《一次函数》复习课(精选4篇)
- 格式:docx
- 大小:20.77 KB
- 文档页数:6
一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
第19章一次函数(复习)学习目标1.掌握变量与函数、一次函数、用函数观点看方程与不等式3个版块的相关知识,并借此解决一次函数的相关问题。
2.通过独立思考,自主探究,体会数学建模、数形结合、分类讨论、转化等数学思想方法在一次函数问题中的运用。
复习过程一、知识梳理二、知识巩固◆知识点1 变量与函数【例题1】下列各图给出了变量x与y之间的函数的是()◆知识点2 自变量取值数学思想方法:①_________②_________③_________④_________【例题2】(1)(2019·甘肃天水)函数2-=x y 中,自变量x 的取值范围是_______ (2)(2019·黑龙江哈尔滨)在函数323-=x xy 中,自变量x 的取值范围是_______◆ 知识点3 函数的图象【例题3】(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C .D .◆ 知识点4 函数的图象与性质一次函数)0,(≠+=k b k b kx y 为常数,图象及性质 形状 一条________。
画法根据两点确定一条直线,一般选(___,___)和(___,___)两点比较简便。
大致图象 k>0K<0 b>0b=0 b<0 b>0b=0 b<0走势图象是从左到右_______的 图象是从左到右_______的经过象限____________象限 ____________象限 ____________象限____________象限 ____________象限 ____________象限k 越大,图象越陡(即越靠近y 轴)。
增减性y 随x 的增大而_________。
y 随x 的增大而_________。
【例题4】(1)(一次函数的概念)下列函数①y=3x ;②y=2x-1;③y=1x ;④y=2-1-3x ;⑤y=x 2-1;⑥y=—x ;⑦x y =;⑧y=—5x+2中,是正比例函数的有__________,是一次函数的有 。
中考第一轮复习课一次函数复习课 教案一、教学目标:1、一次函数的代数与几何意义。
一次函数的定义、图象和性质。
2、一次函数解析式的确定。
3、体会一次方程、一次不等式与一次函数的内在联系。
4、在具体问题中培养学生分析解决问题的能力。
二、重难点重点:一次函数的图象与性质;一次函数解析式的确定。
难点:一次函数与方程、不等式的联系;一次函数在实际问题中的应用。
三、教学方法:以题带概念进行重点知识复习,渗透待定系数法、数形结合、分类讨论等数学思想方法。
四、教学过程点明主题,分类复习。
本节课我们对一次函数的基础知识进行复习。
(一)一次函数的定义例1、已知y 是x 的一次函数,且满足,请求出k 的值。
312+=+-k k kxy 分析解决问题:由一次函数的定义可得,解得k =1。
0112≠=+-k k k 且通过例1回顾总结一次函数的定义:一般的,如果,)是常数,、(0≠+=k b k b kx y 那么y 叫做x 的一次函数,特别的,当b =0时,y 叫做x 的正比例函数。
(二)一次函数的图象和性质例2、请在给定的平面直角坐标系中作出一次函数与的图象,331-=x y 332+-=x y 并回答问题(1)一次函数的图象是一条______________。
(2)由图象可知,随x 的增大而___________,直线经过_________象限;1y 331-=x y 随x 的增大而______________,直线经过__________象限。
2y 332+-=x y (3)直线与y 轴的交点坐标为(__________),直线与y 轴交331-=x y 332+-=x y点坐标为(_________)。
(4)直线与x 轴的交点坐标为(__________),直线与x 轴交331-=x y 332+-=x y 点坐标为(_________)。
(5)直线与直线的交点坐标为(__________),根据图象回答,331-=x y 332+-=x y 当x_____________时,。
初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。
八年级数学《一次函数》评课稿精篇四篇八年级数学《一次函数》评课稿1听了张老师的这节复习课,受益颇多,觉得自己离张高的距离还很远,张老师对课堂的驾驭游刃有余,对复习课定位准确,对教材理解到位又不失深度,紧密根据学情设置课堂内容各环节,自然、流畅又实用。
我从以下两方面谈谈自己对本节课的认识:一.教材理解一次函数在初中数学函数的起始,是对以前的二元一次方程的升级版,更是以后学习其他函数的基础,因此一次函数就内容上讲起着承上启下的作用。
而《一次函数图像》对学生来说是学习中的一个难点,因此张老师选择在这个单元新课之后上这么一节复习课,本身就是对教材内容精确的把握。
二.学情把握张老师在课后发表自己的设计意图中有谈到自己的对学情的分析,我认为一位老师课堂内容设置要是脱离了学情,那这节课注定是作秀、失败的。
而张老师的各环节设置紧紧联系学生的认知基础,进行恰到好处地设置问题,从简单的一次图像引入,让学生判断k、b的符号,到后面各问题设置层层递进,由易入难,显得特有层次感。
而实际上我所说的“难”,正式这节的亮点问题。
从平日生活中的两种灯泡---------节能灯和白炽灯的选择和使用出发设计问题,这本身就能吸引大家眼球,而问题紧密联系一次函数图像对选择方案作出判断,直观形象易懂;并引导学生进行变式训练,对一题进行各方位的改编,而问题又不会让学生“够不着”,在学生认知基础上一点一滴前进,真正提升了学生思考能力、思维能力。
八年级数学《一次函数》评课稿2各位老师,下午好!今天听了周老师的《7.5一次函数的简单应用2)》。
他在用好教材,深刻去领会教材的内涵,给我做了很好的榜样,在课堂上上出数学味。
我个人认为这节课如何处理例题和通过一次函数图象交点的坐标得到二元一次方程组的解,是教师在挖掘教材时应着重思考的,本节课的本质应该是数学结合思想,也应该在教学过程中应着重体现的。
现在我就结合周老师上得这节课谈谈自己的看法。
周老师这节课分为两个环节,第一部分先解决由一次函数图象的交点坐标得到方程组的解,第二部分是例题的教学和对例题做拓展延伸。
《一次函数》复习课数学教案
一、教学目标
1. 知识与技能:学生能掌握一次函数的概念,会求解一次函数的解析式,能熟练应用一次函数解决实际问题。
2. 过程与方法:通过复习和实践,让学生理解一次函数的基本性质,提高学生的抽象思维能力和逻辑推理能力。
3. 情感态度价值观:培养学生的数学兴趣,提升学生的数学素养,使学生体验到数学在生活中的广泛应用。
二、教学内容
1. 一次函数的概念
2. 一次函数的图像和性质
3. 一次函数的应用
三、教学重点和难点
1. 教学重点:一次函数的概念,一次函数的图像和性质,一次函数的应用。
2. 教学难点:理解和掌握一次函数的图像和性质。
四、教学过程
1. 复习导入:引导学生回顾之前学习过的相关知识,为新课的学习做好准备。
2. 新课讲授:
(1)一次函数的概念:讲解一次函数的定义,一次函数的形式,一次函数的表示方式等。
(2)一次函数的图像和性质:通过实例分析,引导学生理解一次函数的图像和性质。
(3)一次函数的应用:结合具体的实际问题,展示一次函数的应用。
3. 巩固练习:设计一些针对性的练习题,让学生进行解答,巩固所学知识。
4. 小结:对本节课的主要内容进行总结,强调重要的知识点和技巧。
5. 布置作业:布置适量的作业,供学生课后自我检测和复习。
五、教学反思
根据课堂上的反馈,对本次教学进行反思,总结成功之处和需要改进的地方,以便于以后的教学。
六、参考文献
列出在备课过程中参考的相关资料。
《一次函数》复习课(精选4篇)
《一次函数》复习课篇1
授课内容
《一次函数》复习课
优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?
《一次函数》复习课篇2
高质高效课堂教学模式推广以来,我认真进行研究和参与讨论,从中感触很深,并在实际工作中不断摸索,越来越深刻地体会到这项活动的开展是切实可行且十分必要的。
这节一次函数的复习课,针对初三复习阶段的特点,采用直接导课的方式,让学生简单明了本节课的复习内容。
本节课将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。
在复习知识点时,让学生自己联想回顾,变被动为主动学习。
例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。
这样,使无味的复习课变得活跃一些,增强了学习气氛。
在处理典型例题A练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。
所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。
在教学过程中,我发现理论与实践在学生身上很难统一。
学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便昌很简单,也发现、挖掘不出。
这与枯求的“人人学有价值的数学”相差甚远,而且需要很长的时间来解决。
此项教学模式的构建和推广,需要我们不断地探索、研究并总结,需要我们做大量的工作。
相信“高质高效课”将使教师的素质与专业水平有一个更大的提高,使有志的学子有更长足的发展。
《一次函数》复习课篇3
第六章
一、学习目标:
1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;
2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;
3、会运用一次函数图像及性质解决简单的问题;
4、会用待定系数法确定一次函数的解析式。
二、基本知识点突破:
1、函数的概念:一般地,在某个变化过程中,有两个变量x和 y,
如果给定一个x值, 相应地就唯一确定了一个y值,那么就是_____ 的函数;
2、一次函数的概念:若两个变量x,y间的函数关系式可以表示成的形式,则称是的一次函数,为自变量,为因变量。
特别地,时,称。
正比例函数是_____________的特殊形式,因此正比例函数都是_______,而一次函数不一定都是_________.
3、判断一个函数是不是一次函数的条件:
(1)、的个数;(2)、自变量的和;(3)、分母中是否含有
4、一次函数图像、性质及其解析式的确定:
函数
类型
k、b的
取值范围
图像
增减性
经过特殊点
函数解析式的确定
(基本思路)
y=kx+b
(k≠0,
b为常数)
k﹥0
b﹥0
与x轴的交点坐标是(,),与y轴的交点坐标是(,)
1、设函数解析式为
2、代入已知两点的坐标或者x,y的两组对应值,得到
3、解
4、写出函数解析式
b﹤0
k﹤0
b﹥0
b﹤0
y=k x
(k≠0)
k﹥0
正比例函数的图像都经过(,)
1、设函数解析式为
2、代入已知一点的坐标或者x,y的一组对应值,得到
3、解
4、写出函数解析式
k﹤0
三、整合集训
目标1 知道什么是函数,并能判断某变化过程中两个变量之间的的关系是否函数关系
已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。
(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?
(2)若y是x的函数,试写出y与x之间的函数关系式。
目标2 知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数
1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x, 一次函数有___ __;正比例函数有____________(填序号).
*2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )a.k≠1b.k≠-1 c.k≠±1 d.k为任意实数.
*3.若一次函数y=(1+2k)x+2k-1是正比例函数,则k=_______.
目标3 会运用一次函数图像及性质解决简单的问题
1 . 正比例函数y=k x,若y随x的增大而减小,则k______.
2. 一次函数y=mx+n的图象如图,则下面正确的是( )
a.m<0,n<0
b.m<0,n>0
c.m>0,n>0
d.m>0,n<0
3.一次函数y=-2x+ 4的图象经过的象限是_______,它与x轴的交点坐标是_____,与y轴的交点坐标是_______.
4. 已知一次函数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;若y随x的增大而增大,则k__________.
*5.若一次函数y=kx-b满足kb<0,且函数值随x的减小而增大,则它的大致图象是图中的( )
目标4 会用待定系数法确定一次函数的解析式。
1、正比例函数的图象经过点a(-3,5),写出这正比例函数的解析式.
2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .
3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。
四、小结提高(谈谈本节课的收获)
五、作业:
1、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。
2、已知y-1与x成正比例,且x=-2时,y=-4.(1)求出y 与x之间的函数关系式;(2)当x=3时,求y的值.
《一次函数》复习课篇4
《一次函数》这一章已学完了2/3。
学生对一次函数的性质、图像还达不到灵活运用的程度。
函数性质大多数人已掌握,虽然新课堂不提倡死背公式,不过这些性质是学生必须掌握的,因为它的应用太广泛了。
暴露的问题有:
1 学生通过图像提取信息的能力差,要加强训练。
学生好像对图像仍然有点陌生,遇到问题不善于有草纸上画图处理问题。
如今天上次作业。
2 听课效率低
班内人数比较多,课堂上总有一部分走神,不爱听,还是听不懂?
今天李洪祯竟然没有在黑板上做对练习题,令我深思,自己的讲的是否快了点?还是没有深入学生的内心?而学生在听完了例题后练习时很多学生没有仿效我运用图示或图表分析问题。
这课堂有点失败的感觉。
3 作业抄袭
最近学生存在作业有雷同的,今天找到昨天作业不认真且有抄袭嫌疑的学生,询问,有的默认了。
如果发现抄袭现象决不姑息,一定让学生说明情况。
…………
晚上九班班长和我谈话,说九班现在抄作业现象严重。
我问“你估计有多少人呢?”她沉吟了一会。
“有1/3吧。
”我很吃惊,没有想到抄袭现象如此严重,她补充说,作业很难的时候这样。
建议我分层布置作业。
我也曾经试过这种方法,不了了之。
但现在必须要杀杀这种不正之风,因为很多学生把抄袭当作家常便饭了。
今早,我首先如集十班的小组召开了与之有关的小型会议,从近几天的观察我感到十班也存在如此严重的现象,请小组长加强监督,帮助自制力差的学生提高学习成绩。