陶瓷基复合材料
- 格式:doc
- 大小:49.50 KB
- 文档页数:9
陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
工制备艺浆体浸渍-热压法适用于长纤维。
首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。
优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。
缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。
晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。
基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。
所用设备也不复杂设备。
过程简单。
混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。
直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。
随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。
优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。
陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。
它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。
二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。
增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。
三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。
其中,热压烧结法和液相浸渍法是最常用的制备工艺。
四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。
为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。
五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。
六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。
目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。
同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。
七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。
然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。
同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。
因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。
陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。
陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。
本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。
首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。
陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。
这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。
其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。
陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。
其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。
因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。
最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。
在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。
在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。
在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。
总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。
随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。
陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。
其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。
本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。
一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。
首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。
该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。
这种方法制备的复合材料具有较高的结晶度和致密性。
其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。
该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。
这种方法制备的复合材料具有较高的纯度和均匀性。
最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。
该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。
这种方法制备的复合材料具有较高的强度和断裂韧性。
二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。
首先,陶瓷基复合材料具有较好的高温稳定性。
由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。
其次,陶瓷基复合材料具有较高的硬度。
陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。
这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。
再次,陶瓷基复合材料具有良好的抗腐蚀性。
由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。
这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。
三、应用陶瓷基复合材料在很多领域都有广泛的应用。
下面将介绍几个典型的应用领域。
首先,陶瓷基复合材料在航空航天领域具有重要应用。
陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。
陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。
一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。
其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。
二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。
其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。
高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。
高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。
化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。
三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。
其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。
此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。
在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。
此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。
综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。
由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。
陶瓷基复合材料的性质及其应用前景陶瓷基复合材料是一种新型的复合材料,它由陶瓷基体和增强材料组成。
其特点是硬度高、强度大、耐高温、耐腐蚀、绝缘性能好等。
由于其独特的性质,陶瓷基复合材料在航空航天、汽车制造、电子和电力工业等领域都有广泛的应用。
一、陶瓷基复合材料的组成陶瓷基复合材料由陶瓷基体和增强材料组成。
其中,陶瓷基体通常采用氧化物陶瓷或碳化物陶瓷,而增强材料则可以选择纤维材料、颗粒材料、层板材料等。
陶瓷基复合材料的制备方法很多,主要包括热压、热等静压、拉伸成型等。
二、陶瓷基复合材料的性质1. 高硬度由于陶瓷基复合材料的基体是陶瓷,因此具有非常高的硬度。
事实上,某些陶瓷基复合材料的硬度可以接近金刚石,达到20GPa以上。
这一优异的性能意味着它们可以耐受高度的磨损和冲击,适用于大多数需要高耐久性的应用领域。
2. 高强度在增强材料的加入下,陶瓷基复合材料具有很高的强度和刚性。
因此,它们可以承受非常大的载荷,并在极端条件下工作。
这种性质使它们成为航空航天、汽车制造和电力工业等相关领域中理想的结构材料。
3. 耐高温陶瓷基复合材料具有非常好的耐高温性能。
在高温环境下,它们保持不失效、不变形等特性。
因此,它们被广泛应用于航空航天、汽车制造等需要高温稳定性能的领域。
4. 耐腐蚀陶瓷基复合材料还具有良好的耐腐蚀性能。
在强酸、强碱、高浓度的腐蚀性环境下,它们仍然可以保持稳定。
这一性质使它们成为化工、电力工业领域中的理想材料。
5. 绝缘性能好陶瓷基复合材料具有很好的绝缘性能,因此广泛运用于电子和电力工业中。
它们可以承受高电压、高电流的特性,同时在工作过程中不会导电或产生电磁干扰。
三、陶瓷基复合材料的应用前景由于其优异的性能和多功能性,陶瓷基复合材料在多个领域都有很广泛的应用前景。
以下是一些典型应用案例:1. 航空航天陶瓷基复合材料可以用于制作飞机、火箭、导弹的部件,如机身、引擎、导向器等。
因为它们的低重量、高强度和耐高温性质可以降低飞行设备的质量和提高操作效率。
陶瓷基复合材料江雪玲(重庆师范大学化学学院,2011级材料化学,20110513423)摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
最后,综合了陶瓷基复合材料的优点、缺点,并对未来陶瓷基复合材料的发展提出了期许以及发展方向。
关键词:陶瓷基复合材料、氧化物基透波材料、磷酸盐基透波材料、氮化物基透波材料、连续纤维增强陶瓷基复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
1、陶瓷基复合材料由于陶瓷本身存在韧性和可靠性不足的缺点,因此人们对各种陶瓷材料进行优化设计,制备出整体性能更为优异的陶瓷基透波复合材料。
陶瓷基透波复合材料按基体的成分不同可主要分为氧化物基、磷酸盐基及氮化物基等系列。
下表为部分陶瓷基透波复合材料的基本性能。
表:部分陶瓷基透波复合材料的基本性能性能2D 3D 2.5D 2.5DSiO2f/SiO2 SiO2/SiO2 Q/NCMCs Q/磷酸盐折弯强度/Mpa 97.0 Z:14.0X:13.2117.5 40~110介电常数 2.61 2.8 3.24 3.2~3.4损耗角正切0.0016 0.008 0.004 0.007~0.008热导率w/(m.k)0.35 0.838(270℃) 1.1 /2、氧化物基透波材料虽然石英陶瓷具有优异的介电性能,但其也存在抗雨蚀性能、力学性能较差的缺点,为此人们通过各种增强方式来提高石英陶瓷材料的断裂韧性和可靠性。
连续纤维增强陶瓷基复合材料具有强度高、韧性好、密度低等特点,因而收到了广泛关注。
M.Favaloro等制备了三维石英纤维织物增强二氧化硅复合材料AS-3DX,材料的介电常数为2.88,介电损耗为0.006(5.841GHz,25℃),国防科学技术大学宋阳曦采用溶胶-凝胶工艺,通过浓缩硅溶胶并引入手糊成型工艺和模压工艺制备了二维石英纤维织物增强石英基(2DSiO2f/SiO2)复合材料,其介电常数为2.61~2.64,损耗角正切为0.0016~0.0019,热导率为0.35~0.37W/(m.k),由此可见,这类材料的透波性能优异,但热导率仍然偏高,高温性能有待改善。
2、磷酸盐基透波材料磷酸盐基复合材料一般由布块或织物经磷酸盐溶液浸渍后加压固化而得。
目前在航天透波材料领域获得应用的主要有硅质纤维增强磷酸铝、磷酸铬及磷酸铬铝复合材料。
磷酸盐基复合材料具有耐高温、高强度、介电性能优异、抗氧化、结构可设计良好以及热膨胀系数小的特点。
而磷酸盐最大的缺点是吸湿性很强,一般通过在材料表面涂覆有机涂层以达到防潮的目的。
铝震宇利用传流的无压烧结技术制备出硼酸铝晶须增强了磷酸铝陶瓷基透波复合材料,材料的弯曲强度为215.3Mpa,介电常数和介电损耗分别在2.80~4.45和0.00826~0.0340范围内。
3、氮化物基透波材料采用氮化硅、氮化硼制备的复合材料具有更稳定的热物理性能和更好的力学性能。
国防科学技术大学姜勇刚采用先驱体转化法制备出新型天线罩材料-2.5D 石英纤维增强氮化物复合材料。
在测试频率(9.375GHz)下,材料在室温的介电常数和介电损耗分别为3.24、0.004,25~400℃时比热容为0.89~0.95KJ/(Kg.K),热导率为1.1~1.2W/(m.K)。
可以看出该材料的透波性能比较好,但是热导率较高。
4、连续纤维补强陶瓷基复合材料连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。
由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。
连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。
20世纪70年代初,J Aveston 在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。
随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。
20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。
如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件;SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦。
由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
5、连续纤维增强陶瓷基复合材料的制备方法①、料浆浸渍和热压烧结法料浆浸渍和热压烧结法的基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯件,然后高温下加压烧结,使基体材料与纤维结合成复合材料。
工艺流程图如图1所示。
图1 料浆浸渍和热压烧结制备连续纤维增强陶瓷基复合材料的工艺流程料浆浸渍是指让纤维通过盛有料浆的容器浸挂料浆后缠绕在卷简上,烘干,沿卷简母线切断,取下后得到无纬布,将无纬布剪裁成一定规格的条带或片,在模具中叠排,即成为预成型坯件。
经高温去胶和烧结得到复合材料制件。
热压烧结应按预定规律(即热压制度)升温和加压。
热压过程中,最初阶段是高温去胶,随粘结剂挥发、逸出,将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最终获得致密化的复合材料。
此种工艺己用于制备以玻璃相为基体的复合材料。
②、直接氧化沉积法直接氧化沉积法最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。
LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。
由于熔融金属中含有少量添加剂,并处于空气或氧化气氛中,浸渍到纤维预成型体中的熔融金属与气相氧化剂反应形成氧化物基体,产生的氧化物沉积在纤维周围,形成含有少量残余金属的、致密的连续纤维增强陶瓷基复合材料。
此种方法适用于制备以氧化铝为基体的陶瓷基复合材料,如SiC/A1203,在1200~C的抗弯强度为350MPa,断裂韧性为18 MPa·m1/2”,室温时的抗弯强度为450 MPa,断裂韧性为21 M Pa·m1/2。
直接氧化沉积法工艺优点是:对增强体几乎无损伤,所制得的陶瓷基复合材料中纤维分布均匀;在制备过程中不存在收缩,因而复合材料制件的尺寸精确;工艺简单,生产效率较高,成本低,所制备的复合材料具有高比强度,良好韧性及耐高温等特性。
③、溶胶-凝胶法溶胶一凝胶法(Sol—ge1)是用有机先驱体制成的溶胶浸渍纤维预制体,然后水解、缩聚,形成凝胶,凝胶经干燥和热解后形成复合材料。
此工艺组分纯度高,分散性好,而且热解温度不高(低于1400~C),溶胶易于润湿纤维,因此更利于制备连续纤维增强陶瓷基复合材料。
该工艺缺点是:由于是用醇盐水解来制得基体,所以复合材料的致密性差,不经过多次浸渍很难达到致密化,且此工艺不适于部分非氧化物陶瓷基复合材料的制备。
④、化学气相法化学气相法主要包括化学气相沉积法(CVD)、化学气相渗透法(CVI)等。
最常用的复合材料制备方法是CVI法,它是在CVD法基础上发展起来的。
该制备方法是将纤维预制体置于密闭的反应室内,采用气相渗透的方法,使气相物质在加热的纤维表面或附近产生化学反应,并在纤维预制体中沉积,从而形成致密的复合材料。
该技术的主要优点是:(1)由于是在低于基体熔点的温度下制备合成陶瓷基体材料,避免了纤维与基体材料的高温化学反应,制备过程中对纤维损伤小,材料内部的残余应力小。
(2)通过改变工艺条件,能制备多种陶瓷材料,有利于材料的优化设计和多功能化。
(3)能制备形状复杂、近净尺寸和纤维体积分数大的复合材料。
主要缺点是:生产周期长,设备复杂,制备成本高;制成品孔隙率大,材料致密度低,从而影响复合材料的性能;不适于制备厚壁部件。
⑤、先驱体转化法先驱体转化法又称聚合法浸渍裂解法(PIP法)或先驱体裂解法,是近年来发展迅速的一种FRCMCs制备工艺。
与溶胶一凝胶法一样,先驱体转化法也是利用有机先驱体在高温下裂解而转化为无机陶瓷基体的一种方法。
溶胶.凝胶法主要是用于氧化物陶瓷基复合材料,而先驱体转化法主要用于非氧化物陶瓷,目前主要以碳化物和氮化物为主。
这种方法的主要特点是:(1)在单一的聚合物和多相的聚合物中浸渍,能得到组成均匀的单向或多相陶瓷基体,具有比CVI法更高的陶瓷转化率;(2)预制件中没有基体粉末.因而纤维不会受到机械损伤;(3)裂解温度较低(小于1300℃),无压烧成,因而可减轻纤维的损伤和纤维与基体间的化学反应:(4)可以对先驱体进行分子设计,制备所期的相或多相陶瓷基体,杂质元素容易控制;(5)充分利用聚合物基和C/C复合材料的成型技术,可仿形制造出形状复杂的FRCMCs 异型件。
该法的主要缺点在于:(1)致密周期较长,制品的孔隙率较高;(2)基体密度在裂解前后相差很大,致使基体的体积收缩很大(可达50~70%)。
由于增强材料的骨架牵制着基体的体积收缩,因而在基体内部容易产生裂纹和气孑L,破坏了复合材料的整体性,并最终影响复合材料的性能。
5、陶瓷基复合材料的应用前景陶瓷材料是一种本质脆性材料,在制备、机械加工以及使用过程中,容易产生一些内在和外在缺陷,从而导致陶瓷材料灾难性破坏,严重限制了陶瓷材料应用的广度和深度,因此提高陶瓷材料的韧性成为影响陶瓷材料在高技术领域中应用的关键。
近年来,受自然界高性能生物材料的启发,材料界提出了模仿生物材料结构制备高韧性陶瓷材料的思路。
1990年Clegg等创造性材料制备的Sic薄片与石墨片层交替叠层结构复合材料与常规SiC陶瓷材料相比,其断裂韧性和断裂功提高了几倍甚至几十倍,成功地实现了仿贝壳珍珠层的宏观结构增韧。