模糊数学——第12次硬划分和软划分祥解
- 格式:ppt
- 大小:663.00 KB
- 文档页数:13
模糊数学综合评价法模糊综合评价法(fuzzy prehensive evaluation method)模糊数学综合评价法 1模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
模糊数学综合评价法 2为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):系指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):系指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):系指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):系指评价因素的地位和重要程度。
一级评价因素的权重之和为1;每个评价因子的下一个评价因子的权重之和为1。
6.加权平均评价值(Epw):系指加权后的平均评价值。
加权平均评价值(Epw)=平均评价值(Ep)×权重(W)。
模糊数学阅读练习及答案模糊数学1965年,世界上诞生了一门新的学科——模糊数学。
数学的特点是精确,如今却与“模糊”攀上了亲,似乎不可思议。
确实,模糊数学引起人们的浓厚兴趣,世界各国的研究者与日俱增,正如1975年纪念模糊数学诞生十周年的论文集所指出的:“未来的十年,将是模糊数学大发展的十年。
”模糊数学的诞生,是科学技术发展到一定阶段的必然产物。
人类应用数学工具,对世界的认识从模糊到精确,是一个飞跃。
今天,精确的数学计算在许多场合必不可少。
然而,当我们要求电子计算机具备人脑功能的时候,精确这个长处在一定的程度上反而成了短处。
例如,我们在判别走过来的人是谁时,总是将来人的高矮、胖瘦、走路姿态等与大脑中储存的样本进行比较,从而得出相应的结论。
一般说来,这是轻而易举的事情。
即使一位旧友多年不见,面貌有变化,仍能依稀相认。
然而要是让电子计算机来做这件事,那就复杂了。
得测量来人的身高、体重、手臂摆动的角度以及鞋底对地面的正压力、摩擦力、速度、加速度等等数据,而且非要精确到小数点后几十位才肯罢休。
如果某熟人近来消瘦了点,计算机就“翻脸不认人”了。
显然,这样的“精确”,反使人糊涂。
由此可见,要使计算机能模拟人脑功能,一定程度的模糊,倒是需要的。
模糊数学以客观世界的模糊性为研究对象,它的基础是模糊集合论。
集合原是德国数学家康托尔在19世纪末提出的概念。
例如,太阳系是所有行星的集合,车厢是所有乘客的集合,一张报纸是全部字组成的集合等等。
经典集合论对事物只作明确的划分。
然而事实上,一个事物是否属于某集合,并非只有“是”或“非”两种回答,常有模棱两可的情况。
例如,对“老年人”和“高个子”这类集合的界限就很难作明确的划分。
50岁的人,可以算老年,也可不算老年。
这就是说,在现实世界中,集合的边缘往往是模糊的。
在人们的思维或语言中,这样模糊的概念比比皆是。
如胖、高、重、浓、响、明亮、暖和、粉红、漂亮等,都没有绝对的标准。
经典数学就无法进行描述,而模糊数学却能对这些模糊的集合,进行定量的分析。
模糊综合评判1、概念及基本知识1965年,美国著名自动控制专家查德(L.A. Zadeh )教授提出了模糊(fuzzy )的概念,并发表了第一篇用数学方法研究模糊现象的论文“模糊集合”(fuzzy set )。
他提出用“模糊集合”作为表现模糊事物的数学模型。
并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
而模糊综合评价是根据模糊数学的隶属度理论把定性评价转化为定量评价的一种综合评价方法。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
在决策中,对于方案、人才、成果的评价,人们的考虑往往是从多种因素出发的,而且这些考虑一般只能用模糊语言来描述。
例如,评价者从考虑问题的诸因素出发,参照有关的数据和情况,根据他们的判断对复杂问题分别作出“大、中、小”;“高、中、低”;“优、良、可、劣”;“好、较好、一般、较差、差”等程度的模糊评价。
然后通过模糊数学提供的方法进行运算,就能得出定量的综合评价结果。
2、模糊综合评价的基本原理首先确定被评价对象的因素(指标)集合评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果。
其特点在于评判逐对象进行,对被评价对象有唯一的评价值,不受被评价对象所处对象集合的影响。
综合评价的目的是要从对象集中选出优胜对象,所以还需要将所有对象的综合评价结果进行排序。
3、模糊综合评判方法步骤1、确定评价对象的因素论域2、确定评语等级论域3、进行单因素评价,建立模糊关系矩阵R4、确定评价因素的模糊权向量5、多因素模糊评价6、对模糊综合评价结果进行分析答案二:模糊综合评价的一般步骤如下:(1) 确定评价对象的因素集(2) 确定评语集;(3) 作出单因素评价(4) 综合评价1、 确定评价对象的因素集{}m 21,,,U u u u L =也就是说有m 个评价指标,表明我们对被评价对象从哪些方面来进行评判描述。
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射: ))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。