(2) 平抛运动的两个重要推论
- 格式:docx
- 大小:74.33 KB
- 文档页数:1
平抛运动的两个重要推论考点规律分析(1)推论一:做平抛运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点。
(2)推论二:做平抛运动的物体在任一时刻任一位置处,设其速度、位移与水平方向的夹角分别为θ、α,则tan θ=2tan α。
例题讲解如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v 1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v 2时,小球到达斜面时速度方向与斜面的夹角为α2,则(不计空气阻力)( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .无论v 1、v 2关系如何,均有α1=α2D .α1、α2的关系与斜面倾角θ有关[规范解答] 小球从斜面某点水平抛出后落到斜面上,小球的位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt 2v 0t =gt 2v 0,小球落到斜面上时速度方向与水平方向的夹角为θ+α,则tan(θ+α)=v y v x =gt v 0,故可得tan(θ+α)=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是θ+α,故速度方向与斜面的夹角就总是相等,与v 0的大小无关,C 项正确。
[完美答案] C运用推论二的关键是找准位移偏向角与速度偏向角,再分析判断问题。
举一反三作业1.如图所示,墙壁上落着两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成53°,飞镖B与竖直墙壁成37°,两者相距为d。
假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离。
(sin37°=0.6,cos37°=0.8)答案24 7d解析飞镖与墙壁的夹角为平抛运动物体速度与墙壁所成的角,由于水平位移相同,故速度反向延长线必交于水平位移上的同一点。
平抛运动一、平抛运动 1.基本规律 (1)位移关系(2)速度关系2.两个重要推论(1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v y v 0=2yAx A→x B=x A2 (2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt2v 0→tan θ=2tan α 总结:共9个基本物理量,知二求其他。
已知v 0与v ,求t 已知v 0与а,求t 已知v 与а,求v 0、t 已知v 与x ,求v 0、t 已知v 与y ,求v 0、t 已知v 与θ,求v 0、t 已知а与x ,求v 0、t已知а与y ,求v 0、t已知x 与y ,求v 0、t 已知x 与θ,求v 0、t 已知v 0与θ,求t1、抛体+地面【答案】BC 2、2、【答案】3、抛体+墙(靶、飞镖)(2018·河南部分重点中学联考)某同学玩飞镖游戏,先后将两只飞镖a 、b 由同一位置水平投出,已知飞镖投出时的初速度v a >v b ,不计空气阻力,则两支飞镖插在竖直靶上的状态(俯视图)可能是( )解析 两只飞镖a 、b 都做平抛运动,在水平方向上做匀速直线运动,则有x =v 0t ,它们的水平位移大小相等,由于v a >v b ,所以运动时间关系为t a <t b ,由h =12gt 2知h a <h b ,所以插在竖直靶上时a 在b 的上面,选项C 、D 错误;设飞镖插在竖直靶上前瞬间速度与水平方向的夹角为α,则tan α=gt v 0,因为v a >v b ,t a <t b ,所以有αa <αb ,选项A 正确,B 错误。
答案 A 4.(1)顺着斜面平抛(如图12)图12已知v 0与θ,求t 方法:分解位移.x =v 0t , y =12gt 2,tan θ=y x, 可求得t =2v 0tan θg. (2)对着斜面平抛(垂直打到斜面,如图13)图13已知v 0与θ,求t 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt, 可求得t =v 0g tan θ.3.在倾角为θ的斜面顶端,以初速度v0水平抛出一小球,不计空气阻力,则小球与斜面相距最远时速度的大小为( )A.v0cos θ B.v0 cos θC.v0sin θ D.v0 sin θ答案 B解析当小球速度方向与斜面平行时离斜面最远,速度的水平分量不变,故v cos θ=v0,解得:v=v0cos θ,故B正确.平抛+半圆如图15所示,半径和几何关系制约平抛运动时间t :图15h =12gt 2,R±R2-h2=v0t,联立两方程可求t.例7(2020·福建泉州市第一次质量检查)某游戏装置如图18所示,安装在竖直轨道AB 上的弹射器可上下移动,能水平射出速度大小可调节的小弹丸.圆心为O的圆弧槽BCD上开有小孔P,弹丸落到小孔时,速度只有沿OP方向才能通过小孔,游戏过关,则弹射器在轨道上( )图18A.位于B点时,只要弹丸射出速度合适就能过关B.只要高于B点,弹丸射出速度合适都能过关C.只有一个位置,且弹丸以某一速度射出才能过关D .有两个位置,只要弹丸射出速度合适都能过关 答案 C解析 根据平抛运动速度反向延长线过水平位移的中点可知,位于B 点时,不管速度多大,弹丸都不可能沿OP 方向从P 点射出,故A 错误;如图所示,根据平抛运动速度反向延长线过水平位移的中点可得:EN =12R (1+cos α),则竖直位移PN=EN ·tan α=12R (1+cos α)tan α,弹射器离B 点的高度为y =PN -R sin α=12R (tanα-sin α),所以只有一个位置,且弹丸以某一速度射出才能过关,故B 、D 错误,C 正确.抛体+自由落体/比较两个平抛的物理量(2019·陕西汉中市下学期模拟)如图7所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )图7A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为2∶1C .a 和c 在空中运动的时间之比为2∶1D .a 和c 的初速度大小之比为2∶1 答案 C 解析 根据t =2h g 可知a 和b 在空中运动的时间之比为2∶1;根据v =xt可知a 和b 的初速度大小之比为1∶2,选项A 、B 错误.根据t =2hg可知a 和c 在空中运动的时间之比为2∶1;根据v =x t可知a 和c 的初速度大小之比为2∶1,选项C 正确,D 错误. 2019·福建宁德市5月质检)某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图6所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )图6A .两次在空中运动的时间相等B .两次抛出时的速度相等C .第1次抛出时速度的水平分量小D .第2次抛出时速度的竖直分量大 答案 C解析 将篮球的运动反向处理,即为平抛运动.由题图可知,第2次运动过程中的高度较小,所以运动时间较短,故A 错误.平抛运动在竖直方向上是自由落体运动,第2次运动过程中的高度较小,故第2次抛出时速度的竖直分量较小,故D 错误.平抛运动在水平方向是匀速直线运动,水平射程相等,由x =v 0t 可知,第2次抛出时水平分速度较大,第1次抛出时水平分速度较小,故C 正确.水平分速度第2次大,竖直分速度第1次大,根据速度的合成可知,两次抛出时的速度大小关系不能确定,故B 错误.)从竖直墙的前方A 处,沿AO 方向水平发射三颗弹丸a 、b 、c ,在墙上留下的弹痕如图11所示,已知Oa =ab =bc ,则a 、b 、c 三颗弹丸(不计空气阻力)( )图11A .初速度大小之比是6∶3∶ 2B .初速度大小之比是1∶2∶ 3C .从射出至打到墙上过程速度增量之比是1∶2∶ 3D .从射出至打到墙上过程速度增量之比是6∶3∶ 2 答案 AC解析 水平发射的弹丸做平抛运动,竖直方向上是自由落体运动,水平方向上是匀速直线运动,又因为竖直方向上Oa =ab =bc ,即Oa ∶Ob ∶Oc =1∶2∶3,由h =12gt 2可知t a ∶t b ∶t c=1∶2∶3,由水平方向x =v 0t 可得v a ∶v b ∶v c =1∶12∶13=6∶3∶2,故选项A正确,B 错误;由Δv =gt ,可知从射出至打到墙上过程速度增量之比是1∶2∶3,故选项C 正确,D 错误.4.(2020·山西晋城市模拟)如图3所示,斜面体ABC 固定在水平地面上,斜面的高AB 为 2 m ,倾角为θ=37°,且D 是斜面的中点,在A 点和D 点分别以相同的初速度水平抛出一个小球,结果两个小球恰能落在地面上的同一点,则落地点到C 点的水平距离为(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力)( )图3A.34 mB.23 mC.22 mD.43 m 答案 D7.(2019·河南洛阳市期末调研)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1 B.2∶1 C.3∶2 D.2∶3 答案 C解析 小球A 、B 下落高度相同,则两小球从飞出到落在C 点用时相同,均设为t ,对A 球:x =v 1t ① y =12gt 2②又tan 30°=y x③ 联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt⑤则得:v 2=33gt ⑥ 由④⑥得:v 1∶v 2=3∶2,所以C 正确.(2019·湖南永州市第二次模拟)如图14所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端c 处.今在c 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的三等分点d 处.若不计空气阻力,下列关系式正确的是( )图14A .t a =32t b B .t a =3t b C .v a =32v b D .v a =32v b答案 C解析 a 、b 两球下降的高度之比为3∶1,根据h =12gt 2可知,t =2hg,则a 、b 两球运动的时间关系为t a =3t b ,故A 、B 错误;因为a 、b 两球水平位移之比为3∶2,由v 0=x t得:v a =32v b ,故C 正确,D 错误.如图16,从O点分别以水平初速度v1、v2抛出两个小球(未画出,可视为质点),最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA与竖直方向成α角,不计空气阻力,则两小球初速度大小之比v1∶v2为 ( )图16A.tan αB.cos αC .tan αtan αD .cos αtan α答案 C解析 设圆弧半径为R ,两小球运动时间分别为t 1、t 2.对球1:R sin α=v 1t 1,R cos α=12gt 12;对球2:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 正确.变式4 (多选)(2020·山东济宁市第一次模拟)如图17所示,在竖直平面内固定一半圆形轨道,O 为圆心,AB 为水平直径,有一可视为质点的小球从A 点以不同的初速度向右水平抛出,不计空气阻力,下列说法正确的是( )图17A .初速度越大,小球运动时间越长B .初速度不同,小球运动时间可能相同C .小球落到轨道的瞬间,速度方向可能沿半径方向D .小球落到轨道的瞬间,速度方向一定不沿半径方向 答案 BD临界类平抛(4)速度改变量因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相同的,方向恒为竖直向下,如图4所示.图41.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动.平抛的相遇问题运动的合成与分解关键词:分解、合成、思想、观念、曲线、直线 1、曲线运动的条件和特征下列关于运动和力的叙述中,正确的是( ) A .做曲线运动的物体,其加速度方向一定是变化的 B .物体做圆周运动,所受的合力一定是向心力 C .物体所受合力恒定,该物体速率随时间一定均匀变化 D .物体运动的速率在增加,所受合力一定做正功 答案 D解析 做曲线运动的物体,其加速度方向不一定是变化的,例如平抛运动,选项A 错误;物体做匀速圆周运动时,所受的合力一定是向心力,选项B 错误;物体所受合力恒定,该物体速率随时间不一定均匀变化,例如平抛运动,选项C 错误;根据动能定理可知,物体运动的速率在增加,所受合力一定做正功,选项D 正确.一质点做匀速直线运动。
平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。
三.平抛运动极其规律1. 平抛运动:物体以一定的初速度水平抛出,物体只在重力作用下所做的运动,叫平抛运动。
物体做平抛运动的条件有两个:(1)初速度水平;(2)只受重力。
2. 平抛运动的规律(1)平抛运动在水平方向上不受外力作用,在竖直方向上只受重力作用。
因此,可把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。
(2)设平抛运动的初速度为0v ,以抛出点为坐标原点、以0v 方向为x 轴正方向,竖直向下为y 轴正方向,建立坐标系如图1所示。
①速度:水平方向分速度:0v v x =, 竖直方向分速度:gt v y = 合速度大小:20)(gt v v v v y x +=+=。
合速度方向与与x 轴正方向夹角θ满足0tan v gt v v xy ==θ②位移:水平方向分位移:t v x 0=, 竖直方向分位移:221gt h y ==, 合位移大小22y x s +=。
注意:合位移方向与x 轴正方向间的夹角α满足:002221tan v gtt v gt x y ===α。
可见,合位移与合速度方向不一致。
另外,从竖直分位移中可解出ght 2=,带入t v x 0=得ghv x 20=。
所以平抛运动的时间只与下落高度h 有关,而水平位移(即射程)和下落的高度、抛出时的初速度都有关系。
(3)运动轨迹:平抛运动的物体在某时刻的位置坐标为(t v 0,221gt ),即t v x 0=,221gt y =。
消去时间t 可得平抛运动的轨迹方程为2202x v g y =。
由于g 、0v 都为定值,所以平抛运动的轨迹是抛物线。
o图13.平抛运动的性质做平抛运动的物体,初速度方向和重力方向垂直,因此它的 运动轨迹是一条曲线。
由于物体所受重力是一个恒力,所以平抛运动的加速度等于当地的重力加速度,为一定值。
由t g v ∆=∆知, 在任意相等的时间间隔t ∆内,速度变化量都相等且竖直向下,有t g v v y ∆=∆=∆,所以平抛运动是匀变速曲线运动。
第五单元第4节平抛运动的重要推论平抛运动物体的轨迹x=v0ty=gt2/2消去t可得y=g2v02x2令a=g2v02,则y=ax2(3)平抛运动的轨迹是抛物线说明: 二次函数的图象叫抛物线推论一:1.任意相等的时间内,速度变化量相同Δv=gt(大小、方向)2.速度偏转角正切值是位移偏转角正切值二倍tanθ=2tanα3.速度方向的反向延长线与x轴的交点为水平位移的中点推论二:1.运动时间t=√2ℎg即飞行时间仅取决于下落高度h,与v0无关2.落地的水平距离x=v0√2ℎg即水平距离只与h、v0有关3.落地速度v t=√v02+2gℎ即落地速度只与h、v0有关4.落地方向tanθ=v yv x=gtv0即落地方向只与h、v0有关【例1】质点从同一高度水平抛出,不计空气阻力,下列说法正确的是()A.质量越大,水平位移越大B.初速度越大,落地时竖直方向速度越大C.初速度越大,空中运动时间越长D.初速度越大,落地速度越大【练1】用m、v0、h分别表示平抛运动物体的质量、初速度和抛出点离水平地面的高度.在这三个物理量中,(1)物体在空中运动的时间是由________决定的;(2)在空中运动的水平位移是由________决定的;(3)落地时的瞬时速度的大小是由________决定的;(4)落地时瞬时速度的方向是由________决定的【例2】如图所示,在高为h=5m的平台边缘水平抛出小球A,同时在水平地面上距台面边缘水平距离为s=10m处竖直上抛小球B,两球运动轨迹在同一竖直平面内,不计空气阻力,重力加速度g=10m/s2。
若两球能在空中相遇,则下列说法正确的是()A.A球的初速度可能是8m/sB.B球的初速度可能是4m/sC.A球和B球的初速度之比为1:2D.A球和B球的初速度之比为2:1【练2】如图所示,x轴在水平地面上,y轴沿竖直方向。
图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c 的运动轨迹,其中b和c是从同一点抛出的。
1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。
平抛运动基本规律总结知识点:1.平抛运动的运动特点:水平方向上:匀速直线运动t v x v v x 00,==竖直方向上:自由落体运动221,gt y gt v y == 2.平抛(类平抛)运动所涉及物理量的特点Δv =g Δt ,方向恒为竖直向下3.关于平抛(类平抛)运动的两个重要推论(1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示,即x B =x A2.(2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 4.斜抛运动(1)斜抛运动可以分斜向上抛和斜向下抛两种情况:斜向上抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛运动的合运动。
(2)斜上抛运动的公式:(1)速度公式: 水平速度:0cos x v v θ= 竖直速度:0sin y v v gt θ=-(2)位移公式:水平方向:0cos x v t θ=g竖直方向:201sin 2y v t gt θ=-g(3)斜向下抛运动可以看成是水平方向的匀速直线运动和竖直方向的匀加速运动(初速度不为0)(1)速度公式: 水平速度:0cos x v v θ=竖直速度:0sin y v v gt θ=+(2)位移公式: 水平位移:0cos x v t θ=g竖直位移 201sin 2y v t gt θ=+g5.平抛与斜面结合的两种经典模型:斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角.常见的模型如下:(1)顺着斜面平抛方法:分解位移.x=v0t,y=12gt2,tan θ=yx,可求得t=2v0tan θg.特别强调:θ角是位移偏向角(2)对着斜面平抛(垂直打到斜面)方法:分解速度.v x=v0,v y=gt,tan θ=v0v y=v0gt,可求得t=v0g tan θ.特别强调:θ角是速度偏向角的补角。
平抛运动的两个推论概述说明以及解释1. 引言1.1 概述本文旨在探讨平抛运动中的两个推论,即最大高度与水平飞行距离的关系以及飞行时间与初速度、下落时间的关系。
通过对这些推论进行概述、说明和解释,我们将更深入地理解平抛运动的基本特点及其物理意义。
1.2 文章结构文章共分为五个部分。
引言部分介绍了本文的目的和结构。
接下来,我们会先介绍平抛运动的基本特点,包括速度和方向、加速度和重力作用以及运动轨迹与时间关系。
然后,在第三部分中,我们将详细阐述第一个推论:最大高度与水平飞行距离之间的关系,并解释其物理意义。
紧接着,在第四部分,我们将探究第二个推论:飞行时间与初速度、下落时间之间的关系,并解释其物理意义。
最后,在结论部分,我们将总结这两个推论以及它们所带来的物理意义。
1.3 目的本文旨在通过研究平抛运动中的两个推论,帮助读者更加深入地理解物体在水平方向上被抛出时的运动规律。
通过推导和解释这些推论,我们将揭示它们背后的物理原理,并帮助读者更好地应用于实际问题中。
同时,本文还旨在培养读者对物理学习的兴趣和理解能力,为进一步探究平抛运动及其相关领域打下基础。
2. 平抛运动的基本特点2.1 速度和方向平抛运动是物理学中的一种简单的运动形式,其特点之一是速度的大小保持不变。
在平抛运动过程中,物体以一个固定的初速度沿着一个固定的发射角度被投掷出去。
这个初始速度可以分解为水平分量和垂直分量。
水平方向上的速度恒定,并且没有受到外力作用。
因此,在整个平抛运动过程中,物体在水平方向上匀速移动。
垂直方向上的速度会受到重力加速度的影响而逐渐改变。
在投掷时,物体具有最大的垂直分量速度,并且随着时间推移逐渐减小。
当物体达到最高点时,垂直分量速度降为零。
然后,在下落阶段,垂直分量速度逐渐增大并加速下降。
2.2 加速度和重力作用平抛运动中,加速度指示了物体在垂直方向上由于重力引起的变化率。
根据牛顿第二定律,物体所受合力等于质量乘以加速度。
1 平抛运动的两个重要推论
易
1. (2012江西盟校二联,15)如图所示,从倾角为θ的斜面上的某点先后将同一小球以不同初
速度水平抛出,小球均落到斜面上.当抛出的速度为1v 时,小球到达斜面时的速度方向与斜面的夹角为1α,当抛出的速度为2v 时,小球到达斜面时的速度方向与斜面的夹角为2α,则
A .当12v v >时,12αα>
B .当12v v >时,2αα<
C .无论1v 、2v 大小如何,均有12αα=
D .()12tan tan θαθ=+ 【答案】 C D
2. (2008全国1)如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面
上.物体与斜面接触时速度与水平方向的夹角ϕ满足
A .tan sin ϕθ=
B .tan cos ϕθ=
C .tan tan ϕθ=
D .tan 2tan ϕθ= 【解析】 竖直速度与水平速度之比为:0tan gt v ϕ=,竖直位移与水平位移之比为:200.5tan gt v t
θ=,故tan 2tan ϕθ=,D 正确。
【答案】 D。