初中七年级数学 直线、射线、线段
- 格式:doc
- 大小:220.00 KB
- 文档页数:5
6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
线段射线直线初中数学教案〔精选6篇〕线段射线直线初中数学教案〔精选6篇〕线段射线直线初中数学教案篇1教学目的:1、在现实情境中理解线段、射线、直线等简单图形〔知识目的〕2、会说出线段、射线、直线的特征;会用字母表示线段、射线、直线〔才能目的〕3、通过操作活动,理解两点确定一条直线等事实,积累操作活动的经历,培养学生的兴趣、爱好,感受图形世界的丰富多彩。
〔情感态度目的〕教学难点:理解“两点确定一条直线”等事实,并应用它解决一些实际问题教具:多媒体、棉线、三角板教学过程:情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描绘我们所看到的现象?教学过程:1、一段拉直的棉线可近似地看作线段师生画线段演示投影片1:①将线段向一个方向无限延长,就形成了______学生画射线②将线段向两个方向无限延长就形成了_______学生画直线2、讨论小组交流:① 生活中,还有哪些物体可以近似地看作线段、射线、直线?〔强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的〕②线段、射线、直线,有哪些不同之处,有哪些一样之处?〔鼓励学生用自己的语言描绘它们各自的特点〕3、问题1:图中有几条线段?哪几条?“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法:用一个大写英文字母线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示自己想方法表示射线,让学生充分讨论,并比拟如何表示合理射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面直线的记法:① 用直线上两个点来表示② 用一个小写字母来表示强调大写字母与小写字母来表示它们时的区别〔我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。
〕练习1:读句画图〔如图示〕〔1〕连BC、AD〔2〕画射线AD〔3〕画直线AB、CD相交于E〔4〕延长线段BC,反向延长线段DA相交与F〔5〕连结AC、BD相交于O练习2:右图中,有哪几条线段、射线、直线4、问题2 请过一点A画直线,可以画几条?过两点A、B呢?学生通过画图,得出结论:过一点可以画无数条直线经过两点有且只有一条直线问题3 假如你想将一硬纸条固定在硬纸板上,至少需要几根图钉?为什么?〔学生通过操作,答复〕小组讨论交流:你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。
4.2 直线、射线、线段一、有关概念:(1) 经过两点有一条直线,并且只有一条直线。
简单说成:两点确定一直线我们经常用一条直线上的两点来表示这条直线。
直线AB 或直线L(2) 当两条不同的直线有一个公共同点时,我们就称为两条直线相交,这个公共点叫做它们的交点。
点P 在直线AB 外,(直线AB 不经过点P) 直线a 和b 相交于点O 点O 在直线AB 上,(直线AB 经过点0) (3) 线段和射线线段AB 或线段a 射线0A 或射线L(3)在数学中,我们常限事实上用无刻度的直尺和圆规作图,这就是尺规作图。
①作一条线段等于已知线段 ②比较两条线段的大小(4)点M 把线段AB 分成线段AB 与MB ,点M 叫做线段AB 的中点。
如果AM=MB 即点M 是线段AB 的中点(5)两点的所有连中,线段最短。
简单说:两点之间,线段最短。
(6)连接两点间的线段的长度,叫做这两点的距离。
BLa boPBoaL概念题1、直线的公理把一根木条用一颗铁钉能固定,使它不能转动吗?。
如果要固定它,你认为至少需要颗铁钉。
经过一点O画直线,能画出条?经过两点A、B能画条。
2、直线的表示方法:直线可有种表示方法,他们分别是:;。
请分别画图说明:3、一个点与一条直线的位置关系:一个点与一条直线会有种位置关系。
他们分别是:,也可以说是;,也可以说是。
请分别画图说明:4、两条不同的直线相交:当两条不同的直线时,称这两条直线相交;是交点。
请分别画图说明:5、射线和线段的表示方法射线和线段都是直线的。
类似于直线的表示方法,射线可有种表示方法,他们分别是:;。
请分别画图说明:线段可有种表示方法,他们分别是:;。
请分别画图说明:6、两点间的距离连接两点间的,叫做这两点的。
(4)4.2 直线、射线、线段(第一课时)认识直线射线线段1.按下列语句画出图形(1)直线EF 经过点C ; (2)点A 在直线d 外(3)经过点O 的三条线段a 、b 、c ; (4)线段AB 、CD 相交于点B 。
直线、射线与线段知识点一、直线、射线、线段的概念1、直线:由无数个点构成,没有端点,向两端无限延长,长度是无穷的,无法测量2、射线:由无数个点构成,有一个端点,从这个端点开始向另一端无限延长,长度是无穷的,无法测量3、线段:由无数个点构成,有两个端点,从一个端点连向另一个端点,长度是有限的,可以测量1、下列说法正确的有_____________①直线比射线长②线段由无数个点构成③过三点一定能作一条直线④线段的长度是无穷的⑤直线有两个端点⑥射线有两个端点⑦线段有两个端点2、下列关于直线、射线、线段的说法正确的是()A、直线最长,线段最短B、射线是直线长度的一半C、直线没有端点D、直线、射线和线段的长度都不确定3、下列说法正确的是()A、线段不能延长B、延长直线AB到CC、延长射线AB到CD、直线上两个点和它们之间的部分是线段A、线段AB的长度是A、B两点间的距离B、若点P使PA=PB,则点P是AB中点C、画一条10厘米的直线D、画一条3厘米的射线知识点二、直线、射线、线段的表示方法1、直线用一个小写字母或两个大写字母表示,例如直线a或直线AB。
注意:直线AB和直线BA是同一条直线2、射线用一个小写字母或两个大写字母表示,例如射线a或射线AB注意:射线AB指从A射向B,射线BA指从B射向A,是不同的两条射线3、线段用一个小写字母或两个大写字母表示,例如线段a或线段AB注意:线段AB和线段BA是同一条线段思考:(1)直线AB和直线BA一样吗?_______(2)射线AB和射线BA一样吗?_______(3)线段AB和线段BA一样吗?_______1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线A、线段AB和线段a可以代表同一条线段B、直线AB和直线BA是同一条直线C、线段AB和线段BA是同一条线段D、射线AB和射线BA是同一条射线3、下列叙述正确的是()A、直线AB、线段ABC、射线abD、直线Ab4、下列叙述不正确的是()A、线段aB、射线bC、直线CDD、射线Ca知识点三、数学原理1、两点确定一条直线2、两点之间线段最短1、下列说法正确的有_______________①经过两点有且只有一条直线②两点之间线段最短③两点确定一条直线④到线段两个端点距离相等的点叫做线段的中点⑤线段的中点到线段两个端点的距离相等2、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,体现的原理是________________________3、小明是神枪手,他打靶时眼睛总要与枪上的准星、靶心在同一条直线上,这体现了什么道理_______________________4、从A到B有多条路,但是聪明的人都知道走走中间的直路比较近,这体现的数学原理是_____________________5、把弯曲的河流改成直的,可以缩小航程,这体现的原理是_____________________6、要把一根木条在墙上钉牢,至少需要______枚钉子,原理是_________________7、开学整理教室时,老师总是先把每一列最前和最后的课桌整理好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐。
第七讲直线,射线,线段点与直线的关系:点在直线上;点在直线外.两个重要公理:②经过两点有且只有一条直线,也称为“两点确定一条直线”.②两点之间的连线中,线段最短,简称“两点之间,线段最短”.两点之间的距离:两点确定的线段的长度.⑴点的表示方法:我们经常用一个大写的英文字母表示点:A,B,C,D,……⑵直线的表示方法:①用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB,如下图⑴也可以写作直线BA.l(1) (2)②用一个小写字母来表示,如直线l,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序.⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO . ② 用一个小写字母来表示,如射线l ,如图⑷.注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.直线、射线、线段的主要区别:中点:1.直线,射线,线段的符号表示方法2.培养学生学会一些几何语言,培养学生的空间观念(3) (4)lAO(5) (6)AB在一个美丽的小岛上,有一座数学城堡里住着线段、直线、射线三个家族,它们在一起经常因比长短,而争论不休,它们三家的关系也很紧张。
这天上午阳光明媚、天气暖和,线段8分米带着弟弟6厘米,在花园里的花丛中玩耍,这是只见直线和射线也大摇大摆的来到这里。
它们看到线段兄弟就嘲笑的说:“喂;你们这么矮能摘得漂亮的花吗?你们能捉到蝴蝶吗?”线段兄弟听了直线和射线的挑衅的话;不服气地来到它们身旁抬头看它们比自己高不了多少,就对它们说:“你们不比我们高多少,还那么高傲,我们的10米、80米、200米……哥哥们比你们高的多,一会儿,等我把它们叫来,让你们见识见识它们的高度,吓你们一跳。
4.2直线、射线、线段
第1课时直线、射线、线段
能力提升
1.下列说法中错误的是()
A.过一点可以作无数条直线
B.过已知三点可以画一条直线
C.一条直线通过无数个点
D.两点确定一条直线
2.射线OA,射线OB表示同一条射线,下面正确的是()
3.图中共有条线段.
4.
看图填空:
(1)点C在直线AB;
(2)点O在直线BD,点O是直线与直线的交点;
(3)过点A的直线共有条,它们是.
5.
如图所示,在线段AB上任取D,E,C三个点,则这个图中共有条线段.
6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.
7.按下列语句画出图形.
(1)直线l经过A,B,C三点,点C在点A与点B之间;
(2)经过点O的三条直线a,b,c;
(3)两条直线AB与CD相交于点P;
(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.
★8.阅读下表:
线段AB上的点数
图例线段总条数N
n(包括A,B两点)
33=2+1
46=3+2+1
510=4+3+2+1
615=5+4+3+2+1
解答下列问题:
(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?
(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?
创新应用
★9.
如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有个交点;如果在这个平面内再画第4条直线l4,那么这4
条直线最多可有个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有个交点.(用含n的式子表示)
参考答案
能力提升
1.B过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.
2.B射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上.
3.10
4.(1)外(2)上AC BD(3)3直线AD、直线AB、直线AC这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.
5.10只要有一个端点不相同,就是不同的线段.
6.解:经过两点有且只有一条直线.
7.解:(1)
(2)
(3)
(4)
8.解:(1)N=1+2+3+…+(n-1)=.
(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有=10条线段,即有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票.
创新应用
9.36通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点
1+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)=(个).。