瞬变电磁实例13(TEM)
- 格式:ppt
- 大小:693.00 KB
- 文档页数:67
小框瞬变电磁法(TEM)的勘探深度作者:admin 来源:本站发表时间:2009-12-25 8:39:42 点击:1493陈易玖(广东省地质勘查局)摘要T EM 实际工作往往遵循极限探深的理论,采用要探多深就用多大回线边框的做法,限制了T EM 应用的发展。
本文先通过几个实例说明小框T EM 可以实现较大的勘查深度,然后着重从理论上论证之,并探讨了影响极限探深的有关问题。
文章最后介绍了小框T EM 工作方法技术,供勘查者参考。
关键词小框T EM 极限探深展开法Nano 直接展开法中图分类号P318·6 + 3作者简介陈易玖,男,1947 年生, 高级工程师( 教授级) 。
1970 年毕业于北京地质学院物探系。
长期从事物探工作。
通讯地址:广州市东风东路739 号,广东省地勘局。
邮政编码: 510080 。
0 引言在瞬变电磁法( T EM) 勘查中,小框发射较大框发射的优势在于便于施工、增强分辨率和提高抗干扰能力。
根据传统的认识,要探多深,一般就用多大回线边框。
广东省地质勘查局等单位近年在找矿与岩土勘察实践中, 初步体会到T EM 法事实上可以实现比原认为的勘探深度要大。
适当缩小回线的边框尺寸,仍然可以满足一定深度的勘查要求。
1 极限勘探深度的传统理论与实践的冲突传统勘探深度的理论研究多以简单的导电球体为例,考虑半空间导电介质的地质噪声和随机干扰噪声,通过设定信噪比和简化条件,得出极限勘探深度。
设中心回线或重叠回线边长为 b , 相同面积的圆回线半径为R , 导电球体半径为 a , 极限探深( 球心) 为d ,导电球体与围岩电阻率分别为ρ球、ρ围, 则有:d = 0 . 9a (ρ围/ρ球) 1/ 4那么,信噪比最佳时 b = 1 . 1d (中心回线)b = 0 . 7d (重叠回线)这就是说,极限探深与回线边长大体相当,此与勘查实践有较大“出入”,现举3 个例子说明。
(1) 罗定市新榕( 铁) 锰矿T EM 普查( 国产仪器) ,采用35 m 边长的重叠回线扫面3 . 45 km2 ,1 号主矿的T EM 异常在7 线受F9 断层影响, 向北偏移,按上述物探理论的探深原则,推测矿体埋深70m (该矿为板状体, 所以用 2 倍边框大小估算) 。
瞬变电磁法( TEM)在高速公路隧道围岩含水超前探测中的应用摘要:瞬变电磁法测深是以电阻率的差异来区分岩性及构造体并根据电阻率值的大小以及在地下的展布形式来识别地下地质体的空间分布和性质的一种物探方法[1]。
本文采用瞬变电磁法对云南某高速公路隧道一端掌子面前方及周边围岩含水情况开展超前探测,分析掌子面前方岩体结构地下水的分布特征。
关键词:瞬变电磁法;超前探测;裂隙水;高速公路隧道瞬变电磁法或称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用不接地回线或接地线源向地下发射一次脉冲电磁场,在一次脉冲电磁场间歇期间,利用不接地线圈或接地电极观测二次涡流场的方法。
图1为其基本工作方法:于边墙或掌子面设置通以一定波形电流的发射线圈,从而在其周围空间产生一次磁场,并在地下导电岩矿体中产生感应电流。
断电后,感应电流由于热损耗而随时间衰减[2]。
衰减过程一般分为早、中和晚期。
早期的电磁场相当于频率域中的高频成分,衰减快,趋肤深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,趋肤深度大。
通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。
影响电阻率的主要因素有矿物成分、岩石的结构、构造及含水情况等。
根据经验统计和工区地球物理的反演结果分析,得出测区内各地层的电阻率值。
不同地层的电性分布具有一定规律:煤层电阻率值相对较高,砂岩次之,粘土岩类最低。
由于地层的沉积序列比较清晰,在原生地层状态下,其导电性特征在纵向上固定的变化规律,而在横向上相对比较均一。
当存在构造破碎带时,如果构造不含水,则其导电性较差,局部电阻率值增高;如果构造含水,由于其导电性好,相当于存在局部低电阻率值地质体,从而有效判别区域含水程度[3]。
图1瞬变电磁法工作原理1.工况概况云南某高速公路隧道进口端、出口端经调查地下水类型主要为基岩裂隙水,赋存与岩体裂隙中,地下水仅沿其细小的层间裂隙、岩体节理运动,主要受大气降水补给,并受岩石完整性及裂隙开启程度制约,水量一般较贫乏,呈脉状、现状排泄。
瞬变电磁法简介第三节瞬变电磁法(TEM)一、方法原理瞬变电磁法是利用不接地回线或接地线源通以脉冲电流为场源,以激励探测目的物感应二次电流,在脉冲间歇测量二次场随时间变化的响应。
当发射回线中的电流突然断开时,在介质中激励出二次涡流场(激发极化场),二次场从产生到结束的时间是短暂的,这就是“瞬变”名词的由来。
在二次涡流场的衰减过程中,早期以高频为主,反映的是浅层信息,晚期以低频为主,反映的是深层地下信息。
研究瞬变电磁场随时间变化规律,即可探测不同导电性介质的垂向分布。
瞬变电磁法的探测深度与回线线圈的大小、匝数有关,线圈越大、匝数越多,探测的深度就越深。
瞬变电磁法的观测是在脉冲间隙中进行,不存在一次场源的干扰,这称之为时间上的可分性,脉冲是多频率的合成,不同的延时观测的主频率不同,相应的时间场在地层中的传播速度不同,调查的深度也就不同,这称之为空间的可分性。
由这两种可分性导致瞬变电磁法有以下特点:把频率域法的精确度问题转化成灵敏度问题,加大功率,灵敏度可以增大信噪比,加大勘探深度;在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩地区由于是多道观测,早期道的地形影响也较易分辨;可以采用同点组合(同一回线、重叠回线等)进行观测,使与探测目标的耦合最好,取得的异常强,形态简单,分层能力强;线圈点位、方位或接收距要求相对不严格,测地工作简单,功效高;有穿透低阻覆盖层的能力,探测深度大;剖面测量与测深工作同时完成,提供了更多有用信息,减少了多解性。
二、地球物理前提由于瞬变电磁法是观测断电后由一次脉冲激励出的二次涡流场随时间的变化规律,二次涡流场随时间的衰减快慢和强弱与被探测介质(道碴、混凝土、岩石等)及介质状态(含水与干燥、完整与破裂)有关,TEM法衰减曲线的变化过程反映了检测点由高频到低频、由浅层到深层的地质信息变化过程。
检测的参数是各层规一化的电阻率,对实测的衰减曲线进行反演拟合,绘制地下电性分层及分层的电阻率柱状图,进而以反演拟合曲线为基础,绘制成曲线簇断面图、等值线断面图及电性分级断面图。
TEM瞬变电磁法简述瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM),是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,以不接地回线(磁偶源)向被测地质体发射脉冲式电场作为场源(一次场)。
以此来激励地下介质的二次涡流场,并对二次场进行观测。
在发射脉冲的间隙利用接收回线(线圈)接收二次场,通过分析二次场随时间的变化特征,来获取地下介质的电性特征(电阻率),推断目标体的空间赋存位置、产状、埋深等信息。
图1瞬变电磁法原理图如图1所示,在地面布设发送回线,并给发送回线上供一个电流脉冲方波,在一次磁场的激励下,地质体将产生涡流,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。
该过渡过程又产生一个衰减的二次磁场向地表传播,在回线一定范围内接收回线接收二次磁场。
1.2 TEM如何实现测深在瞬变过程早期阶段,高频谐波占主导地位。
由于高频的趋肤效应,涡旋电流主要集中在导电介质的表层附近且阻碍电磁场向地质体深处传播。
所以早期阶段主要反映地质体断面上部地质信息。
随着时间的推移,高频成分被导电介质吸收,从而低频成分占主导地位。
它在导电地质体中激发出很强的涡旋电流。
然而由于热损耗,这些涡旋电流场很快就消失了。
在瞬变过程的晚期,局部地质体中的涡流实际上全部消失,而在各个地层中的涡流磁场之间连续的相互作用使场均匀化和使电流均匀分布,晚期场将依赖于断面的总纵向电导。
1.3 TEM如何探测地质体信息在发送一次脉冲磁场的间歇期间,观测由地质体受激励引起的涡流产生的随时间变化的感应二次场的强度。
地质体介质被激励所感应的二次涡流场的强弱决定于地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场的大小与地下介质的电性有关:(1)低阻地质体感应二次场衰减速度缓慢,二次场电压较大;(2)高阻地质体感应二次场衰减速度较快,二次场电压较小。
根据二次场衰减曲线的特征,就可以判断被测地质体的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号是二次涡流场的电动势(即二次电位),因此,瞬变电磁作为一种时间域的人工源地球物理电磁感应探测方法,是根据地质构造本身存在的物性差异来间接判断相关地质现象的一种有效的地质勘探手段。