变压器的散热
- 格式:doc
- 大小:45.00 KB
- 文档页数:11
变压器散热片工作原理
变压器散热片的工作原理是通过增加散热面积和改善换热条件来提高变压器的散热效果。
主要包括以下几点:
1. 增加散热面积:散热片通常由金属材料制成,具有大的表面积。
通过将散热片固定在变压器的外壳上,可以显著增加变压器的散热面积,提高其散热效果。
2. 改善换热条件:散热片通常会增加大量的鳍片或凹凸结构,以增加热流动的路径,并促进空气与散热片之间的有效接触。
这可以提高换热系数,使热量更加迅速地从变压器中传递到散热片上,并通过空气的对流换热进一步将热量散发到周围环境中。
3. 利用自然对流或强制风冷:散热片可以设计成具有良好的自然对流换热性能,通过自然对流将热量散发出去。
此外,一些散热片还可以安装风扇或其他强制风冷装置,通过空气对流强制散热,以增强散热效果。
总的来说,变压器散热片的工作原理是利用增加散热面积、改善换热条件和利用自然对流或强制风冷的方式,来提高变压器的散热效果,从而确保变压器在工作过程中的稳定运行。
变压器散热片工作原理
变压器散热片是一种用于散热的传热设备,通常由铝合金材料制成。
其工作原理主要通过对传热方式进行改变来实现散热效果。
首先,变压器内部会产生大量的热量,这是由于变压器工作时,电流通过线圈会产生一定的电阻,从而导致线圈发热。
如果不及时散热,温度会逐渐升高,可能会造成变压器过热,甚至烧毁。
为了有效散热,变压器散热片的设计非常重要。
散热片的表面通常会采用多孔或鳞片状的结构,这样可以扩大散热面积,增加热量的传递和散发。
当变压器内部产生热量时,散热片会通过接触到变压器表面的方式传递热量。
由于散热片与变压器表面接触面积较大,因此可以迅速将热量传递到散热片上。
同时,铝合金具有良好的导热性能,可以快速将热量传递到散热片的表面。
一旦热量传递到散热片的表面,散热片通过辐射、对流和传导等方式将热量散发到周围空气中。
辐射是指散热片表面发射的红外线辐射,对流则是通过与周围空气的接触使空气流动,传导则是指散热片表面与周围空气之间的直接传递热量。
综上所述,变压器散热片通过增加散热面积、优化传热方式和材料选择等方式来实现散热效果。
通过高效散热,可以保证变压器在工作过程中的稳定性和可靠性。
变压器运行中温度过高现象分析与处理变压器是电力系统中不可或缺的设备,主要用于变换电压以及输配电能。
然而,在变压器运行过程中,由于一系列原因,可能出现温度过高的现象。
这种现象不仅会影响变压器的正常运行,还可能导致设备故障甚至引发火灾,因此需要进行详细的分析与处理。
一、温度过高的原因:1.内外故障:包括绕组短路、变压器接地、线圈短路、磁芯短路等,这些故障会导致变压器内部电流过大从而产生大量的热量。
2.铁芯损耗:铁芯是变压器的主要磁路部分,铁芯的磁滞和涡流损耗会产生额外的热量。
3.输电损耗:变压器的主要功能是进行电压变换,当电流通过绕组时会产生一定的导线电阻损耗和铜损耗,这些损耗会转化为热量。
4.环境温度过高:变压器一般安装在室外,如果环境温度过高,会加剧变压器的散热困难。
5.绝缘老化:变压器中绝缘材料会随着使用时间的增长而老化,导致绝缘性能下降,从而产生额外的热量。
二、分析与处理:1.定期检查和维护:定期对变压器进行检查和维护,保持变压器的正常运行。
检查变压器绕组是否松动、接触是否良好,观察绝缘材料的老化情况。
2.加强绝缘防护:对于已经老化的绝缘材料,需要及时更换,确保变压器的绝缘性能符合要求。
3.改善散热条件:可以采取一些措施来改善变压器的散热条件,如增加散热片面积、增加冷却器数量和容量等。
在安装变压器时要注意避免阻碍散热的因素,如避免堆放杂物、阻挡风口等。
4.减少负荷:如果变压器长时间处于满载状态,会导致变压器温升过高,因此可以通过增加变压器的容量或者减少负荷来缓解这个问题。
5.规避外部故障:加强变压器的保护装置,防止外部故障引起的温度过高问题。
安装差动保护、巨型继电器保护、温度报警装置等,及时发现和隔离变压器的故障。
通过以上的分析与处理,可以有效解决变压器温度过高的问题,确保变压器的安全运行。
同时,需要定期进行检查和维护,及时发现和处理潜在问题,保障变压器的长期可靠运行。
1.变压器的冷却方式与油温规定的原因。
※
油浸变压器的通风冷却是为了提高油箱和散热器表面的冷却效率。
装了风扇后与自然冷却相比,油箱散热率可提高50%~60%。
一般,采用通风冷却的油浸电力变压器较自冷时可提高容量30%以上。
因此,如果在开启风扇情况下变压器允许带额定负荷,则停了风扇的情况下变压器只能带额定负荷的
70%(即降低30%)。
否则,因散热效率降低,会使变压器的温升超出允许值。
规程上规定,油浸风冷变压器上层油温不超过55℃时,可不开风扇在额定负荷下运行。
这是考虑到,在断开风扇的情况下,若上层油温不超过55℃,即使带额定负荷,由于额定负荷的温升是一定的,绕组的最热点温度不会超过95℃,这是允许的。
强迫油循环水冷和风冷的变压器一般是不允许不开启冷却装置就带负荷运行的。
即使是空载,也不允许不开启冷却装置运行。
这样限制的原因是因为这类变压器油箱是平滑的,冷却面积小,甚至不能将空载损耗所产生的热量散出去。
强迫油循环的变压器完全停止冷却系统运行是很危险的。
不过,考虑到事故情况下不中断供电的重要性,也考虑到变压器的发热有个时间常数,并不是带上满负荷瞬时就使变压器达到危险的温升,故规程又规定当冷却系统故障冷却器全停时,在额定负荷下允许运行时间为20min。
运行后,如油面温度(上层油温)尚未达到75℃,但切除冷却器后的最长运行时间不得超过1h。
变压器片式散散热面积计算方法
1. 嘿,你知道变压器片式散热面积咋计算吗?就好比你要给一个大热天的人找多大块儿的树荫才能凉快下来。
比如说,有个小变压器,那它需要的散热面积相对就小一些吧。
2. 来,咱说说变压器片式散热面积计算的一种方法哦。
这就像给小狗搭个合适的窝,得根据小狗的大小来呀!像那种大型变压器,肯定得有足够大的散热面积才行。
3. 诶呀,计算变压器片式散热面积可不简单呐!就好像量体裁衣,得根据变压器的具体情况来算。
好比一个特殊型号的变压器,那计算散热面积可得仔细着点儿嘞。
4. 你想不想知道具体咋计算变压器片式散热面积呀?这可比给花找合适的花盆难多啦!比如有的变压器工作环境热,那得把散热面积算大点儿吧。
5. 嘿呀,变压器片式散热面积的计算很关键哦!就像你给汽车选个合适的水箱,小了可不行呀!像那种高负荷运转的变压器,散热面积小了能行?
6. 咱好好聊聊变压器片式散热面积计算呗。
这就类似给运动员准备合适的休息区大小,得考虑很多因素呢!要是不准确计算,变压器过热可就糟糕啦。
7. 哇塞,变压器片式散热面积的计算有窍门哦!这就跟给小猫找个舒服的地方呆着一样,得合适呀!像有些复杂工况下的变压器,不好好算散热面积能行?
8. 哈哈,变压器片式散热面积的计算真有意思!好比给手机配个合适的保护套,得契合才行呢!不同的变压器,散热面积计算方式也不同哟。
9. 总之呢,变压器片式散热面积的计算可重要啦!一定要认真对待,不准确计算的话真的会出问题的!就像建房子基础没打好,那后面不就麻烦啦!。
散热改造方法一、变压器室温高的原因分析:采用自然通风散热和外加辅助轴流风机强制排风是箱变运行中降低箱体内部热量的主要手段,但据大量工程应用实例表明,上述两种综合方式其散热效果均不理想。
最主要原因如下:1.1 设备安装运行地点环境工况较差:在前期规划确定箱变设备安装位置时,因客观条件的限制,往往是只考虑施工和运行检修维护方便,而将箱变安装在不利散热环境的场地。
忽略了箱变安装的最佳位置,致使空气对流不畅,时常造成夏季箱变在较大负荷的情况下,因太阳辐射造成地面和周围环境空气温度的增高,促使箱变箱体内部空间温度升高。
1.2 箱体安装的风机排风量与变压器室在夏季高温高峰负荷时所散发的热量不匹配:国产箱变在设计时,一般是按自然通风为主要方式来进行散热的,变压器室顶部所安装的民用小排量排风机(功率约22瓦,最大风量125m3/h)只起辅助散热作用。
其排风量是根据夏季最热月的平均温度来考虑计算选取的。
则计算时是按夏季最热月平均温度30℃、变压器室内外的温差15℃来选择计算。
未考虑箱变使用所在地夏季最热月14时常易出现最高环境温度35—38℃的情况,此时实际温差约7—10℃。
因计算取值的错误,导致计算时所取温差数值过大,造成所选择的风机排风量过小。
由于夏季环境温度较高当配电变压器是在接近满负荷状态下运行,变压器本身消耗的电能(铜损和铁损之和)是以热量的表征形式散发在变压器室内的空气中,源源不断地对变压器室内的空气进行加热。
因箱变室顶部和底部所安装的小排量风机不能将室内郁积的热量迅速排出,使箱体内外的空气没有大量进行有效交换,造成热量在变压器室内大量聚集,引起箱变箱体内环境温度不断升高,形成恶性循环,最终将导致变压器温升超过运行极限,油质裂化,引起变压器故障,造成供电可靠性降低。
1.3 箱变的进、出风口面积过小及设计安装位置不合理:1.3.1有些设备生产制造的厂家图省事对不同容量的箱变未做深入的技术分析和研究,只考虑如何降低生产成本,大多情况下,把小容量箱变的通风散热结构的技术参数,在未进行正确验算修正的情况下,就套用到较大容量的箱变上(如将1000KVA箱变通风散热技术参数用到1600—2500KVA的箱变)。
干式变压器的工作原理
干式变压器是一种没有液体绝缘介质的变压器。
它的工作原理基本上和传统的油浸式变压器相同,只是使用了干燥的固体绝缘材料来代替油作为绝缘介质。
干式变压器的主要工作原理如下:
1. 主要部件:干式变压器由主变压器、绝缘材料、冷却系统和保护系统等组成。
主变压器由高压线圈和低压线圈组成,它们之间通过磁耦合实现能量传递。
2. 绝缘材料:干式变压器使用干燥的固体绝缘材料,通常是特殊的绝缘纸或绝缘垫片,来代替油作为绝缘介质。
这些绝缘材料具有良好的电绝缘性能,可以有效防止电弧、击穿和漏电等现象。
3. 冷却系统:干式变压器通常采用自然冷却或强制风冷的方式进行散热。
自然冷却利用空气对变压器进行散热,而强制风冷则通过风扇将空气强制循环,加快冷却速度。
冷却系统的设计和运行状态直接影响变压器的温度和功率损耗。
4. 保护系统:干式变压器通常配备有过载保护、短路保护和温度保护等系统,以确保变压器在工作过程中的安全可靠性。
这些保护系统会监测变压器的电流、温度和电压等参数,并在异常情况下采取相应的措施,如切断电源或触发警报,以保护变压器免受损害。
总体而言,干式变压器通过线圈之间的磁耦合实现电能的传递和转变,并借助绝缘材料、冷却系统和保护系统等辅助设备来保证其正常运行和安全工作。
与油浸式变压器相比,干式变压器具有不易泄漏、维护简便等优点,因此在一些特殊环境和场合下被广泛使用。
变压器的四种冷却方式变压器是电力系统中常用的电力设备,它的工作原理是利用电磁感应原理,将输入电压变换为输出电压。
在变压器运行时,会产生一定的热量,如果不能及时散热,就会影响变压器的使用寿命。
因此,变压器需要进行冷却,常见的变压器冷却方式有四种,分别是自然冷却、强制风冷却、强制油冷却和强制水冷却。
自然冷却是指变压器在运行时,通过自然对流和辐射的方式散热。
这种方式适用于小型变压器,通常不需要专门的冷却设备,只需要将变压器放置在通风良好的环境中即可。
自然冷却的优点是结构简单、维护成本低,但是由于散热效率相对较低,所以适用于小型变压器。
强制风冷却是指通过风扇将空气强制循环冷却变压器。
这种方式适用于中小型变压器,通常在变压器外部安装风扇,通过风扇将空气吹到变压器表面,加速热量的散发。
强制风冷却的优点是散热效率高、使用寿命长,但是需要专门的风冷装置,增加了成本和维护难度。
强制油冷却是指通过油泵将变压器内部的冷却油强制循环冷却。
这种方式适用于大型变压器,通常在变压器内部安装散热器和油泵,通过油泵将冷却油循环流动,以达到高效散热的目的。
强制油冷却的优点是散热效率高、使用寿命长,但是需要专门的油冷装置,增加了成本和维护难度。
强制水冷却是指通过水泵将水强制循环冷却变压器。
这种方式适用于大型变压器,通常在变压器内部安装散热器和水泵,通过水泵将水循环流动,以达到高效散热的目的。
强制水冷却的优点是散热效率高、使用寿命长,但是需要专门的水冷装置,增加了成本和维护难度。
变压器冷却方式的选择应根据变压器的规模和使用环境来确定。
不同的冷却方式各有优缺点,在选择时需要综合考虑。
只有选择了合适的冷却方式,才能确保变压器的正常运行和长寿命。
干式变压器冷却方式
干式变压器冷却方式
目前干式变压器的冷却方式有空气自冷和强迫风冷两种。
强迫风冷方式根据风机安装的不同形式分为底吹方式、顶抽方式和底吹顶抽方式。
干式变压器进行强迫风冷时,较有效的方式是底吹顶抽方式,即冷空气在经过绕组表面时将绕组产生的热量吸收,吸收了热量的热空气在浮升力及底部风机向上吹力和顶部风机向上抽力的相互作用下向上运行,从而带走绕组产生的热量。
干式变压器冷却结构
根据对流散热理论,当绕组表面附近的空气处于层流状态时,绕组表面局部散热效率与绕组表面热边界层厚度成反比,而热边界层的厚度又与流经绕组表面空气的主流流速成反比,所以绕组表面局部散热效率随绕组表面的空气的主流流速的提高而提高。
当绕组表面的空气处于湍流状态时,绕组表面局部散热效率要高于层流状态时绕组表面局部散热效率,并且基本与流。
变压器的散热养老专户余额: 4516.62养老专户余额: 12141.10 2009.3.25干式变压器温度控制防护冷却方式干式变压器的温度控制系统干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。
绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的,今对TTC-300系列温控系统作一简介。
(1)风机自动控制:通过预埋在低压绕组最热处的PT100热敏测温电阻测取温度信号。
变压器负荷增大,运行温度上升,当绕组温度达110℃时,系统自动启动风机冷却;当绕组温度低至90℃时,系统自动停止风机。
(2)超温报警、跳闸:通过预埋在低压绕组中的PTC非线性热敏测温电阻采集绕组或铁心温度信号。
当变压器绕组温度继续升高,若达到155℃时,系统输出超温报警信号;若温度继续上升达170℃,变压器已不能继续运行,须向二次保护回路输送超温跳闸信号,应使变压器迅速跳闸。
(3)温度显示系统:通过预埋在低压绕组中的PT100热敏电阻测取温度变化值,直接显示各相绕组温度(三相巡检及最大值显示,并可记录历史最高温度),可将最高温度以4~20mA模拟量输出,若需传输至远方(距离可达1200m)计算机,可加配计算机接口,1只变送器,最多可同时监测31台变压器。
系统的超温报警、跳闸也可由PT100热敏传感电阻信号动作,进一步提高温控保护系统的可靠性。
干式变压器的防护方式根据使用环境特征及防护要求,干式变压器可选择不同的外壳。
通常选用IP20防护外壳,可防止直径大于12mm的固体异物及鼠、蛇、猫、雀等小动物进入,造成短路停电等恶性故障,为带电部分提供安全屏障。
若须将变压器安装在户外,则可选用IP23防护外壳,除上述IP20防护功能外,更可防止与垂直线成60°角以内的水滴入。
但IP23外壳会使变压器冷却能力下降,选用时要注意其运行容量的降低。
干式变压器的冷却方式干式变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF)。
自然空冷时,变压器可在额定容量下长期连续运行。
强迫风冷时,变压器输出容量可提高50%。
适用于断续过负荷运行,或应急事故过负荷运行;由于过负荷时负载损耗和阻抗电压增幅较大,处于非经济运行状态,故不应使其处于长时间连续过负荷运行。
干式变压器的过载能力干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况和发热时间常数等有关,若有需要,可向生产厂索取干变的过负荷曲线。
如何利用其过载能力呢(1)选择计算变压器容量时可适当减小:充分考虑某些轧钢、焊接等设备短时冲击过负荷的可能性--尽量利用干式变压器的较强过载能力而减小变压器容量;对某些不均匀负荷的场所,如供夜间照明等为主的居民区、文化娱乐设施以及空调和白天照明为主的商场等,可充分利用其过载能力,适当减小变压器容量,使其主运行时间处于满载或短时过载。
(2)可减少备用容量或台数:在某些场所,对变压器的备用系数要求较高,使得工程选配的变压器容量大、台数多。
而利用干变的过载能力,在考虑其备用容量时可予以压缩;在确定备用台数时亦可减少。
变压器处于过载运行时,一定要注意监测其运行温度:若温度上升达155℃(有报警发出)即应采取减载措施(减去某些次要负荷),以确保对主要负荷的安全供电。
干式变压器低压出线方式及其接口配合干式变压器因没有油,也就没有火灾、爆炸、污染等问题,故电气规范、规程等均不要求干式变压器置于单独房间内。
特别是新的SC(B)9系列,损耗和噪声降到了新的水平,更为变压器与低压屏置于同一配电室内创造了条件。
(1)低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之变压器可提供标准封闭母线端子,方便与外部母排的联接。
带外壳(IP20)产品,在外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。
(2)低压标准横排侧出线:当变压器与低压配电屏并排放置时,为方便其端子间的联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。
绝绝缘材料最高工作温度分为七级:Y A EB F H G90 105 120 130 155 180 180以上℃二十进制转换10000=1×24 =16123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 十进制123456789 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 十六进制另:25=2×10+5225=2×102+2×10+5FDEF=F×163+D×162+E×16+F 十六进制变十进制FF=15×16+15 CD=12×16+13 1FD=1×162+15×16+13FDEF=1111110011101111电流互感器二次侧为什么不能开路?因为同一个电流互感器的二次侧I是固定的,由U=IR得当二次侧开路时R无限大,二次侧的电压U也会无限大,所以当电流互感器开路时容易产生高压电击事故,同样的电压互感器里U是固定的,由I=U/Ω,当电压互感器短路时,会产生大无限大的电流,从而烧毁互感器现在的电容都带自放电电阻,断电后几分钟电压就很低了,要是还不放心可在断电几分钟后手动放电,直接接地短路就行。
电容器的额定电流和补偿电容器的容量有关,计算公司为:I=Q/1.732/0.4=21.7A,Q为补偿电容器无功功率15kVAR(你的单位“kar”错误),0.4及0.4kV。
电流表显示20A左右很正常。
两只电流表是分别测两相的电流。
电容柜工作异常,空开老跳!1首先保护电容大部分都是采用熔断器来保护电容的,用断路器保护的很少,几乎没有。
用熔断器保护电容时熔断器的选择是:熔体的额定电流不小于电容额定电流的1.43倍,不大于电容额定电流的1.55倍来选择,看看你的断路器是不是选小了。
电容在切投的时候会产生一定的涌流,所以断路器、熔断器要选择大一点。
2先观察电容器有无漏油、鼓肚现象,再测正常工作时的电流(36A左右),再观察你的电容器额定电压是多少的(按你的电压应该至少在450V,最好是525V),如果以上都正常,那只能说你设备的谐波严重。
如果是晚上出现的概率大应该是你的电容额定电压选低了若变压器的电压比是10KV/0.4KV,则200KVA变压器的二次额定输出电流为288A。
正常情况下,最大单相电流不可能达到580A。
若真是到了580A,电压会很低,设备不能正常运转,靠无功补偿是解决不了的。
若你是一相电流到了580A,可以调整三相负荷,使三相平衡;若三相电流均达到了580A,就应该增容,换变压器了三相电容如何判断好坏:安照正规必须做电容耐压测试、漏电流测试、电感量测试,才能确定好坏。
如果是判别:(1)看是否泄漏电解液(2)看外壳是否鼓起(3)用灯泡放电对比亮度(4)对比温升温度特别高说明漏电严重(5)用可调直流电源查漏电流。
(6)加入交流电源看对比电流大小(电流小的表示容量小减小了)最佳答案关于常见的发电机柴油机及机组类的基础技术知识,早在几年前我们就以问答的形式进行了普及发布,现应部分用户要求再次重发,由于各项技术都有更新及发展,以下内容仅供参考:1、柴油发电机组基本设备包括哪六个系统?答:(1)机油润滑系统;(2)燃油系统;(3)控制保护系统;(4)冷却散热系统;(5)排气系统;(6)起动系统;2、为什么我们在销售工作中建议客户使用专业公司推荐的机油?答:机油是发动机的血液,一旦客户使用不合格的机油会导致发动机发生轴瓦咬死、齿轮打牙、曲轴变形断裂等严重事故、直至全机报废。
具体的机油选用及使用注意事项详见本版相关文章。
3、为什么新机使用一段时间后需要更换机油及机油滤清器?答:新机在磨合期中难免有杂质进入机油底壳内,使机油及机油滤清器发生物理质变或化学质变。
由武汉捷力售出的机组在进行售后客服和在包过程中,我们会由专业人员为您进行相关保养。
4、为什么我们要求客户安装机组时,排烟管要向下倾斜5-10度?答:主要是防止雨水进入排烟管,导致重大事故发生。
5、一般柴油机发动机上都装有手动油泵和排气螺栓,其作用是什么?答:用于发动前排除燃油管中的空气。
6、柴油发电机组自动化等级怎么分?答:手动、自启动、自启动加自动市电转换柜、远距离三遥(遥控、遥测、遥监。
)7、为什么发电机的出线电压标准是400V而不是380V?答:因为出线后的线路有电压降损耗。
8、为什么要求柴油发电机组的使用场地必须空气流畅?答:柴油机的出力直接受吸入的空气数量和空气质量的影响,发电机又必须有充足的空气给予冷却。
所以使用场地必须空气流畅。
9、为什么在安装机油过滤器、柴油过滤器、油水分离器时不宜用工具把以上三器旋得太紧,而只需用手旋至不漏油即可?答:因为如果旋得太紧其密封圈经油泡及机体升温的作用下,会热膨胀,产生很大的应力。
导致过滤器壳或分离器壳本身的损坏。
更为严重的是导致机体镙母的损坏以致无法修复。
10、怎样鉴别伪劣假冒国产柴油机?答:先查有无出厂合格证和产品证明书,它们是柴油机出厂的“身份证明”,是必须有的。
再查证明书上的三大编号1)铭牌编号;2)机体编号(实物上一般在飞轮端机械切削加工过的平面上,字体为凸体);3)油泵铭牌编号。
将这三大编号与柴油机上的实际编号核对,必须准确无误。
如发现有疑点可将这三大编号报制造厂核实。
11、操作电工接手柴油发电机组后,首先要核实哪三条要点?答:1)核实机组的真实有用功率。
然后确定经济功率,及备用功率。
核定机组真实有用功率的方法为:柴油机12小时额定功率乘以0.9得出一个数据(kw),若发电机额定功率小于或等于该数据,则以发电机额定功率定为该机组真实有用功率,若发电机额定功率大于该数据,则必须用该数据作为机组的真实有用功率。
2)核实机组带有哪几种自保护功能。
3)核实机组的电力接线是否合格,保护接地是否可靠,三相负荷是否基本平衡。
12、有一台电梯起动电机为22KW,应配多大的发电机组? 答: 22*7=154KW(电梯为直接带负荷启动机型,瞬间启动电流一般为额定电流的7倍,才能保证电梯作匀速运动)。
(即至少应配154KW的发电机组)13、发电机组的最佳使用功率(经济功率)如何计算?答:P最佳=3/4*P额定(即0.75倍额定功率)。
14、国家规定一般发电机组的引擎功率应比发电机功率大多少?答:10℅。