立体几何中常用的数学思想方法
- 格式:doc
- 大小:134.00 KB
- 文档页数:3
数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。
高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。
(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。
(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。
(4) 理解柱,锥,台,球的表面积及体积公式。
(5) 理解平面的基本性质及确定平面的条件。
(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。
(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。
名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。
由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。
(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。
②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。
③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。
2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。
主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。
3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。
数学解决立体几何问题的四种常用方法数学作为一门科学,其应用范围及其广泛。
在解决现实生活中的各种问题中,立体几何问题是其中之一。
在本文中,将介绍数学解决立体几何问题的四种常用方法,分别是平面几何方法、向量法、投影法和立体坐标法。
一、平面几何方法平面几何方法是解决立体几何问题最常用的方法之一。
该方法的基本思想是将立体几何问题转化为平面几何问题来求解。
具体来说,可以通过绘制立体几何图形的几个视图,将其分解为多个平面几何图形,然后利用平面几何中的定理和性质进行求解。
例如,对于一个立方体求其体积,可以将其展开成一个平面图形,然后计算出展开图形的面积。
再根据立方体的性质,将展开图形的面积乘以立方体高度所得的积即为立方体的体积。
二、向量法向量法是一种几何分析方法,可以有效地解决立体几何问题。
该方法利用向量的运算和性质,将立体几何问题转化为向量计算问题来求解。
在利用向量法解决立体几何问题时,首先需要确定坐标系,并定义几何体的位置和方向。
然后,通过向量运算来计算几何体的性质。
例如,对于一个平行六面体的体积,可以通过计算其底面向量与高度向量的叉积来求解。
三、投影法投影法是解决立体几何问题的另一种常用方法。
该方法利用几何体在不同平面上的投影关系,将立体几何问题转化为投影几何问题来求解。
具体来说,可以通过绘制几何体在不同平面上的投影图形,并利用投影几何的定理和性质进行求解。
例如,对于一个棱柱在某个平面上的截面积,可以通过计算棱柱的投影图形在该平面上的面积来求解。
四、立体坐标法立体坐标法是一种通过引入三维坐标系来解决立体几何问题的方法。
该方法通过确定几何体的坐标,将立体几何问题转化为坐标几何问题来求解。
在利用立体坐标法解决立体几何问题时,首先需要建立一个三维坐标系,并确定几何体的坐标。
然后,通过坐标运算来计算几何体的性质。
例如,对于一个球体求其体积,可以根据球体的坐标及其半径,利用坐标运算公式计算出体积。
总结起来,数学解决立体几何问题的常用方法有平面几何方法、向量法、投影法和立体坐标法。
高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。
高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。
第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
高中数学中的立体几何解题技巧作者:王文杰来源:《文理导航》2012年第32期高中数学中的立体几何是重点和难点之一,作为培养空间思维的立体几何,其基础知识的掌握及应用程度取决于我们对空间图形的认识与处理及正确思维方法的选择。
为此,笔者现就立体几何解题中几种常见的技巧予以分解,以供同仁参考。
1、巧作辅助图形,采用特殊化法例:求棱长为a的正四面体A-BCD的体积和外接球的半径。
解析:由于正四面体的六条棱相等,易联想到正方体的六个面的对角线相等。
于是构作辅助图形,即将正四面体补成正方体DE. 由AB=a,易得正方体棱长AE=■a,V■=V■-4V■=■a■由正方体是球的内接正方体,易知外接球半径为■a.例:在三棱锥P—ABC中,三条棱PA,PB,PC两两互相垂直。
设D为底面ABC内任一点,若PD与平面PAB,面PBC所成角分别为30°,45°.求PD与平面PAC所成角的正切值。
解析:本题若直接求解非常冗繁,但若考虑到题设条件,则以PD所在直线为对角线,PA、PB、PC所在线段为三条棱构作辅助图形长方体,使问题特殊化:即求该长方体的对角线PM与侧面PAC所成角的正切值。
设PD与侧面PAB,PBC,PAC所成角分别为α,β,γ.则依据长方体性质有:sin2α+sin2β+sin2γ=1.由条件知α=30°,β=45°.∴sin2γ=1-(sin2α+sin2β)=■.∴tanγ=■为所求。
评注:通过构造辅助图形,使原命题特殊化来解答某些立体几何问题,不但可以简化解题过程,优化问题解答,而且能开拓解题的思维视野,使问题解答独辟蹊径。
2、寻找主要矛盾,采用“隔离法”例:二面角α-l-β为30°,点A在平面α内,点A到直线l的距离为2,点A在平面β内的射影为B,B在平面α内射影为点A′,点A′在面β内射影为B′.求点B′到棱l的距离。
解析:本题由于条件太复杂,干扰因素太多,不便于分析。
高中数学立体几何学习方法
数学方法渗透并支配着一切自然科学的理论分支。
它愈来愈成为衡量科学成就的主要标志了。
下面是高中数学立体几何学习方法,欢迎各位阅读和借鉴。
1. 逐步提高逻辑论证能力
论证的第一步是对任何定义、定理或推论保持严格的理解。
符号表示与定理完全一致。
只有当定理的所有条件都满足时,才能推出相关的结论。
没有一定的条件,不要妄下结论。
其次,在论证的过程中,思维应该运用解析法,即逐步找到建立结论的充分条件,接近已知,然后以综合法(“演绎法”)的形式写出。
2.根据课本夯实基础。
活跃于立体几何问题中的几种数学思想方法
立体几何是数学的一大分支,可以涵盖各方面的概念,以及许多数学思想方法。
在解决立体几何问题时,运用的概念包括分类、证明、概念、规划、构造、确定等等。
以下是活跃于立体几何问题的几种数学思想方法:
1. 构造法:构造法是在立体几何问题中采用的非常有效的数学思想。
构造法
允许以特定的形式和结构来构造几何图形,可以帮助我们处理和理解立体几何里复杂的问题。
2. 命题证明法:在数学中,证明是一个十分重要的集合。
在立体几何问题中,利用蕴含关系进行命题证明是一种有效而又基础的方法。
有助于识别更复杂的立体表达式,从而更清楚地理解其内容。
3. 向量分析法:向量的分析是一种非常有利的思想方法,在立体几何问题中,它可以用于提取平面与立体几何图形的特征,从而更为清晰地判断立体几何中的平面位置,有助于解决几何形状间相互运动的状态等问题。
4. 理论结构法:结构理论是一种对象、数据和过程之间的关系的描述性方法。
在立体几何问题中,结构理论主要是用来研究特定几何形状的性质,比如形状的对称性、四边形的角度和根据特定关系来画出平行线的思路等。
以上是活跃于立体几何问题中的几种数学思想方法。
有助于学习者更深入地理
解和掌握立体几何知识,有效地运用这些思想方法,可以推动学习者解决更复杂的立体几何问题。
立体几何中常用的数学思想方法 郑云 数学思想是数学的灵魂,是同学们学习过程中最需要总结的法宝,下面例析数学思想方法在立体几何中的应用。
一. 分类讨论的思想
例1. 不共面的4个定点到平面α的距离都相等,这样的平面α共有( )。
A. 3个
B. 4个
C. 6个
D. 7个
解:把不共面的4个定点看成四面体的4个顶点,平面α可分两类。
第一类,如图1所示,4个定点分布在α的一侧1个,另一侧3个,此类α有4个。
第二类,如图2所示,4个定点分布在α的两侧各2个,此类α有3个。
综上,共有4+3=7(个),故选D 。
二. 转化的思想
化归与转化的思想在立体几何中随处可见,特别是空间问题平面化,如空间中的角与距离转化为平面中的角与距离。
例2. 一个与球心距离为1的平面截球所得的截面面积为π,则球的表面积为( )
A. 82π
B. 8π
C. 42π
D. 4π
解:如图3所示,作出球的大圆截面图,由截面小圆的面积为π
即ππr 2=,得r =1
R r =+=1222
则S R 球==482ππ,应选B 。
图3
三. 函数的思想
例3. 已知圆锥的底面的半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )
A. 22πR
B. 942π
R C. 832πR D. 322πR 解:如图4所示,设内接圆柱的半径为r r R ()0<<,高为h
则有h R R r R
3=-,得h R r =-3()。
图4
∴当时,全面积最大,最大值为,故选。
圆柱全S r rh r r R r r Rr r R R R r R R B =+=+-=--=--⎛⎝ ⎫⎭⎪+≤=2226432
4349494
3494
2222222πππππππππ()
()
四. 方程的思想
例4. 已知正三棱锥P ABC -的体积为723,侧面与底面所成的二面角为60°。
(1)证明:PA BC ⊥。
(2)求底面中心O 到侧面的距离。
(1)证明:取BC 边的中点D
连结AD 、PD ,则AD BC PD BC ⊥⊥,
故BC APD ⊥平面,因此PA BC ⊥。
(2)解:如图5所示,由(1)可知平面PBC APD ⊥平面
则∠PDA 是侧面与底面所成二面角的平面角
由题意知点O 到各个侧面的距离相等
过点O 作OE PD ⊥,则OE 就是点O 到侧面PBC 的距离 设OE 为x ,由题意可知点O 在AD 上
则∠°,PDO OP x ==602
OD x BC x S x x ABC ====2343444322,,△()
图5
72313432833
323===··,x x x x 底面中心O 到侧面的距离为3。