21.2.1-1 直接开平方法
- 格式:ppt
- 大小:451.00 KB
- 文档页数:16
21.2解一元二次方程——直接开平方法教学反思第一篇:21.2解一元二次方程——直接开平方法教学反思21.2解一元二次方---直接开平方法的教学反思解一元二次方程是初中数学学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
在这节教材编写中还突出体现了换元、转化等重要的数学思想方法。
因此,这节课不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
本节课我以出示学习目标开场,让学生明确本节课的学习任务,抓住学习重点。
在复习近平方根的知识,为本节课的教学做好准备,符合学生的认知规律。
然后接着从实际问题切入向学生提出问题,激发学生的学习热情和问题探索的强烈欲望,然后通过一系列的问题让学生在合作与探究中逐步理解并掌握直接开平方法解一元二次方程,同时在问题的解决过程中让学生体会类比的学习方法和换元、转化的数学思想,从而培养学生良好的数学学习学习方法和数学思维方式。
其中教学问题的设计围绕目标环环相扣,同时注重层次性与启发性;在典例解析、巩固新知和达标检测环节中,注重突出重点,分层评价。
整节课学生的参与积极性较高,达到了预期的教学效果。
当然,这节课也存在不足之处,还有学生参与讨论的过程中个别学生参与程度不足,教师应关照这些边缘人员。
今后,我会更努力,多渠道向优秀老师学习,不断地提升自我、完善自我,使课堂教学更高效。
第二篇:配方法解一元二次方程教学反思在“一元二次方程”这一章里,《配方法》是作为解一元二次方程的第三种解法出现的,学生往往会把配方法和前面学过的直接开平方法以及因式分解法等同理解,所以在用配方法解题时只是简单模仿老师的解题步骤,对为什么要配方理解不到位,因此在需要用配方法证明一个代数式一定为正数或负数时往往不知所措。
而我认为配方法更多的是一种代数式变形的技巧,她可以为解一元二次方程服务,但不仅仅只是一种解方程的方法。
事实上,一个一元二次方程在配方后还是要结合直接开平方法才能解出方程的解。
教师姓名孙洋单位名称霍尔果斯市国门初级中学填写时间2020年8月21日学科数学年级/册九年级上册教材版本人教版课题名称21.2.1配方法(1)难点名称运用直接开平方法,把一个一元二次方程“降次”转化为两个一元一次方程。
难点分析从知识角度分析为什么难解一元二次方程不同于解一元一次方程,计算的难度变大了,需要学生有一定的数学基础和较强的计算能力。
难点教学方法1.通过复习回顾平方根的相关知识引入本节课内容,为后面探索解法作铺垫。
2.通过创设情境,激发学生探究新知的兴趣,通过四个问题,探索总结用直接开平方法解一元二次方程。
教学环节教学过程导入(一)复习回顾,引出课题问题1 试述平方根的意义和性质.平方根的意义:平方根的性质:问题2 写出下各数的平方根: 9,16,8,24,0,-25.回答:前面我们学习了一元二次方程的有关概念,今天我们开始研究一元二次方程的解法.21.2.1 配方法(一)知识讲解(难点突破)(二)创设情境,探索解法问题3 一桶某种油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 未知数?等量关系?代数式?思考2 怎样解这个方程?思考3 所求方程的解是实际问题的解吗?解:问题4 根据平方根的意义我们可以求得方程x2=25的解,那么你能求出下列方程的解吗?(1)x2-9=0; (2)2x2=4; (3)3x2-81=0; (4)x2=a(a≥0).问题5 对照上述方程的求解过程,你知道如何解下列方程吗?(1)(x+1)2=2; (2)(x-1)2-4=0.问题6 前面我们依据平方根的意义求得一元二次方程的解,这种解一元二次方程的方法叫做直接开平方法.(1)当方程具有什么形式时,可以用直接开平方法求解?如何求解?回答:(2)用直接开平方法解一元二次方程的实质是什么?用直接开平方法解一元二次方程的实质是:问题7 你能用直接开平方法解方程x2+6x+9=2吗?分析:如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,就可以用直接开平方法求解.解:课堂练习(难点巩固)三、应用提高(一)巩固应用例1 解下列方程:(1)2x2-8=0; (2)9x2-5=3; (3)(x+6)2-9=0;(4)3(x-1)2-6=0; (5)x2-4x +4=5; (6)9x2+6x +1=4.解:解题心得:四、落实训练(一)当堂训练1.选择题(4道)2.填空题(2道)3.问答题(2道)小结(二)回顾提升思考:通过这节课的学习你有哪些收获?回顾交流,概括总结:。
人教版数学九年级上册21.2.1.1《直接开方法》课时练习一、选择题1.方程x2﹣25=0的解是( )A.x1=x2=5B.x1=x2=25C.x1=5,x2=﹣5D.x1=25,x2=﹣252.方程(x﹣2)2=9的解是( )A.x1=5,x2=﹣1B.x1=﹣5,x2=1C.x1=11,x2=﹣7D.x1=﹣11,x2=73.方程ax2=c有实数根的条件是( )A.a≠0B.ac≠OC.ac≥OD.≥O4.方程(x﹣3)2=m2的解是( )A.x1=m,x2=﹣mB.x1=3+m,x2=3﹣mC.x1=3+m,x2=﹣3﹣mD.x1=3+m,x2=﹣3+m5.若2x2+3与2x2﹣4互为相反数,则x为( )A.0.5B.2C.±2D.±0.56.下列方程中,适合用直接开方法解的个数有( )①x2=1;②(x﹣2)2=5;③(x+3)2=3;④x2=x+3;⑤3x2﹣3=x2+1;⑥y2﹣2y﹣3=0A.1B.2C.3D.47.下列方程中,不能用直接开平方法的是( )A.x2﹣3=0B.(x﹣1)2﹣4=0C.x2+2x=0D.(x﹣1)2=(2x+1)28.一元二次方程(x﹣2)2+1=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根二、填空题9.若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a=______.10.方程(x+1)(x﹣3)=﹣4的解为______.11.将方程﹣2(y﹣1)2+5=0化成(mx+n)2=p(p≥0)的形式为.12.关于x的一元二次方程(x﹣2)2=k+2有解,则k的取值范围是.三、计算题13.用适当的方法解方程:4x2﹣18=0.14.用直接开平方法解方程:9(y+4)2﹣49=0;15.用直接开平方法解方程:2(x﹣3)2=72;16.用直接开平方法解方程:4(2y﹣5)2=9(3y﹣1)2.四、解答题17.已知方程(x-1)2=k2+2的一个根是3,求k的值和另一个根.18.用直接开平方法解一元二次方程4(2x-1)2-25(x+1)2=0.小明的解答如下:移项,得4(2x-1)2=25(x+1)2.①直接开平方,得2(2x-1)=5(x+1).②小明的解答有无错误?若有,错在第步,原因是,写出正确的解答过程.参考答案1.答案为:C.2.答案为:A.3.答案为:D.4.答案为:B.5.答案为:D.6.答案为:D7.答案为:C.8.答案为:D.9.答案为:a=1.10.答案为:x1=x2=1.11.答案为:(y﹣1)2=2.5.12.答案为:k≥﹣2.13.解:由原方程移项,得4x2=18,化二次项系数为1,得x2=,直接开平方,得x=±,解得,x1=,x2=﹣.14.解:9(y+4)2=49,∴3(y+4)=7,或3(y+4)=﹣7∴y+4=,或y+4=﹣,∴y=﹣或﹣;15.解:(x﹣3)2=36,x﹣3=±6,∴x1=9,x2=﹣3;16.解:∵2(2y﹣5)=±3(3y﹣1),∴y1=﹣1.4,y2=1.17.解:把x=3代入方程,得(3-1)2=k2+2.∴k2=2.∴k=±2.再将k2=2代入方程,得(x-1)2=4.∴x1=3,x2=-1.∴方程的另一个根为-1.18.解:②;=|a|.正确的解答过程为:移项,得4(2x-1)2=25(x+1)2.直接开平方,得2(2x-1)=±5(x+1).所以x1=-7,x2=-.。
人教版数学九年级上册21.2.1《直接开平方法》教学设计一. 教材分析人教版数学九年级上册21.2.1《直接开平方法》是初中数学的重要内容,主要介绍了实数的开平方运算。
这一节内容是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行讲解的,旨在让学生掌握开平方运算的方法,进一步理解无理数的概念。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和运算能力,对于实数、有理数、无理数等概念已经有了初步的认识。
但是,学生对于无理数的理解仍然存在一定的困难,尤其是对于无理数的运算,因此,在教学过程中,需要引导学生理解无理数的概念,并通过实例让学生感受无理数的存在。
三. 教学目标1.让学生掌握直接开平方法,能够正确进行开平方运算。
2.引导学生理解无理数的概念,能够正确识别无理数。
3.培养学生的运算能力,提高学生的数学素养。
四. 教学重难点1.重点:直接开平方法,无理数的概念。
2.难点:无理数的识别和运算。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握开平方运算的方法。
2.采用实例教学法,通过具体的例子让学生理解无理数的概念。
3.采用小组合作学习法,让学生在小组内进行讨论和交流,提高学生的合作能力。
六. 教学准备1.准备相关的教学PPT,包括开平方运算的步骤和实例。
2.准备一些有关无理数的实际问题,用于课堂讨论。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如测量物体长度、计算物体面积等,引导学生思考这些问题与开平方运算的关系。
2.呈现(15分钟)介绍直接开平方法的具体步骤,并通过PPT展示相关的实例,让学生理解开平方运算的方法。
3.操练(15分钟)让学生独立完成一些开平方运算的练习题,教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生分组讨论,总结开平方运算的规律和方法,并分享各自的经验和心得。
5.拓展(10分钟)介绍无理数的概念,并通过实例让学生识别无理数。