长距离高扬程多级加压输水管道水锤防护工程实例
- 格式:pdf
- 大小:1.64 MB
- 文档页数:5
“高扬程水泵小起伏长输水管线水锤防护方案优选案例分析”咱们得聊聊高扬程水泵。
想象一下,水泵就像一个大力士,把水从低处推向高处,为咱们的生活提供源源不断的动力。
然而,在输送过程中,水泵和管道之间会产生一种叫做水锤现象的玩意儿,简单来说,就是水流在管道里突然受阻,造成压力瞬间升高,就像锤子一样撞击管道。
这可是个大问题,搞不好会把管道搞坏,所以咱们得想个办法搞定它。
言归正传,咱们先来看看几个典型的小起伏长输水管线案例。
第一个案例发生在某地的一座水厂,水泵正常运行时,管道里的水流动顺畅。
但有一天,水泵突然停机,水流瞬间受阻,管道内的压力猛增,结果导致管道破裂。
第二个案例是在一个偏远山区,由于地形复杂,管道铺设过程中出现了多处起伏,水泵在运行过程中,水锤现象频繁发生,导致管道损坏,维修费用高昂。
1.安装水锤消除器。
这玩意儿就像一个减压阀,当水锤现象发生时,它能自动打开,释放掉部分压力,从而减轻管道的负担。
不过,这东西价格不菲,安装和维护成本较高。
2.优化水泵启动和停止过程。
通过调整水泵的启动和停止时间,让水流在管道中平稳过渡,减少水锤现象的发生。
这个方案实施起来相对简单,成本较低,但效果因水泵类型和运行条件而异。
3.改进管道设计。
在设计阶段,充分考虑地形起伏和管道走向,尽量减少管道的弯曲和突变,降低水锤现象的发生概率。
这个方案实施起来较为复杂,需要重新设计和施工,但长远来看,效果较好。
咱们来分析一下这几个方案的优势和劣势。
安装水锤消除器方案的优势在于技术成熟,效果显著。
劣势在于成本较高,安装和维护难度较大。
优化水泵启动和停止过程的方案优势在于成本较低,实施简单。
劣势在于效果不稳定,可能需要多次调整。
改进管道设计方案的优势在于长期效果较好,有利于降低管道损坏概率。
劣势在于实施难度较大,需要重新设计和施工。
我想说的是,每一个方案都有其独特的优势和劣势,关键在于我们如何根据实际情况,选择最合适的方案。
作为一名方案写作大师,我希望我的这份案例分析能为大家提供一些启示,让我们一起努力,为我国的高扬程水泵小起伏长输水管线水锤防护事业贡献一份力量。
长距离高扬程多起伏输水管道水锤防护的探究发表时间:2015-01-23T11:08:55.300Z 来源:《防护工程》2014年第11期供稿作者:谈美丽[导读] 这个过程是水力过渡中非常复杂的问题,和传统关阀水锤和停泵水锤都不同,在管线首端设置的防护措施效果甚微。
谈美丽北京沃利帕森工程技术有限公司南京分公司江苏省南京市 210000摘要:主要研究长距离高扬程多起伏输水管道水锤防护技术,介绍了长距离输水管道水锤基本方程和边界条件,在此基础上,讨论了长距离高扬程多起伏输水管道水锤防护措施,对常见水锤防护技术的特点进行了对比研究,为长距离高扬程多起伏输水管道选择合适的水锤防护方案提供参考。
关键词:高扬程;输水管道;水锤防护企业规模不断扩大,用水量激增,需要通过长距离大型输水工程来为企业供水。
但是在长距离有压管道中,容易发生水煮分析和断流弥合水锤,产生非常严重的危害,所以在长距离多起伏输水管道中,水锤防护工作是保证输水管道安全运行的必要技术措施。
一、长距离输水管道水锤基本方程不同水锤计算理论有着不同的影响因素:表1-1 水锤影响因素(二)下游为水池工况下游水池面积远大于管道面积,水池水位Hm 时,管路末端节点水头HpNS=Hm。
三、水锤防护(一)单向调节塔箱设计水位无需到达水泵正常工作水力坡度线,降低了安装高度,经济效益很高,管道存在负压时向管道内注水保持水流连续性,管道升压过程水流不能进入塔内。
需要通过计算机动态模拟和方案比较后确定装设位置、座数、容积、注水容量等参数。
单向调压塔主要从避免断流空腔方面考虑消除水锤,正压波到来后仍然会产生升压,所以需要和超压泄压阀配合,避免断流和管道升压。
北方冬季还需要注意冰冻,防止水箱底部冻坏,需要在水箱底部设置排空管,或者采取其他措施防冻,而在南方要避免水质变坏。
(二)双向调节塔双向调压塔为开口水池,是一种兼有注水和泄水的缓冲式水锤防护设备,管道中压力下降,双向调节塔能够向管道迅速补水,避免管道产生负压,防止出现水柱分离造成断流。
长距离输水管线水锤防护措施技术探讨摘要:长距离输水管线中水锤防护具有重要的意义,本文介绍了几种常见水锤防护措施,并以张家口云州水库调水工程为例,着重介绍缓冲排气阀和箱式双向调压塔在工程的作用。
关键词:长距离,水锤防护,缓冲排气阀,双向调压塔Abstract: the long distance delivery pipe line water hammer protection has an important meaning, this paper introduces several common water hammer protection measures, and with zhang cloud state water transfer project reservoir as an example, this paper introduces buffer exhaust valve and box pressure regulating tower in the project of the two-way role.Keywords: long distance, water hammer protection, buffer exhaust valve, the double pressure regulating tower1、引言我国是一个水资源贫乏的国家,人均水资源占有量很低。
有些地区水已成为制约经济发展的“瓶颈”。
新中国成立以来,随着工农业的发展,科学技术的进步,我国兴建了40多万处泵站工程。
已建和正在修建的许多大型泵站工程,向几十公里甚至更远的地方供水。
在长距离输水工程中,对泵供水系统安全危害较大的是水锤事故,不少工程因水锤而遭受严重破坏。
水锤事故的成因不同,产生危害也不同,有的造成压力管道破坏(即爆管),有的造成泵房被淹,有的设备被打坏,伤及操作人员等,给正常的生活的生产带来了严重的影响和经济损失。
长距离输水工程水锤防护分析和工程实践摘要:长距离输水管道工程,因其地势高差起伏较大,扬程较高,易发生水柱分离并造成水锤危害。
因此长距离输水管道工程的设计重点之一就是水锤防护的研究和安全防护。
本文结合工程实例对水锤防护问题进行探讨和分析。
寻找进行优化防护设计及最优方案。
关键词:高位水池;断流弥合水锤;水锤防护;箱式调压塔;恒速缓冲排气阀Abstract: the amount of transporting water pipeline engineering, because of its relief and bigger difference, where the head high, easy to have the separation and the water caused by water hammer hazards. So long water pipe of engineering design is one of the key water hammer protection of research and safety protection. Combining with the project examples of water hammer protection problems are discussed and analyzed. Looking for optimization protection design and the best plan.Keywords: high pools; To flow to bridge the water hammer; Water hammer protection; Box pressure regulating tower; Constant speed buffer discharge valve1、前言随着经济建设的发展,水资源的日益短缺,为了解决生活和工业用水的水源问题,近年来高扬程、大流量、长距离地形复杂的输水管线工程实例日益增多。
长距离输水管线水锤防护案例分析发表时间:2019-05-28T15:55:26.500Z 来源:《防护工程》2019年第4期作者:马晓未[导读] 我国水资源匮乏,而且空间分布不均,为了满足高速增长的城市用水量需求,许多长距离输水管线得以建造。
河北省水利水电勘测设计研究院摘要:长距离输水管线的水锤防护分析主要包括事故停泵以及提升泵站启泵时的管线水锤防护。
输水管线的水锤防护方案有多种选择,但对于长距离输水管线,选择一个积极有效的水锤防护方案以抵抗瞬时产生的压力是一个很大的挑战。
结合实际工程,论述了长距离输水管线水锤防护的建议以及水锤防护装置的防护效果,可供类似工程参考借鉴。
关键词:长距离输水管线;水锤;水锤防护我国水资源匮乏,而且空间分布不均,为了满足高速增长的城市用水量需求,许多长距离输水管线得以建造。
当输水管线的稳态条件发生变化时,例如水泵断电、水泵开启或者是阀门关闭时,都会产生水锤现象。
输水管线的水锤分析以及防护方案的选择,应在输水工程设计阶段完成。
如果没有首先建立瞬态的水力模型,水锤对输水管线的影响将会很难被预测。
因此笔者针对我国长距离输水管线工程的现状和特点,选取了平坦地区和大坡度长距离输水管线2种典型工程实例论述了输水管线的瞬态水力分析以及水锤防护建议。
1水锤的原因1.1管材与施工质量影响传统供水管道材质通常情况下,都是灰口铸铁管。
此种管材不仅具有非常大的脆性,而且整体强度比较低,这就导致管体组织疏松,无法消除气孔。
给水管道使用期间,不仅受到横向受力,也会受到外力振动,这就使得给水管道需要承受很大的应力,久而久之,就会出现纵向破裂。
我国老城市供水管道铺设已有五、六十年,管道材质老化严重,导致管道爆漏多。
在施工时,由于沟槽开挖未能达到标准、管道焊接和施工人员的个人问题也会造成水锤的隐患。
1.2应力作用应力是由覆土压力、水压、温度变化、不均匀沉降等产生的环向拉应力、环向弯曲应力、温差纵向拉应力、纵向弯曲应力或承口开裂应力。
科技风2020年8月工程技术DOE10.19392/kt1671-7341.202023080长距离输水管道的水锤防护设计张舒婕厦门水务规划设计研究有限公司福建厦门361009摘要:以厦门市《西水东调原水管道工程》为例,对该原水管线系统进行水力过渡过程仿真计算,分析常用的水锤消除措施,进而分析最优的水锤防护方案。
关键词:水锤;水锤计算;分析建模;防护措施概述西水东调原水管道工程设计内容为规模25万m3/d原水提升泵站一座及DN1600原水管道约20km。
由于本工程供水系统复杂,全线长距离有压供水,水泵的启动和事故停泵及受水厂的阀门动作,都会产生水力瞬变现象,轻则导致相邻管路出现非正常供水,重则导致爆管事故,破坏整个输水系统的正常运行。
因此,需要进行水力过渡过程计算,以对全系统的运行可靠性和危险工况进行预测,为输水系统结构布置、泵站和各类阀门的运行调节提供安全保证与科学准则。
2水锤计算方法本工程利用Bentley Hammer内部水力模型计算方法,通过各种边界条件的设置,模拟水锤波的传播,分析管道内部压力变化。
水锤波通常是指管内水压的快速变化,与管道流量的变化直接相关,并以声速(计入水的可压缩性和管壁的弹性)在管道内传播。
当到达管路系统的相关水力边界时,水锤波一部分继续向前传播,一部分则被反射,此类水力边界主要有管道的联接节点、水泵、阀门、管线盲端以及水锤防护装置(各种相关设备以及措施)等。
图1稳态运行工况管道剖面图和水力坡降线由图1可以看出,本工程输水水力条件有以下特征:(1)管线长,为点对点的供水,沿线无分支分叉;(2)沿线陆域段沿海边敷设,沿线高程相差不大;(3)管道末端进水厂时,管道有个陡升的过程,管中心标高 从8m升至25.1m;(4)沿线过障碍局部顶管段,沉管过海段管位埋设较深,从埋管段至顶管或沉管段的接口处管道高程有陡降或陡升。
4无防护措施的水泵抽水断电过渡过程该工况为没有排气阀且泵房事故停电,所有水泵立即同时关停,为系统最不利工况。
氏安大学硕一I:学位论文如图2.1所示,血表示出时段内水锤波以波速a沿管路移动的距离,例如,在t。
时刻,管路彳处传出一正水锤波+口,在气+△f时移动了敏距离而到达P点(即对应+口线上的P点),同理在管路B点传出一反向水锤波一a,在乇+出时移动了血距离而到达P点(即对应吲线上的P点)。
所以把斜率为±a的直线分别称为正负水锤特征线。
彳和曰点代表地点x和f时刻已给定的两个点,它们的日和矿是已知的。
通过彳点曲线相当于式(2.15),沿着C+曲线可以应用式(2.14),通过B点曲线相当于式(2.17),沿着C一曲线可以应用式(2.16),因此,联立式(2.14)币I(2.16)解出的H和y值,就是两条曲线交汇点P上的参数砟和巧。
曲线C+和C一称为特征线,式(2.14)和(2.16)称为相容性方程,相容性方程的解就是原始基本微分方程(2.3)和(2.4)的解。
由于求解过程是沿着特征线C+和C一进行的,故只能得到特征线交点上的参数值。
2.3.2特征线有限差分方程式日P一日A+云(QP—Q月)+丢筹gI鳞I=。
(2.18)H/,-H口一云(绋一绋)一乏暑级I绋l=。
(2.19)式中血=aAt。
特征线为斜率固定不变的直线,利用有限差分方程进行运算的过程可以用X—f坐标图中的矩形网格来描述。
如图2.2所示,将管路划分为Ⅳ个间距均为缸的步段,断面排列序号用f表示,管路始端断面i=l,终端断面江N+I,计算时段应为血△,=——。
t-◆^盘1.唪拗h4-拗l-专融气×××××X××××××××××××6-××××××6’l赢Z譬出l叙叙l出一婚纱摄影/。
高扬程长距离分级加压供水水锤防护设计探讨摘要随着我国城市现代化建设的迅速发展,很多地方都将工业园区选址在城郊,附近没有固定供水水源,长距离的供水工程可以缓解这一问题,以某市大风坝片区供水管网工程为例,对中途加压泵站及管网进行水锤防护设计,可以较好的削减系统的水锤影响,旨在为类似的相关工程提供参考。
关键词:分级加压供水;水锤防护;设计探讨1.引言:大风坝位于某镇南郊S224线旁,附近没有固定供水水源,距离最近的固定供水水源为下关镇城市供水主管,为解决大风坝片区生活及生产用水,需在下关镇魏山路口加压供水。
接入口为现状环城南路DN400 给水管,取水点现状标高:1999.50 米。
大风坝片区拟建高位水池标高为:2427.00 米,因取水点高程低于大风坝片区高程约427.5 米,需分级加压提升,设计采用DN300的无缝钢管,通过分段加压提升,在大风坝高点新建蓄水池,主要沿魏公路与污水管道同槽开挖埋设,管道敷设长度约为10公里。
目前国内技术专家对长距离输水开展了很多研究,但对高差较大的分级加压供水的水锤综合防护设计研究相对较少,本文通过工程实例对中途加压泵站水锤防护设计要点分析,为相关类似工程提供参考。
2.工艺设计及水锤防护分析2.1.供水管道平面布置2.1.1供水管道平面布置供水管网总体上分四段布置,第1段:沿着金星河桥涵底靠西侧采用C30混凝土包封护管敷设。
第2段:与排水管共沟敷设。
第3段:与排水管共沟敷设。
第4段:该段为沿关巍公路和园区道路敷设(其中兴诚屠宰厂至进园区道路段局部架空敷设)[1]。
图1:供水管网总体布置图2.1.2管道沿线水锤分析由水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍。
这种大幅度压强波动,可导致管道系统强烈振动,噪声,并可能破坏阀门接头。
对管道系统有很大的破坏作用。
采用《Bentley Hammer v8 水锤(瞬变流)模型》对沿线水锤进行分析模拟,一级泵站至二级泵站模拟停泵水锤分析图如下:图2.一级泵站至二级泵站停泵水锤分析图起始端为最高压力出现点,压力为2333m,起始端高程约为2000m,承压约为333m。
长距离高扬程多级加压输水管道水锤防护工程实例
作者:高凤, 王鹤, 陈江, Gao Feng, Wang He, Chen Jiang
作者单位:高凤,王鹤,Gao Feng,Wang He(长安大学环境科学与工程学院,陕西西安,710054), 陈江,Chen Jiang(西安市政设计研究院有限公司,陕西西安,710068)
刊名:
供水技术
英文刊名:Water Technology
年,卷(期):2014,8(2)
1.金锥;姜乃昌;王兴华停泵水锤及其防护 2004
2.杨玉思;徐艳艳;羡巨智长距离高扬程多起伏输水管道水锤防护的研究 2009(09)
引用本文格式:高凤.王鹤.陈江.Gao Feng.Wang He.Chen Jiang长距离高扬程多级加压输水管道水锤防护工程实例[期刊论文]-供水技术 2014(2)。