
其中常用的方法包括X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)和同位素质谱等。
这些实验方法可以快速、准确地测量样品中的元素含量和同位素比值,为后续的数据分析和结果解释提供了可靠的数据基础。
结果解释是水系沉积物地球化学测量的关键结果之一。
在凉城地区,研究人员通过分析水系沉积物样品中的元素组成和同位素比值,得到了关于该地区环境变化和污染情况的重要信息。
研究人员发现,凉城地区的沉积物中镉(Cd)和铅(Pb)的含量明显超过了环境背景值,说明该地区存在严重的重金属污染问题。
研究人员还通过分析沉积物中氧同位素的组成,揭示了该地区的气候变化历史,为全球气候变化研究提供了重要的证据。
1:50000地球化学⽔系沉积物测量⼯作细则1:50000⽔系沉积物测量⼯作细则⼆○○三年三⽉1:50000⽔系沉积物测量⼯作细则⼀、⽬的根据在区域化探阶段已圈出的各类地球化学异常,以及根据化探、物探、地质资料所划定的找矿远景区,优选1:50000化探测量图幅,通过1:50000化探测量⼯作,进⼀步缩⼩寻找⾦、铜、镍成矿带找矿靶区,查明成矿有利地段和找矿有关的地球化学特征,提出进⼀步开展地、物、化⼯作的详查地区。
⼆、⽅法的选择依据北⼭地区地球化学景观特征和前⼈1:200000化探⼯作⽅法,⼯区选择1:50000⽔系沉积物测量⼯作⽅法。
⼯作区为为⼲旱荒漠丘陵区,基岩裸露、⽔系较发育,因此⼯作中采⽤与该景观区相适宜的⽔系沉积物测量⽅法。
采样粒度采⽤-4—+20⽬粒级,⽤“套筛取样法”取样。
三、测⽹的布设在1:50000地形图上框出⼯作范围,在此范围内以公⾥⽹为基准,划出长宽各为0.5千⽶的⽅格,在每⼀平⽅千⽶⼤格⼦中划成四个0.25平⽅千⽶的⼩格。
四、编码原则1、样品编码⾸先在1:5万地形图上框出⼯作范围,在范围内划出长宽各0.5千⽶的⽅格⽹,以四个⽅格(1平⽅千⽶)作为1个采样⼤格编号,各⼤格编号顺序⾃左⽽右再⾃上⽽下。
每个⼤格中有四个为0.25平⽅千⽶的⼩格,编号顺序⾃左⽽右,⾃上⽽下标号a、b、c、d,在每⼀⼩格中采集的第⼀号样品右下⾓标注1,第⼆号样品标注2。
采样点预先标在地形图上,在采样时可根据实际情况进⾏修改,并将实际采样点标在图上,定点误差在图上不⼤于 2.0mm。
每个采样点留有标志。
2、监控样、重复采样及重复分析号编码监控样、重复采样及重复分析号的编码以采样⼩格为基础,每50个分析号码为⼀批,在其中任取⼀个号码为重复采样⼩格,并进⾏重复分析,取3个号码作为此⼤格内重复取样及重复分析编号,另任取4个号码,作为插⼊监控样(⼀级标样)编号之⽤,并在图上注明重复样及监控样号码。
重复采样及重复分析样的编码右下⾓标注为3,监控样的编码右下⾓标注为4。