中考数学考点11一次函数的实际应用总复习(解析版)
- 格式:docx
- 大小:490.07 KB
- 文档页数:28
专题12一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义一次函数与正比例函数一次函数与正比例函数的定义如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.一次函数与正比例函数的关系一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线。
它可以由直线y=kx平移得到.它与x轴的交点为⎪⎭⎫⎝⎛-0,kb,与y轴的交点为(0,b).【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.3、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式.4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值.5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值.【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是()7.若函数y 2+6(x≤3),(x>3),则当y =20时,自变量x 的值是()A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是()A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是()11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0.参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1,解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1,当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x=1时y=9,即k+b=9.②若k<0,则y随x的增大而减小,则当x=1时y=1,即k+b=1.综上可知,k+b的值为9或1.5.解:因为点P到x轴的距离为4,所以|a|=4,所以a=±4,当a=4时,P(2,4),此时4=-2+m,解得m=6.当a=-4时,同理可得m=-2.综上可知,m的值为-2或6.6.D7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y=450-9x,自变量x的取值范围是0≤x≤50,且x为整数.9.D10.A11.<;≥技巧2:一次函数的两种常见应用【类型】一、利用一次函数解决实际问题题型1:行程问题1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300km;②乙车比甲车晚出发1h,却早到1h;③乙车出发后2.5h追上甲车;④当甲、乙两车相距50km时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个2.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4g且不超过10g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10t以内(包括10t)的用户,每吨收水费a元;一个月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10cm2?题型5:利用分段函数解几何问题)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数表达式;(2)画出此函数的图像.参考答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b =2.5k+b,=4.5k+b.=110,=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k =60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8h后.设经过x1h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3h恰好装满第1箱,再经过2h恰好装满第2箱.4.解:(1)y甲=477x,y乙(0≤x≤3),+318(x>3).(2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12.故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S=10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ;②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6;③当点P 在边CD 上运动,即7≤x≤10时,y =12×4(10-x)=-2x +20.所以y 与x 之间的函数表达式为y (0≤x <3),(3≤x <7),2x +20(7≤x≤10).(2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2=-x +4,=x +2的解为()A =3=1B =1=3C =0=4D =4=02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a)-y =0,+y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)+y =4,-y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4mx +y =n ,+y =f =4,=6,则直线y =mx +n 与y =-ex +f 的交点坐标为()A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.=3,=-2=2,=1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y 轴的交点坐标是()A .(0,-7)B .(0,4)CD -37,【类型】三、方程组的解与两个一次函数图像位置的关系6+y =2,+2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定()A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 21x +y =b 1,2x -y =-b 2的解的情况是()A .无解B .有唯一解C .有两个解D .有无数解【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式.9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案1.B2.解:将(1,a)代入y =2x ,得a =所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方-y =0,+y -b =0=1,=2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1)=3,=1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×=34.4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b+b =-1,k +b =3,=-2,=1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以把A(3,-3),By =kx +b+b =-3,+b =0,=-43,=1.则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______.【答案】m=﹣3【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数,∴29030m m -⎧⎨-≠⎩=解得m=-3.故答案是:-3.【题型】二、正比例函数的图像与性质例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为()A .12y y <B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点,∴112y =,21y =,∵112<,∴12y y <.故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是()A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是()A .2k +B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案.【详解】∵一次函数2y kx =+中0k <,∴y 随x 的增大而减小,∵12x ≤≤,∴当1x =时,122y k k =⨯+=+最大,故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是()A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集.【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∴直线解析式为:112y x =-+,将y=2代入得1212x =-+,解得x=-2,∴不等式2kx b +≤的解集是2x ≥-,故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为()A .5x =-B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∴将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0)∴当y=0时,方程()530k x -+=的解为x=3,故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为()A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-,整理kx b x +≥得,()10k x b -+≥,∴0bx b -+≥,由图像可知0b >,∴10x -≤,∴1x ≤,故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为()A .2B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y (千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128 kb=⎧⎨=-⎩,∴y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1);(2)根据图象可知:货车甲的速度是80÷1.6=50(km/h )∴货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是()A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2,∴y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4),∴它的图象可能是B 选项,故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是()A .0k >B .0k =C .0k <D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论.【详解】∵1212,y y -<>,∴函数y 随x 的增大而减小.∴k <0,故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为()A .-1B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限,∴0m >,∴m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过()A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可.【详解】解:∵31y x =-+中0k <,∴一次函数图象经过第二、四象,∵0b >,∴一次函数图象经过一、二、四象限.故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键.5.若23y x b =+-,y 是x 的正比例函数,则b 的值是()A .0B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值.【详解】解:∵y 是x 的正比例函数,∴23=0b -,解得:23b =,故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______.【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-,故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________.【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4,即y =2x -4,故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式.(2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠?【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =,∴184020k =,∴142k =,∴1142y x =;乙商店:当0<x≤20时,设22y k x =,∴2100020k =,∴250k =,∴250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+,∴()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=,∴x =100,y =4200,∴m =100,∴m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元;(3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-()01k +-有意义的k 的值可能为()A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k +-有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若△ABC 的面积为6,则m 的值为()A .1B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据△ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,当x =0时,y =4,∴点B (0,4),∴OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,∴AC =m ,∵△ABC 的面积为6,∴1462m ´=,解得:m =3.故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是()A .B .C .D .【答案】C 【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,∴-k <0,即k >0,∴一次函数y =-kx +k 的图象经过一、二、四象限.故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质:①当k >0,b >0时,图象过一、二、三象限;②当k >0,b <0时,图象过一、三、四象限;③当k <0,b >0时,图象过一、二、四象限;④当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为()A .1B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中,令0x =,则2y m =,∴一次函数32y x m =-+与y 轴的交点为(0,2m ),∵点(0,2m )与原点关于直线1y =对称,∴22m =,∴1m =;故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题.5.甲、乙两自行车运动爱好者从A B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是()A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意;甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ),3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;2h 时,甲离A 地的距离为:30×(2-0.5)=45(km ),故选项D 不合题意.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题6.如图,直线3y x =和2y kx =+相交于点(),3P a ,则关于x 的不等式32≤+x kx 的解集是______.【答案】1x ≤【分析】先根据直线3y x =求出P 点坐标,不等式32≤+x kx 的解即为直线OP 在直线PQ 下方时,对应的x 的范围【详解】∵(),3P a 点在3y x =上。
2025学年九年级中考数学专题复习分配方案问题(一次函数的综合实际应用)一、解答题1.为复学做好防疫准备,乐乐妈妈去药店为乐乐购买口罩和免洗洗手液结账时,一顾客买5包口罩和一瓶洗手液共花费112元;乐乐妈妈为乐乐买了8包口罩和2瓶洗手液共花费184元.(1)求一包口罩和一瓶洗手液的价格;(2)由于全班同学都需要防疫物品,乐乐妈妈想联合班级其他学生家长进行团购,药店老板给出了口罩的两种优惠方式:方式一:每包口罩打九折;方式二:购买40包口罩按原价,超出40包的部分打八折.设乐乐妈妈团购x包口罩花费的总费用为y元,请分别写出y与x的关系式;(3)已知每位家长都要为孩子准备8包口罩,乐乐妈妈根据联合家长的人数应如何选择优惠方式2.为接新年,美丽的英语老师组织同学开展娱乐赛活动,班级计划购进A、B两种奖品共21件,已知A种奖品每件9元,B种奖品每件7元,设购头B种奖品x件,购买两种奖品所需费为y元,(1)求y与x的函数关系式;(2)若购买B种奖品的数量少于A种奖品的数量,请给出一种最省费用的方案,求出该方案所需费用.3.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.4.咸阳是中国农业文明的发祥地,果业作为全市的支柱产业,近些年,咸阳市的果业规模迅速扩大,果品质量逐年提升,果业效益显著提升,已成为陕西第一果业大市.一家果业加工厂承担出口某种水果的加工任务,有一批水果需要装入某一规格的礼盒,而这种礼盒的来源有两种方案可供选择:方案一:从礼盒加工厂订购,购买礼盒所需费用为1y(元);方案二:由该果业加工厂租赁机器,自己加工制作这种礼盒,所需费用(包括租赁机器的费用和生产礼盒的费用)为2y(元).其中1y(元)、2y(元)与礼盒数x(个)满足如图所示的函数关系,根据图象解答下列问题:y与x之间的函数关系式;(1)请分别求出1y、2(2)若该果业加工厂需要这种礼盒2000个,你认为选择哪种方案更省钱?并说明理由;(3)当该果业加工厂需要这种礼盒多少个时,选择两种方案所需的费用相同?5.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物质援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物质共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物质,且必须装满.根据下表提供的信息,解答以下问题:每吨物资运费(元)120016001000(1)若有9架飞机装运口罩,有a架飞机装运消毒剂,求a的值;(2)若有x架飞机装运口罩,有y架飞机装运消毒剂,求y与x之间的函数关系式;(3)如果装运每种医疗物质的飞机都不少于4架,那么飞机的安排方案有几种?这些方案中,若要使此次物质运费最小,应采取哪个方案?6.A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C,D两乡.从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240t,D乡需要肥料260t.设A城运往C乡肥料x(吨),总调运费y(元).请完成下列问题:(1)求y关于x的函数解析式;(2)求x的取值范围;(3)怎样调运可使总运费最少.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?8.众志成城抗灾情,全国人民在行动.某公司决定安排大、小货车共30辆,运送390吨物资到A地和B地,支援当地抗击灾情.每辆大货车装15吨物资,每辆小货车装10吨物资,这30辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的30辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的20辆前往A地,其余前往B地,设前往A地的大货车有m辆,这20辆货车的总运费为w元.A地(元/辆)B地(元/辆)大货车8001000小货车500600(1)这30辆货车中,大货车、小货车各有多少辆?(2)求w与m的函数解析式,并直接写出m的取值范围.(3)若运往A地的物资不多于260吨,求总运费w的最小值,并写出运输方案9.2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议.我国准备将A地的茶叶1000吨和B地的茶叶500吨销往“一带一路”沿线的C地和D地,C地和D地对茶叶需求分别为900吨和600吨,已知从A、B两地运茶叶到C、D两地的运费(元/吨)如下表所示,设A地运到C地的茶叶为x吨,(1)用含x的代数式填空:A地运往D地的茶叶吨数为___________,B地运往C地的茶叶吨数为___________,B地运往D地的茶叶吨数为___________.(2)用含x(吨)的代数式表示总运费W(元),并直接写出自变量x的取值范围;(3)求最低总运费,并说明总运费最低时的运送方案.10.某工厂现有甲种原料360 kg,乙种原料290 kg,计划利用这两种原料生产A,B两种产品共50件.已知生产1件A种产品,需要甲种原料9 kg,乙种原料3 kg,可获利润700元;生产1件B 种产品,需要甲种原料4 kg,乙种原料10 kg,可获利润1 200元.(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少. 11.某商场购进甲、乙两种商品,每个乙种商品的价格比每个甲种商品的价格2倍少20元,用900元购进甲种商品的数量与用1200元购进乙种商品的数量相同,请回答下列问题:(1)求每个甲、乙两种商品的进价分别是多少元?(2)若商场从厂家购进甲、乙两种商品共100个,且甲种商品的数量不多于乙种商品的数量,设购进甲x个,总成本是y元,求y与x的函数关系式,并求出最少成本的方案和最少成本;(3)用(2)中的最少成本的27再次同时购进甲、乙两种商品,在钱全部用尽的情况下,请直接写出再次购进甲、乙两种商品有多少种方案.12.运城有甲、乙两家葡萄采摘园的葡萄销售价格相同,中秋期间,两家采摘园推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的葡萄六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的葡萄按售价付款。
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。
2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。
函数的基本性质-中考数学重难点题型一次函数(专题训练)1.一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B 【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.2.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n>B .m n =C .m n <D .无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m<n .故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键3.已知一次函数y =kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k+3=3,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k+3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k+3=3,解得:k =0,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,3k+3=4,解得:k =13>0,∴y 随x 的增大而增大,选项D 不符合题意.故选:B .4.在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为()A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,1y =,∴一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.5.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为()A .-5B .5C .-6D .6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值.【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后得到的解析式为:2(3)1y x m =++-,化简得:25y x m =++,∵平移后得到的是正比例函数的图像,∴50m +=,解得:5m =-,故选:A .【点睛】本题主要考查一次函数图像的性质,根据“左加右减,上加下减”求出平移后的函数解析式是解决本题的关键.6.已知在平面直角坐标系xOy 中,直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是()A .y =x+2B .y =2x+2C .y =4x+2D .y =【分析】求得A 、B 的坐标,然后分别求得各个直线与x 的交点,进行比较即可得出结论.【解析】∵直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0)A 、y =x+2与x 轴的交点为(﹣2,0);故直线y =x+2与x 轴的交点在线段AB 上;B 、y =2x+2与x 轴的交点为(−2,0);故直线y =2x+2与x 轴的交点在线段AB 上;C 、y =4x+2与x 轴的交点为(−12,0);故直线y =4x+2与x 轴的交点不在线段AB 上;D 、y =与x 轴的交点为(−3,0);故直线y =与x 轴的交点在线段AB 上;故选:C .7.在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点,2B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n >C .m n ≥D .m n≤【答案】A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴322>∴m<n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.8.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .12y x =B .y x =C .32y x =D .2y x=【答案】D【分析】根据已知解析式求出点A 、B 的坐标,根据过原点O 且将AOB 的面积平分列式计算即可;【详解】如图所示,当0y =时,240x -+=,解得:2x =,∴()2,0A ,当0x =时,4y =,∴()0,4B ,∵C 在直线AB 上,设(),24C m m -+,∴12OBC C S OB x =⨯⨯△,12OCA C S OA y =⨯⨯△,∵2l 且将AOB 的面积平分,∴OBC OCA S S =△△,∴y C C OB x OA ⨯=⨯,∴()4224m m =⨯-+,解得1m =,∴()1,2C ,设直线2l 的解析式为y kx =,则2k =,∴2y x =;故答案选D.【点睛】本题主要考查了一次函数的应用,准确计算是解题的关键.9.如图,一次函数y x=的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A B.C.2D【答案】A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】=+的图像与x轴、y轴分别交于点A、B,解:∵一次函数y x令x=0,则,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x ,∴x ,又BD=AB+AD=2+x ,∴2+x=,解得:+1,∴x=+1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.10.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是().A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y 随x 增大而减小,当y=0时,x=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=−2x+3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.11.一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.【答案】32a <-【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.【详解】解: 一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<,解得:32a <-,故答案是:32a <-.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.12.若21x y +=,且01y <<,则x 的取值范围为______.【答案】102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.14.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …6-2-2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x=1代入y=8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x=1时,y=8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩,解得26k b =⎧⎨=⎩;(3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.15.在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x+b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y =kx+b (k≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x+b ,得1+b =2,解得b =1,∴一次函数的解析式为y =x+1;(2)把点(1,2)代入y =mx 求得m =2,∵当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =x+1的值,∴m≥2.16.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴−b+k=−2k=1,解得k=1b=3,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解y=x+3y=3x+1得x=1y=4,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:12+(4−1)2=10;(3)把y=a代入y=3x+1得,a=3x+1,解得x=a−13;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+a−13=0时,a=52,当12(a﹣3+0)=a−13时,a=7,当12(a−13+0)=a﹣3时,a=175,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.17.如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x 轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解析】(1)由y =−12x −1y =−2x +2解得x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x+2中,令y =0,则−12x ﹣1=0与﹣2x+2=0,解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=;(3)如图所示:自变量x 的取值范围是x <2.18.已知一次函数12y kx =+(k 为常数,k≠0)和23y x =-.(1)当k=﹣2时,若1y >2y ,求x 的取值范围;(2)当x<1时,1y >2y .结合图象,直接写出k 的取值范围.【解析】(1)当2k =-时,122y x =-+,根据题意,得223x x -+>-,解得53x <.(2)当x=1时,y=x−3=−2,把(1,−2)代入y 1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y 1>y 2;当0<k≤1时,y 1>y 2.∴k 的取值范围是:41k -≤≤且0k ≠.19.如图,已知过点B (1,0)的直线l 1与直线l 2:y=2x+4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.【解析】(1)∵点P (-1,a )在直线l 2:y=2x+4上,∴2×(-1)+4=a ,即a=2,则P 的坐标为(-1,2),设直线l 1的解析式为:y=kx+b (k≠0),那么02k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩.∴l 1的解析式为:y=-x+1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB=3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =1153211222⨯⨯-⨯⨯=.20.在平面直角坐标系xOy 中,直线l :y=kx+1(k≠0)与直线x=k ,直线y=-k 分别交于点A ,B ,直线x=k 与直线y=-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k=2时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.【解析】(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1).(2)由题意,A (k ,k 2+1),B (1k k--,-k ),C (k ,-k ),①当k=2时,A (2,5),B (-32,-2),C (2,-2),在W 区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1时,y=-k+1,则有k 2+2k=0,∴k=-2,当0>k≥-1时,W 内没有整数点,∴当0>k≥-1或k=-2时W 内没有整数点.。
初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
知识点01:一次函数图象与系数的关系【高频考点精讲】1.在一次函数b kx y +=中,当k >0时,y 随x 增大而增大。
(1)当b >0时,直线交y 轴于正半轴,过一、二、三象限。
(2)当b <0时,直线交y 轴于负半轴,过一、三、四象限。
2.在一次函数b kx y +=中,当k <0时,y 随x 增大而减小。
(1)当b >0时,直线交y 轴于正半轴,过一、二、四象限。
(2)当b <0时,直线交y 轴于负半轴,过二、三、四象限。
知识点02:一次函数图象上点的坐标特征【高频考点精讲】一次函数)0(≠+=k b kx y 的图象是一条直线,它与x 轴的交点坐标是(kb-,0);与y 轴的交点坐标是(0,b ),直线上任意一点的坐标都满足函数关系式b kx y +=。
知识点03:一次函数图象与几何变换【高频考点精讲】1.一次函数图象的平移直线b kx y +=可以看做由直线kx y =平移|b |个单位得到的。
b >0时,向上平移;b <0时,向下平移。
(1)如果两条直线平行,那么两条直线的斜率k 相等,反过来,如果两条直线的斜率k 相等,那么两条直线平行。
(2)平移规律:上加下减,左加右减。
2.一次函数图象的对称(1)直线b kx y +=关于x 轴对称的另一条直线的解析式为b kx y --=。
推导过程:x 不变,y 变成﹣y ,即b kx y +=-⇒b kx y --=。
(横坐标不变,纵坐标是原来的相反数)(2)直线b kx y +=关于y 轴对称的另一条直线的解析式为b kx y +-=。
推导过程:y 不变,x 变成﹣x ,即b x k y +-=)(⇒b kx y +-=。
(纵坐标不变,横坐标是原来的相反数)(3)直线b kx y +=关于原点对称的另一条直线的解析式为b kx y -=。
推导过程:x 和y 都变成相反数,即b x k y +-=-)(⇒b kx y -=。
(横、纵坐标都变成原来的相反数)3.一次函数图象的旋转(1)直线b kx y +=旋转90°所得另一条直线与原直线垂直,斜率乘积为﹣1,另一条直线的解析式为b kx y +-=。
备战2020年中考数学总复习一轮讲练测第三单元函数第11讲一次函数的应用及综合问题1、了解:一次函数的概念;2、理解:图象中横纵坐标表示的意义,及结合实际问题中的意义;3、会:结合函数图象确定图形面积;并根据面积确定点的坐标,进而求出一次函数解析式;会解决一次函数有关的实际问题;4、能:解决一次函数与几何综合,并根据整数点及公共点的个数确定参数的值或范围。
1.(2019春•石景山区期末)甲、乙两名同学骑自行车从A 地出发沿同一条路前往B 地,他们离A 地的距离()s km 与甲离开A 地的时间()t h 之间的函数关系的图象如图所示,根据图象提供的信息,有下列说法: ①甲、乙同学都骑行了18km ②甲、乙同学同时到达B 地 ③甲停留前、后的骑行速度相同 ④乙的骑行速度是12/km h 其中正确的说法是( )A .①③B .①④C .②④D .②③【解答】解:由图象可得,甲、乙同学都骑行了18km ,故①正确,甲比乙先到达B 地,故②错误, 甲停留前的速度为:100.520/km h ÷=,甲停留后的速度为:(1810)(1.51)16/km h -÷-=,故③错误, 乙的骑行速度为:18(20.5)12/km h ÷-=,故④正确, 故选:B .2.(2018春•平谷区期末)某区中考体育加试女子800米耐力测试中,同时起跑的甲和乙所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增大而增大B.乙的平均速度比甲的平均速度大C.在起跑后50秒时,甲在乙的前面D.在起跑后180秒时,两人之间的距离最远【解答】解:由题意可得,甲对应的函数图象是线段OA,由图象可知甲在匀速跑步,故选项A错误,由图象可知,甲先跑完800米,则甲的平均速度比乙的平均速度大,故选项B错误,在起跑后50秒时,乙在甲的前面,故选项C错误,由图象可知,在起跑后180秒时,甲在乙的前面,此时两人之间的距离最远为200米,故选项D正确,故选:D.3.(2019春•海淀区校级期中)已知等腰三角形的周长为20,腰长为x,底边长为y,则y与x的函数关系式为,自变量x的取值范围是.【解答】解:220x y+=Q,202y x∴=-,即10x<,Q两边之和大于第三边5x∴>,综上可得510x<<.故答案为:220y x=-+,510x<<.4.(2019春•海淀区校级月考)若一条直线与函数31y x=-的图象平行,且与两坐标轴所围成的三角形的面积为12,则该直线的函数解析式为.【解答】解:设所求直线解析式为3y x b =+,则图象与坐标轴两交点坐标为(3b-,0),(0,)b ,由三角形面积公式得11||||232b b ⨯⨯-=,解得3b =±,33y x ∴=+或33y x =-,故该直线的函数关系式为33y x =+或33y x =-, 故答案为33y x =+或33y x =-.5.(2019春•海淀区校级期中)如果直线2y x k =-+与两坐标轴围成的三角形面积是8,则k 的值为 .【解答】解:直线2y x k =-+与x 、y 轴的交点为A 、B ,其坐标分别为:(2k,0)、(0,)k ,11||||8222kS OA OB k =⨯⨯=⨯=,解得:42k =±, 故答案为42±.6.(2019春•石景山区期末)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,则需要购买行李票,行李票费用y (单位:元)与所携带的行李质量x (单位:)kg 之间的关系如图所示.(1)当行李的质量超过规定时,求y 与x 之间的函数表达式; (2)旅客最多可免费携带多少千克的行李?【解答】解:(1)设当行李的质量超过规定时,y 与x 之间的函数表达式为(0)y kx b k =+≠. 由图象可知,当30x =时,2y =;当60x =时,8y =, ∴302608k b k b +=⎧⎨+=⎩解得154k b ⎧=⎪⎨⎪=-⎩ ∴当行李的质量超过规定时,y 与x 之间的函数表达式为14(20)5y x x =-….(2)在14(20)5y x x =-…中令0y =,得1405x -=解得20x =.∴旅客最多可免费携带20千克的行李.7.(2019春•昌平区期末)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t (分),与乙地的距离为s (米),图中线段EF ,折线OABD 分别表示两人与乙地距离s 和运动时间t 之间的函数关系图象.(1)李越骑车的速度为 米/分钟; (2)B 点的坐标为 ;(3)李越从乙地骑往甲地时,s 与t 之间的函数表达式为 ; (4)王明和李越二人 先到达乙地,先到 分钟.【解答】解:(1)由图象可得,李越骑车的速度为:240010240÷=米/分钟, 故答案为:240; (2)由题意可得, 点B 的坐标为(12,2400), 故答案为:(12,2400);(3)设李越从乙地骑往甲地时,s 与t 之间的函数表达式为s kt =, 240010k =,得240k =,即李越从乙地骑往甲地时,s 与t 之间的函数表达式为240s t =, 故答案为:240s t =;(4)由图象可知,李越先到达乙地,先到达:240096(1022)3÷-⨯+=(分钟), 故答案为:3.8.(2018春•东城区期末)如图,在平面直角坐标系xOy 中,直线24y x =-+与x 轴,y 轴分别交于点A ,点B .(1)求点A 和点B 的坐标; (2)若点P 在y 轴上,且012AOP A B S S ∆=V 求点P 的坐标.【解答】解:(1)令0x =,得4y =.令0y =,得2x =,(0,4)B ∴,(2,0)A .(2)设(0,)P m ,012AOP A B S S ∆=V Q 求,∴111||224222m ⨯⨯=⨯⨯⨯, 2m ∴=±,(0,2)P ∴或(0,2)-.9.(2019春•门头沟区期末)在平面直角坐标系xOy 中,直线4y x =+与x 轴交于点A ,与过点(0,2)B 且平行于x 轴的直线l 交于点C ,点A 关于直线l 的对称点为点D . (1)求点C 、D 的坐标;(2)将直线4y x =+在直线l 上方的部分和线段CD 记为一个新的图象G .若直线12y x b =-+与图象G 有两个公共点,结合函数图象,求b 的取值范围.【解答】解:(1)Q 直线4y x =+与x 轴交于点A , (4,0)A ∴-Q 直线4y x =+与过点(0,2)B 且平行于x 轴的直线l 交于点C ,(2,2)C ∴-Q 点A 关于直线l 的对称点为点D ,(4,4)D ∴-(2)如图:当直线12y x b =-+经过点(2,2)C -时,12(2)2b ∴=-⨯-+,解得1b =当直线12y x b =-+经过点(4,4)D -时,14(4)2b ∴=-⨯-+,解得2b =b ∴的取值范围为12b <„.10.(2019•北京)在平面直角坐标系xOy 中,直线:1(0)l y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围. 【解答】解:(1)令0x =,1y =,∴直线l 与y 轴的交点坐标(0,1);(2)由题意,2(,1)A k k +,1(k B k--,)k -,(,)C k k -, ①当2k =时,(2,5)A ,3(2B -,2)-,(2,2)C -,在W 区域内有6个整数点:(0,0),(0,1)-,(1,0),(1,1)-,(1,1),(1,2); ②当0k >时,区域内必含有坐标原点,故不符合题意;当0k <时,W 内点的横坐标在k 到0之间,故10k -<„时W 内无整点;当21k -<-„时,W 内可能存在的整数点横坐标只能为1-,此时边界上两点坐标为(1,)M k --和(1,1)N k --+,1MN =;当k 不为整数时,其上必有整点,但2k =-时,只有两个边界点为整点,故W 内无整点;当2k -„时,横坐标为2-的边界点为(2,)k --和(2,21)k --+,线段长度为13k -+>,故必有整点. 综上所述:10k -<„或2k =-时,W 内没有整数点;1.一次函数的实际问题从路程时间图或速度时间图中提取信息,解决问题;或结合图中数据确定对应的一次函数(注意自变量取值),然后求出某时刻数值;实际问题中的方案选择问题:结合图象中的数据确定一次函数,或经过图中两个函数对比,借助自变量取值,确定方案;2.一次函数有关的面积问题 ①三角形面积公式三角形的面积公式:如图,12ABC C S AB y =⋅⋅V②割补法(1)补形法:如图,123ABC S S S S S =---V(2)分割法(水平底和铅垂高):如图,12ABC C A S x x BM =⋅-⋅V③等积法如图,ABM ABN S S =V V3.有关最值问题①直线y kx b =+上两点(,)A m p ,(,)B n q ,点C 在线段AB 上,则C p y q ≤≤.②如图,平面直角坐标系中两点A ,B ,在x 轴上存在点P 使得AP BP +最小.考点一 已知函数求面积例1.(2019春•石景山区期末)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象平行于直线12y x =,并且经过点(2,3)A --. (1)求此一次函数的表达式,并画出它的图象;(2)此一次函数的图象与x 轴交于点B ,求AOB ∆的面积. 【解答】解:(1)Q 一次函数(0)y kx b k =+≠的图象平行于直线12y x =,12k ∴=, Q 函数图象经过点(2,3)A --,13(2)2b ∴-=-+.2b ∴=-.∴一次函数的表达式为122y x =-; 图象如图所示:;(2)过点A 作AC x ⊥轴于点C , 3AC ∴=. Q 直线122y x =-与x 轴的交点B 的坐标是(4,0), 1143622AOB S OB AC ∆∴==⨯⨯=g .【专项训练】1、(2019春•海淀区期末)在平面直角坐标系xOy 中,函数y kx b =+的图象与直线2y x =平行,且经过点(1,6)A(1)求一次函数y kx b =+的解析式;(2)求一次函数y kx b =+的图象与坐标轴围成的三角形的面积. 【解答】解:(1)Q 函数y kx b =+的图象与直线2y x =平行, 2k ∴=,又Q 函数2y x b =+的图象经过点(1,6)A , 62b ∴=+,解得4b =,∴一次函数的解析式为24y x =+;(2)在24y x =+中,令0x =,则4y =;令0y =,则2x =-;∴一次函数y kx b =+的图象与坐标轴交于(0,4)和(2,0)-,∴一次函数y kx b =+的图象与坐标轴围成的三角形的面积为12442⨯⨯=.2.(2019春•昌平区期末)如图,在平面直角坐标系xOy 中,矩形ABCD 的边3AD =,1(2A ,0),(2,0)B ,直线(0)y kx b k =+≠经过B ,D 两点.(1)求直线(0)y kx b k =+≠的表达式;(2)若直线(0)y kx b k =+≠与y 轴交于点M ,求CBM ∆的面积.【解答】解:(1)由矩形ABCD 的边3AD =,1(2A ,0),(2,0)B ,可得1(2D ,3),(2,3)C .把(2,0)B ,1(2D ,3)代入(0)y kx b k =+≠得,20132k b k b +=⎧⎪⎨+=⎪⎩. 解得:24k b =-⎧⎨=⎩.∴直线表达式为:24y x =-+.(2)连接CM . (2,0)B Q , 2OB ∴=.1132322BCM S BC OB ∆∴==⨯⨯=g g .考点二 已知面积求点的坐标例2.(2019春•延庆区期末)一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -, (1)求一次函数的表达式;(2)若点C 在y 轴上,且2ABC AOB S S ∆∆=,直接写出点C 的坐标.【解答】解:(1)Q 一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -, ∴312k b b +=⎧⎨=-⎩,得12k b =⎧⎨=-⎩,即一次函数的表达式是2y x =-; (2)设点C 的坐标为(0,)c , Q 点(3,1)A ,点(0,2)B -,2OB ∴=, 2ABC AOB S S ∆∆=Q ,∴|(2)|323222c --⨯⨯=⨯, 解得,12c =,26c =-, C ∴点坐标为(0,2)或(0,6)-.【专项训练】1、(2019春•门头沟区期末)在平面直角坐标系xOy 中,直线2(0)y kx k =+≠与x 轴的交点为A ,与y 轴的交点为B ,且2AOB S ∆=,则k 的值为 . 【解答】解:令0x =,则2y =. 令0y =,则2x k =-2(A k∴-,0),(0,2)B2||OA k∴=-,2OB =1122||222AOB S OA OB k∆∴==⨯⨯-=g解得:1k =± 故答案为:1±.2.(2019春•丰台区期末)在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与直线4y x =-+的交点为(3,)P m ,与y 轴交于点A .(1)求m 的值;(2)如果PAO ∆的面积为3,求直线y kx b =+的表达式. 【解答】解:(1)Q 直线4y x =-+过点(3,)P m , 341m ∴=-+=;(2)PAO ∆Q 的面积为3,(3,1)P ,∴1332OA ⨯=, 2OA ∴=,1(0,2)A ∴,2(0,2)A -.当直线y kx b =+经过1(0,2)A 和(3,1)P 时, 231b k b =⎧⎨+=⎩,解得132k b ⎧=-⎪⎨⎪=⎩, ∴直线的表达式为123y x =-+;当直线y kx b =+经过2(0,2)A -和(3,1)P 时, 231b k b =-⎧⎨+=⎩,解得12k b =⎧⎨=-⎩, ∴直线的表达式为2y x =-.综上所述,所求直线的表达式为123y x =-+或2y x =-.考点三 一次函数实际应用例3.(2019•东城区一模)弹簧原长(不挂重物)15cm ,弹簧总长()L cm 与重物质量()x kg 的关系如下表所示:当重物质量为5kg (在弹性限度内)时,弹簧总长()L cm 是( ) A .22.5B .25C .27.5D .30【解答】解:设弹簧总长()L cm 与重物质量()x kg 的关系式为L kx b =+, 将(0.5,16)、(1.0,17)代入,得:0.51617k b k b +=⎧⎨+=⎩,解得:215k b =⎧⎨=⎩,L ∴与x 之间的函数关系式为:215L x =+;当5x =时,251525()L cm =⨯+= 故重物为5kg 时弹簧总长L 是25cm , 故选:B . 【专项训练】1.(2019春•顺义区期末)弹簧原长(不挂重物)15cm ,弹簧总长()L cm 与重物质量()x kg 的关系如下表所示:当重物质量为4kg (在弹性限度内)时,弹簧的总长()L cm 是 . 【解答】解:设弹簧总长()L cm 与重物质量()x kg 的关系式为L kx b =+, 将(0.5,16)、(1.0,17)代入,得:0.51617k b k b +=⎧⎨+=⎩,解得215k b =⎧⎨=⎩,L ∴与x 之间的函数关系式为:215L x =+;当4x =时,241523()L cm =⨯+= 故重物为4kg 时弹簧总长L 是23cm , 故答案为:23例4.(2019•昌平区二模)“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有50升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130公里时,油箱里剩油量为升.【解答】解:由图象可知:当用时1小时时,油量剩余45升,行驶了30公里;当用时在1 2.5-小时之间时,可得:每小时行驶的里程为180301002.51-=-公里,每小时耗油量为453382.51-=-升∴当用时112+=小时时,此时刚好行驶了130公里,此时油箱里的剩油量为:458137-⨯=升,故答案为:37.【专项训练】1.(2019春•延庆区期末)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中①小明家与学校的距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是()A.1 个B.2个C.3 个D.4个【解答】解:由图象可得,小明家和学校距离为1200米,故①正确;小华乘坐公共汽车的速度是1200(138)240÷-=米/分,故②正确;+=(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确;4802402÷=(分),8210小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:120010012÷=(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确;故选:D.2.(2019春•丰台区期末)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.【解答】解:(1)由题意可得, 72050770m =+=,故答案为:770; (2)由图可得,甲每天加工的零件数为:720980÷=(个),乙引入新设备前,每天加工的零件数为:80(402)60-÷=(个), 乙停工的天数为:(20040)802-÷=(天),乙引入新设备后,每天加工的零件数为:(770602)(922)130-⨯÷--=(个), 设第x 天,甲、乙两个车间加工零件总数相同, 80602130(22)x x =⨯+--,解得,8x =,即第8天,甲、乙两个车间加工零件总数相同, 故答案为:8.考点四 一次函数中的几何综合例5.(2019春•海淀区期末)如图,直线1:21l y x =+与直线2:4l y mx =+相交于点(1,)P b . (1)求b ,m 的值;(2)垂直于x 轴的直线x a =与直线1l ,2l 分别交于点C ,D ,若线段CD 长为2,求a 的值.【解答】解:(1)Q 点(1,)P b 在直线1:21l y x =+上, 2113b ∴=⨯+=;Q 点(1,3)P 在直线2:4l y mx =+上,34m ∴=+, 1m ∴=-.(2)当x a =时,21C y a =+; 当x a =时,4D y a =-. 2CD =Q ,|21(4)|2a a ∴+--=, 解得:13a =或53a =.a ∴的值为13或53.【专项训练】(2019春•房山区期末)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 在线段AB 上,点D 在y 轴的负半轴上,C 、D 两点到x 轴的距离均为2. (1)点C 的坐标为: ,点D 的坐标为: ;(2)点P 为线段OA 上的一动点,当PC PD +最小时,求点P 的坐标.【解答】解:(1)由题意点C 的纵坐标为2,2y =时,2243x =+, 解得3x =-, (3,2)C ∴-,Q 点D 在y 轴的负半轴上,D 点到x 轴的距离为2,(0,2)D ∴-,故答案为(3,2)-,(0,2)-;(2)当C 、P 、D 共线时,PC PD +的值最小, 设最小CD 的解析式为y kx b =+,则有322k b b -+=⎧⎨=-⎩,解得432k b ⎧=-⎪⎨⎪=-⎩,∴直线CD 的解析式为423y x =--,当0y =时,32x =-,3(2P ∴-,0).考点五 一次函数中的公共点、整数点问题例6.(2019春•石景山区期末)在平面直角坐标系xOy 中,点(1,)A m -是直线2y x =-+上一点,点A 向右平移4个单位长度得到点B . (1)求点A ,B 的坐标;(2)若直线:2(0)l y kx k =-≠与线段AB 有公共点,结合函数的图象,求k 的取值范围. 【解答】解:(1)Q 点(1,)A m -是直线2y x =-+上一点, 123m ∴=+=.∴点A 的坐标为(1,3)-.∴点(1,3)-向右平移4个单位长度得到点B 的坐标为(3,3).(2)当直线:2l y kx =-过点(1,3)A -时,得32k =--,解得5k =-.当直线:2l y kx =-过点(3,3)B 时,得332k =-,解得53k =. 如图,若直线:2(0)l y kx k =-≠与线段AB 有公共点,则b 的取值范围是5k -„或53k ….【专项训练】1.(2019春•顺义区期末)在平面直角坐标系xOy 中,直线(0)y kx k =≠过点(1,2)A ,直线:l y x b =-+与直线(0)y kx k =≠交于点B ,与x 轴交于点C .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.①当4b =时,直接写出OBC ∆内的整点个数; ②若OBC ∆内的整点个数恰有4个,结合图象,求b 的取值范围.【解答】解:(1)Q 直线(0)y kx k =≠过点(1,2)A , 2k ∴=(2)①当4b =时,直线:4l y x =-+ (4,0)C ∴联立:42y x y x =-+⎧⎨=⎩解得:4383x y ⎧=⎪⎪⎨⎪=⎪⎩4(3B ∴,8)3如下图可得:OBC ∆内的整点有:(1,1),(2,1),∴当4b =时,OBC ∆内的整点个数为2;(3)如图所示,当4b =或4-时,OBC ∆内的整点个数为2;当5b =或5-时,OBC ∆内的整点个数为4;∴若OBC ∆内的整点个数恰有4个,则b 的取值范围为45b <„或54b -<-„.。
一次函数的实际应用【命题趋势】在中考中.一次函数的实际应用常以解答题考查.并结合二次函数最值问题考查为主【中考考查重点】一、利用一次函数解决购买、销售、分配问题二、利用一次函数解决工程、生产、行程问题三、利用一次函数解决有关方案问题考点一:购买、销售、分配类问题1.(2021秋•柯桥区月考)在近期“抗疫”期间.某药店销售A.B两种型号的口罩.已知销售80只A型和45只B型的利润为21元.销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只.其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍.则该药店购进A型、B型口罩各多少只.才能使销售总利润y最大?最大值是多少?【答案】(1)A为0.15元.B为0.2元(2)A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元【解答】解:(1)设每只A型口罩销售利润为a元.每只B型口罩销售利润为b元.根据题意得:.解得.答:每只A型口罩销售利润为0.15元.每只B型口罩销售利润为0.2元;(2)根据题意得.y=0.15x+0.2(2000﹣x).即y=﹣0.05x+400;根据题意得..解得500≤x≤1000.∴y=﹣0.05x+400(500≤x≤1000).∵﹣0.05<0.∴y随x的增大而减小.∵x为正整数.∴当x=500时.y取最大值为375元.则2000﹣x=1500即药店购进A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元.2.(2021•南宁一模)自2020年12月以来.我国全面有序地推进全民免费接种新冠疫苗.现某国药集团在甲、乙仓库共存放新冠疫苗450万剂.如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后.剩余的新冠疫苗乙仓库比甲仓库多30万剂.(1)求甲、乙两仓库各存放新冠疫苗多少万剂?(2)若该国药集团需从甲、乙仓库共调出300万剂新冠疫苗运往B市.设从甲仓库调运新冠疫苗m万剂.请求出总运费W关于m的函数解析式并写出m的取值范围;其中.从甲、乙仓库调运新冠疫苗到B市的运费报价如表:甲仓库运费定价调运疫苗不超过130万剂时调运疫苗超过130万剂时135元/万剂不优惠优惠10%m元/万剂乙仓库105元/万剂不优惠(3)在(2)的条件下.国家审批此次调运新冠疫苗总运费不高于33000元.请通过计算说明此次调运疫苗最低总运费是否在国家审批的范围内?【答案】(1)甲仓库240万剂.乙仓库210万剂;(2)(3)是【解答】解:(1)设甲仓库存放新冠疫苗x万剂.乙仓库存放新冠疫苗y万剂.由题意.得:.解得:.答:甲仓库存放新冠疫苗240万剂.乙仓库存放新冠疫苗210万剂;(2)由题意.从甲仓库运m万剂新冠疫苗到B市.则从乙仓库运新冠疫苗(300﹣m)万剂到B市.∵300﹣m≤210.∴m≥90①若90≤m≤130时.此时甲仓库运费不优惠.乙仓库运费不优惠.则总运费W=135m+105(300﹣m)=30m+31500;②若130≤m≤240时.此时甲仓库运费优惠10%m元/万剂.乙仓库运费不优惠.则总运费W=(135﹣10%m)m+105(300﹣m)=﹣0.1m2+30m+31500;综上.总运费W关于m的解析式为:W=;(3)由(2)知.①当90≤m≤130时.∵30>0.∴W随着m的增大而增大的一次函数.当m=90时.可获得最低总运费.此时W=34200元;②当130≤m≤240时.W时关于m的二次函数.对称轴m=﹣=150.∵﹣0.1<0.∴当m=240时.W有最小值.最小值为32940.∵34200>32940.∴W最低为32940元.∵32940<33000.∴此次调运疫苗最低总运费是在国家审批的范围内.3.(2019春•增城区期末)为了让学生体验生活.某学校决定组织师生参加社会实践活动.现准备租用7辆客车.现有甲、乙两种客车.它们的载客量和租金如下表.设租用甲种客车x辆.租车总费用为y元.甲种客车乙种客车载客量(人/辆)6045租金(元/辆)360300(1)求出y与x之间的函数关系式;(2)若该校共有380名师生前往参加活动.确保每人都有座位坐.共有哪几种租车方案?(3)在(2)的条件下.带队老师从学校预支租车费2500元.试问预支的租车费用是否有结余?若有结余.最多可以结余多少元?【答案】(1)y=60x+2100.(0≤x≤7.且x为整数)(2)三种租车方案(3)100元【解答】解:(1)依题意得:y=360x+300(7﹣x)=60x+2100.(0≤x≤7.且x为整数)(2)依题意得:60x+45(7﹣x)≥380.解之.得.由(1)得0≤x≤7.∴x的取值范围为:.∵x为整数.∴x的值为 5.6.7.当x=5 时.7﹣x=7﹣5=2;当x=6 时.7﹣x=7﹣6=1;当x=7 时.7﹣x=7﹣7=0;∴共有三种租车方案:①租用甲种客车5 辆.乙种客车 2 辆;②租用甲种客车6 辆.乙种客车 1 辆;③租用甲种客车7 辆.乙种客车0 辆.(3)由(1)得y=60x+2100.∵k=60≥0.∴y随x的增大而增大.当x=5 时.y的值最小.其最小值y=360×5+300×2=2400.∴最多可结余:2500﹣2400=100(元).答:在(2)的条件下.带队老师从学校预支租车费2500元.预支的租车费有结余.最多可以结余100元.考点二:工程、生产、行程问题4.(2021春•江夏区期末)在2018春季环境整治活动中.某社区计划对面积为1600m2的区域进行绿化.经投标.由甲、乙两个工程队来完成.若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.并且在独立完成面积为400m2区域的绿化时.甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天.乙工程队施工y天.刚好完成绿化任务.求y关于x的函数关系式;(3)若甲队每天绿化费用是0.6万元.乙队每天绿化费用为0.25万元.且甲乙两队施工的总天数不超过25天.则如何安排甲乙两队施工的天数.使施工总费用最低?并求出最低费用.【答案】(1)甲、乙面积分别为80m2、40m2(2)y=﹣2x+40(3)x=15时.W最低=1.5+10=11.5【解答】解:(1)设乙队每天能完成绿化面积为am2.则甲队每天能完成绿化面积为2am2根据题意得:解得a=40经检验.a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2(2)由(1)得80x+40y=1600整理的:y=﹣2x+40(3)由已知y+x≤25∴﹣2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时.W最低=1.5+10=11.55.(2021秋•金牛区期末)某模具厂引进一种新机器.这种机器同一时间只能生产一种零件.每天只能工作8小时.每月工作25天.若一天用3小时生产A型零件、5小时生产B型零件共可生产34个;若一天用5小时生产A型零件、3小时生产B型零件则共可生产30个.(1)每小时可单独加工A型零件、B型零件各多少个?(2)按市场统计.一个A型零件的利润是150元.一个B型零件的利润是100元.设该模具厂每月安排x(小时)生产A型零件.这两种零件所获得的总利润为y(元).试写出y与x的函数关系式(不要求写出自变量的取值范围).【答案】(1)A型零件3个.B型零件5个(2)y=﹣50x+100000【解答】解:(1)设每小时可单独加工A型零件m个.B型零件n个.根据题意得:.解得;.答:每小时可单独加工A型零件3个.B型零件5个;(2)∵这种机器每天只能工作8小时.每月工作25天.设该模具厂每月安排x(小时)生产A型零件.则每月安排(25×8﹣x)小时生产B 零件.由题意得:y=150×3x+100×5(200﹣x)=﹣50x+100000.∴y与x的函数关系式为y=﹣50x+100000.6.(2020秋•沭阳县期末)学校与图书馆在同一条笔直道路上.甲从学校去图书馆.乙从图书馆回学校.甲、乙两人都匀速步行且同时出发.乙先到达目的地两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息.当t=分钟时甲乙两人相遇.甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时.甲、乙两人相距2000米?【答案】(1)24.40 (2)y=40t(40≤t≤60)(3)t=4或t=50【解答】解:(1)甲乙两人相遇即是两人之间的距离y=0.从图中可知此时x=24(分钟).图中可知甲用60分钟走完2400米.速度为2400÷60=40(米/分钟).故答案为:24.40;(2)甲、乙速度和为2400÷24=100(米/分钟).而甲速度为40米/分钟.∴乙速度是60米/分钟.∴乙达到目的地所用时间是2400÷60=40(分钟).即A横坐标为40.此时两人相距(40﹣24)×100=1600(米).即A纵坐标为1600.∴A(40.1600).设线段AB所表示的函数表达式为y=kt+b.将A(40.1600)、B(60.2400)代入得:.解得k=40.b=0.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).(3)甲、乙两人相距2000米分两种情况:①二人相遇前.两人路程和为2400﹣2000=400(米).甲、乙两人相距2000米.此时t =400÷100=4(分钟).②二人相遇后.乙达到目的地时二人相距1600米.甲再走400米两人就相距2000米.此时t=40+400÷40=50(分钟).综上所述.二人相距2000时.t=4或t=50.考点三:方案问题方案一:没有底薪.只付销售提成;方案二:底薪加销售提成.如图中的射线l1.射线l2分别表示该鲜花销售公司每月按方案一.方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x ≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克.但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1)y1=30x(x≥0).y1=30x(x≥0)(2)采用了方案一【解答】解:(1)设y1=k1x.根据题意得40k1=1200.解得k1=30.∴y1=30x(x≥0);设y2=k2x+b.根据题意.得.解得.∴y2=10x+800(x≥0);(2)当x=70时.y1=30×70=2100>2000;y2=10×70+800=1500<2000;∴这个公司采用了方案一给这名销售人员付3月份的工资.1.(2021春•饶平县校级期末)小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售.并分别以每箱35元与60元的价格售出.设购进A水果x箱.B水果y箱.(1)若小王将水果全部售出共赚了215元.则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量.则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润.此时最大利润是多少?【答案】(1)A种水果25箱.B种水果9箱(2)购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得.答:小王共购进A种水果25箱.B种水果9箱.(2)设利润为W元.W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量.∴x≥.解得:x≥15.∵﹣1<0.∴W随x的增大而减小.∴当x=15时.W取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.2.(2020秋•秦都区期末)某工厂新开发生产一种机器.每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70.且x为整数).函数y与自变量x的部分对应值如表:x(单位:台)1020 y(单位:万元/台)6055(1)求y与x之间的函数关系式;(2)市场调查发现.这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.若该厂第一个月生产这种机器40台.且都按同一售价全部售出.请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)【答案】(1)y=﹣0.5x+65 (2)200万元【解答】解:(1)设y与x之间的函数关系式为y=kx+b.根据题意.得.解得:.即y与x之间的函数关系式为y=﹣0.5x+65.(2)当x=40时.y=﹣0.5×40+65=45.设z与a之间的函数关系式为z=ma+n.根据题意.得.解得:.即z与a之间的函数关系式为z=﹣a+90.当z=40时.40=﹣a+90.解得.a=50.(50﹣45)×40=200(万元).答:该厂第一个月销售这种机器的总利润是200万元.3.(2020秋•浦东新区校级期末)有两段长度相等的河渠挖掘任务.分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时.用了小时.开挖6小时.甲队比乙队多挖了米;(2)甲队在0≤x≤6的时段内.y与x之间的函数关系式是;(3)在开挖6小时后.如果甲、乙两队施工速度不变.完成总长110米的挖掘任务.乙队比甲队晚小时完成.【答案】(1) 2.10 (2)y=10x(0≤x≤6)(3)7【解答】解:(1)由图可知:乙队开挖到30米时.用了2小时.开挖6小时时.甲队挖了60米.乙队挖了50米.所以甲队比乙队多挖了60﹣50=10米.故答案为:2.10;(2)设2小时后乙的解析式为:y=kx(k≠0).把C(6.60)代入得:6k=60.k=10.∴2小时后乙的解析式为:y=10x.即y与x之间的函数关系式是:y=10x(0≤x≤6).故答案是:y=10x(0≤x≤6);(3)开挖6小时.甲挖了60米.甲的速度为10米/小时.∵要完成总长110米的挖掘任务.∴甲再挖50米.所需时间为50÷10=5小时;开挖6小时.乙挖了50米.乙的速度为=5米/小时.∵要完成总长110米的挖掘任务.∴乙需再挖60米.所用时间为60÷5=12(小时).则12﹣5=7(小时).∴乙队比甲队晚7小时完成.故答案是:7.4.(2021春•华容县期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元.张阿姨花1200元购进A、B两种玩具若干件.并分别以每件35元与60元价格出售.设购入A玩具为x件.B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元.那么张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量.则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润.此时最大利润为多少?【答案】(1)A型玩具20件.B型玩具12件(2)购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得..答:张阿姨购进A型玩具20件.B型玩具12件;(2)设利润为w元.w=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A玩具的数量不得少于B玩具的数量.∴x≥.解得:x≥15.∵﹣1<0.∴w随x的增大而减小.∴当x=15时.w取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.故购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.5.(2020•老河口市模拟)2020年是全面建成小康社会目标实现之年.是全面打赢脱贫攻坚战收官之年.我市始终把产业扶贫摆在突出位置.建立了A.B两个扶贫种植基地.为了帮扶我市的扶贫产业.扶贫办联系了C.D两家肥料厂对我市共捐赠100吨肥料.将这100吨肥料平均分配到A.B两个种植基地.已知C厂捐赠的肥料比D厂捐赠的肥料的2倍少20吨.从C.D两厂将肥料运往A.B两地的费用如表:C厂D厂运往A地(元/吨)2220运往B地(元/吨)2022(1)求C.D两厂捐赠的肥料的数量各是多少吨;(2)设从C厂运往A地肥料x吨.从C.D两厂运输肥料到A.B两地的总运费为y元.求y与x的函数关系式.并求出最少总运费;(3)由于从D厂到B地开通了一条新的公路.使D厂到B地的运费每吨减少了a(0<a<6)元.这时怎样调运才能使总运费最少?【答案】(1)C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨(2)y=4x+1980(10≤x≤50).最少总运费为2020元(3)①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.【解答】解:(1)设D厂捐赠的数量是a吨.则C厂捐赠的数量是(2a﹣20)吨.根据题意可得.a+2a﹣20=100.解得.a=40.则2a﹣20=60.答:C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨.(2)根据题意可得.从C厂运往A地肥料x吨.从C厂运往B地肥料(60﹣x)吨;从D厂运往A地肥料(50﹣x)吨.从D厂运往B地肥料(x﹣10)吨.由题意可得.y=22x+20(60﹣x)+20(50﹣x)+22(x﹣10)=4x+1980.根据实际意义可得..解得.10≤x≤50.∵4>0.∴y随x的减小而减小.∴当x=10时.y取最小值2020.答:y与x的函数关系式为y=4x+1980(10≤x≤50).最少总运费为2020元.(3)在(2)的基础上.可得.y=22x+20(60﹣x)+20(50﹣x)+(22﹣a)(x﹣10)=(4﹣a)x+(1980+10a)(10≤x≤50.0<a<6).①当4﹣a>0.即0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4﹣a<0.即4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.综上.①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.1.(2020•广安)某小区为了绿化环境.计划分两次购进A.B两种树苗.第一次购进A种树苗30棵.B种树苗15棵.共花费1350元;第二次购进A种树苗24棵.B种树苗10棵.共花费1060元.(两次购进的A.B两种树苗各自的单价均不变)(1)A.B两种树苗每棵的价格分别是多少元?(2)若购买A.B两种树苗共42棵.总费用为W元.购买A种树苗t棵.B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案.并求出此方案的总费用.【答案】(1)A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.【解答】解:(1)设A种树苗每棵的价格x元.B种树苗每棵的价格y元.根据题意得:.解得.答:A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)设A种树苗的数量为t棵.则B种树苗的数量为(42﹣t)棵.∵B种树苗的数量不超过A种树苗数量的2倍.∴42﹣t≤2t.解得:t≥14.∵t是正整数.∴t最小值=14.设购买树苗总费用为W=40t+10(42﹣t)=30t+420.∵k>0.∴W随t的减小而减小.当t=14时.W最小值=30×14+420=840(元).答:购进A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.2.(2020•云南)众志成城抗疫情.全国人民在行动.某公司决定安排大、小货车共20辆.运送260吨物资到A地和B地.支援当地抗击疫情.每辆大货车装15吨物资.每辆小货车装10吨物资.这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地.其余前往B地.设前往A地的大货车有x辆.这20辆货车的总运费为y元.(1)这20辆货车中.大货车、小货车各有多少辆?(2)求y与x的函数解析式.并直接写出x的取值范围;(3)若运往A地的物资不少于140吨.求总运费y的最小值.【答案】(1)大货车、小货车各有12与8辆(2)y=100x+15600 (2≤x≤10)x为整数(3)当x=8时.y有最小值.此时y=100×8+15600=16400元.【解答】解:(1)设大货车、小货车各有m与n辆.由题意可知:.解得:答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆.则到A地的小货车有(10﹣x)辆.到B地的大货车有(12﹣x)辆.到B地的小货车有(x﹣2)辆.∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600.其中2≤x≤10.x为整数.(3)运往A地的物资共有[15x+10(10﹣x)]吨.15x+10(10﹣x)≥140.解得:x≥8.∴8≤x≤10.x为整数.当x=8时.y有最小值.此时y=100×8+15600=16400元.答:总运费最小值为16400元.3.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲进价是30元.乙进价是24元(2)应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元.则乙品牌洗衣液每瓶的进价是(x﹣6)元.依题意得:.解得:x=30.经检验.x=30是原方程的解.且符合题意.∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元.乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶.则可以购买(120﹣m)瓶乙品牌洗衣液.依题意得:30m+24(120﹣m)≤3120.解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480.∵k=2>0.∴y随m的增大而增大.∴m=40时.y取最大值.y最大值=2×40+480=560.120﹣40=80(瓶).答:超市应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元.4.(2021•宿迁)一辆快车从甲地驶往乙地.一辆慢车从乙地驶往甲地.两车同时出发.匀速行驶.两车在途中相遇时.快车恰巧出现故障.慢车继续驶往甲地.快车维修好后按原速继续行驶乙地.两车到达各地终点后停止.两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h.C点的坐标为.(2)慢车出发多少小时后.两车相距200km.【答案】(1)100.(8.480)(2)出发h或h时两车相距200km.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h).∵两车3小时相遇.此时慢车走的路程为:60×3=180(km).∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h).通过图象和快车、慢车两车速度可知快车比慢车先到达终点.∴慢车到达终点时所用时间为:480÷60=8(h).∴C点坐标为:(8.480).故答案为:100.(8.480);(2)设慢车出发t小时后两车相距200km.①相遇前两车相距200km.则:60t+100t+200=480.解得:t=.②相遇后两车相距200km.则:60t+100(t﹣1)﹣480=200.解得:t=.∴慢车出发h或h时两车相距200km.答:慢车出发h或h时两车相距200km.5.(2020•广西)倡导垃圾分类.共享绿色生活.为了对回收的垃圾进行更精准的分类.某机器人公司研发出A型和B型两款垃圾分拣机器人.已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨.3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人.这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45).B型机器人b 台.请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下.设购买总费用为w万元.问如何购买使得总费用w最少?请说明理由.【答案】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2)b=100﹣2a(10≤a≤45)(3)A型号机器人35台时.总费用w最少.此时需要918万元【解答】解:(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y 吨.由题意可知:.解得:.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20.∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时.此时40<b≤80.∴w=20×a+0.8×12(100﹣2a)=0.8a+960.当a=10时.此时w有最小值.w=968.当30≤a≤35时.此时30≤b≤40.∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960.当a=35时.此时w有最小值.w=918.当35<a≤45时.此时10≤b<30.∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时.w有最小值.此时w=930.答:选购A型号机器人35台时.总费用w最少.此时需要918万元.6.(2020•德阳)推进农村土地集约式管理.提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地.计划对其进行平整.经投标.由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩.乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元.当甲工程队所需工程费为12000元.乙工程队所需工程费为9000元时.两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整.已知两个工程队工作天数均为正整数.且所有土地刚好平整完.总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案.并求出最低费用.【答案】(1甲每天需工程费2000元、乙工程队每天需工程费1500元)(2)甲乙两工程队分别工作的天数共有7种可能(3)最低费用为107000元【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元.由题意.=.解得x=2000.经检验.x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天.则乙平整y天.由题意.45x+30y=2400①.且2000x+1500y≤110000②.由①得到y=80﹣1.5x③.把③代入②得到.2000x+1500(80﹣1.5x)≤110000.解得.x≥40.∵y>0.∴80﹣1.5x>0.x<53.3.∴40≤x<53.3.∵x.y是正整数.∴x=40.y=20或x=42.y=17或x=44.y=14或x=46.y=11或x=48.y=8或x=50.y =5或x=52.y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000.∵﹣250<0.∴w随x的增大而减小.∴x=52时.w的最小值=107000(元).答:最低费用为107000元.7.(2021•湘西州)2020年以来.新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机.开始组建团队.制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本.制作5个A 类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站.每个A类微课售价1500元.每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课.且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课.其中制作A类微课a天.制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式.并写出a的取值范围;(3)每月制作A类微课多少个时.该团队月利润w最大.最大利润是多少元?【答案】(1)A类微课的成本为700元.B类微课的成本为500元(3)当a=8时.w有最大值.w最大=50×8+16500=16900(元)【解答】解:(1)设团队制作一个A类微课的成本为x元.制作一个B类微课的成本为y元.根据题意得:.解得.答:团队制作一个A类微课的成本为700元.制作一个B类微课的成本为500元;(2)由题意.得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a.解得a≤.又∵每月制作的A、B两类微课的个数均为整数.∴a的值为0.2.4.6.8.(3)由(2)得w=50a+16500.∵50>0.∴w随a的增大而增大.∴当a=8时.w有最大值.w最大=50×8+16500=16900(元).答:每月制作A类微课8个时.该团队月利润w最大.最大利润是16900元.1.(2021•玉泉区二模)甲、乙两个工程队共同承担一项筑路任务.甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天.再由乙队施工y天.刚好完成筑路任务.求y与x之间的函数关系式.(3)在(2)的条件下.若每天需付给甲队的筑路费用为0.1万元.需付给乙队的筑路费用为0.2万元.且甲、乙两队施工的总天数不超过24天.则如何安排甲、乙两队施工的天数.使施工费用最少.并求出最少费用.【答案】(1)甲、乙各需30天、20天(2)y=﹣x+20(3)甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.【解答】解:(1)设乙队完成此项任务需要x天.则甲队完成此项任务(x+10)天..解得.x=20.经检验.x=20是原分式方程的解.∴x+10=30.答:甲、乙两队单独完成此项任务各需30天、20天;(2)由题意可得.=1.化简.得y=﹣x+20.即y与x之间的函数关系式是y=﹣x+20;(3)设施工的总费用为w元.w=0.1x+0.2y=0.1x+0.2×(﹣x+20)=x+4.∵甲、乙两队施工的总天数不超过24天.∴x+y≤24.即x+(﹣x+20)≤24.解得.x≤12.∴当x=12时.w取得最小值.此时w=3.6.y=12.答:安排甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.2.(2021•富平县二模)甲、乙两家草莓采摘园的草莓品质相同.销售价格也相同.“五一”假期.两家均推出了优惠方案.甲采摘园的优惠方案:游客进园需购买60元的门票.采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票.采摘的草莓超过一定数量后.超过部分打折优惠.优惠期间.设某游客的草莓采摘量为x(千克).。