2017北师版初三数学直角三角形的边角关系.doc
- 格式:doc
- 大小:1.03 MB
- 文档页数:38
九年级数学下册《直角三角形的边角关系》知识点总结北师大版九年级数学下册《直角三角形的边角关系》知识点总结北师大版一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f (n)(a)/n!*(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.直角三角形的边角关系单元知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。
第一组 二、直角三角形的边与角的关系(如图,I 口I 答下列问题) BB 3 ⑴RtAABiC 1和RtAAB2C2有什么关系?(2)布利衣「有什么关系?⑶如果改变B 2在梯子上的位苴(如B 3C 3)呢? A C 3 C 2 Ci第一章 直角三角形的边角关系§1.1从梯子的倾斜程度谈起教学目标:1. 能够用表示直角三角形中两边的比,1.经历探索直角三角形中边角关系的过程,理解正切、 正弦和余弦的意义与现实生活的联系.2. 能够运用tanA 、si nA. cosA 表示直角三角形两边的比,表示生活中物体的倾斜程度、坡 度等,外能够用进行简单的计算教学重点:1 .理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.2. 理解锐角三角函数正弦、余弦的意义,并能举例说明.3. 能用tanA> sinA> cosA 表示直角三角形两边的比.4. 能根据直角三角形的边角关系,进行简单的计算.教学难点;1 .理解正切、正弦和余弦的意义,并用它来表示两边的比.2.用函数的观点理解正弦、余弦和正切.-、生活中的数学问题:1、 你能比较两个梯子哪个更陡吗?你有哪些办法?2、 生活问题数学化:⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的? ⑷由此你得出什么结论三、正切概念1、想一想通过对前面的问题的讨论,学生己经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜 程度。
当倾斜角确定时,其对边与邻边的比值随之确定。
这一比值只与倾斜角的大小有关, 而与直角三角形的大小无关。
2、正切函数(1) 明确各边的名称⑵以下三翅中,梯子A 曾IB 1.5mC F 1.3m D第二组 第三组Bi(2 )tan A =的对边ZA的邻边(3)明确要求:1)必须是直角三角形;2)是匕A的对边与NA的邻边的比值。
四、例题:例1、如图是甲,乙两个日动扶梯,哪一个自动扶梯比较陡?例2、在ZXABC中,£090° , BC=12cm,AB=20cm,求tanA和tanB的值.五、随堂练习:1、如图,AABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为3、若某人沿坡度i = 3: 4的斜坡前进10米,则他所在的位置比原来的位置升高米.4、如图,RtAABC是一防洪堤背水坡的横截而图,斜坡AB的长为12 m,它的坡角为45° ,为了提高该堤的防洪能力,现将背水坡改造成坡比为1: 1.5的斜坡AD,求DB的(结果保留根号)一、引入二、正弦、余弦函数sinAZA的对边斜边cosAZA的邻边斜边☆巩固练习如图,在Z\ACB 中,ZC = 90° ,55m,求山的坡度・(结果精确到0.1) sinA = ; cosA = ; sinB = ; cosB =2) 若 AC = 4, BC = 3,贝ij sinA = ; cosA = ;3) 若 AC = 8, AB =10,贝lj sinA= ; cosB = ;三、三角函数 1、 说角NA 的正切、正弦、余弦都是ZA 的三角函数。
直角三角形边角关系【学习目标】1. 理解锐角三角函数的概念,能够运用三角函数的意义解直角三角形,并解决与直角三角形有关的实际问题 。
2. 将实际问题转化为直角三角形的边角关系来解决。
【学习重难点】重点:建立本章的知识结构框架图。
难点:应用三角函数解决现实生活中的问题,进一步理解三角函数的意义。
【探究导学】一、知识梳理1. 直角三角形边角关系.(1)三边关系:勾股定理:(2)三角关系:∠A+∠B+∠C=180°,∠A+∠B =∠C=90°.(3)边角关系tanA= ,sinA= ,cosA= ,2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形。
3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决。
二、基础检测1.如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠部分的面积为( ) 11. ; .; .sin ; D.1sin cos A B C a a a2.如上图,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( )A .15米B .12米C .9米D .7米3.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。
4.太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时,测得大树在地面上的影长为10米,则大树的高为_________米.5.如图,为测一河两岸相对两电线杆A 、B 间的距离,在距A 点15米 处的C 点(AC ⊥BA )测得∠A =50°,则A 、B 间的距离应为( ) A .15sin50°米;B.15cos50°米;C.15tan50°米;D.015tan 50米三、典例分析1.如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公 园附近有B 、C 两个村庄,现在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC =45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.2. 雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C 处(C 与塔底B 在同一水平线上),用高1.4米的测角仪CD 测得塔项A 的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到0.1米). (参考数据:tan43°≈0.9325,cot43°≈1.0724)四、课后精练1.某地夏季中午,当太阳移到屋顶上方偏东时,光线与地面成α角, 房屋朝南的窗子高AB=h 米,要在窗子外面上方安装一个水平挡光板AC ,使午间光线不能直接射人室内如图,那么挡光板AC 的宽度为=__________.2.如图,河对岸有一滩AB ,小敏在C 处测得塔顶A 的仰角为α,向塔前进s 米到达D ,在D 处测得A 的仰角为β,则塔高为____米.3.九(1)班研究性学习小组为了测量学校旗杆的高度如图,他们离旗杆底部E 点30米的D 处,用测角仪测得旗杆的仰角为30°,已知测角仪器高AD=1.4米,则旗杆BE 的高为_______米(精确到0.1米).4.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的 坡面距离AB 等于( )A .6米B .3米C .23米D .22米5.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=6,AC=8. 则sin ∠ABD 的值是( ) 4334A. . . .3455B C D6.如图所示,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C 处,BC ′交AD 于E , A BC D α下列结论不一定成立的是( )A.AD=BC′;B.∠EBD= ∠EDB ;C.△ABE ∽△CBD ;D.sin ∠ABE=AEED7.某月松花江哈尔滨段水位不断下降,一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上,前进100m 到达B 处,又测得航标C 在北偏东45°方向,如图,以航标C 为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?8.某校的教室A 位于工地O 的正西方向、,且 OA=200米,一部拖拉机从O 点出发,以每秒6米的速度沿北偏西53°方向行驶,设拖拉机的噪声污染半径为130米,试问教室A 是否在拖拉机噪声污染范围内?若不在,请说明理由;若在,求出教室A 受污染的时间有几秒?(已知:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)9.在一次暖气管道的铺设工作中,工程由A 点出发沿正西方向进行,在A 点的南偏西60°方向上有一所学校B ,如图,占地是以 B 为中心方圆 100m 的圆形,当工程进行了200m 后到达C 处,此时B 在C 南偏西30°的方向上,请根据题中所提供的信息计算并分析一下,工程若继续进行下去是否会穿越学校.【课后小结】。
第一章 直角三角形的边角关系1 锐角三角函数2 30°,45°,60°角的三角函数值3 三角函数的计算4 解直角三角形5 三角函数的应用6 利用三角函数测高※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan ”乘以“A ”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。
※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;※三. 余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;※余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
0º 30 º45 º 60 º 90 º sin α 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3— cot α—3133 0(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=; )90sin(cos A A ∠-︒= ②)90cot(tan A A ∠-︒=; )90tan(cot A A ∠-︒=※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. ※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
第一章直角三角形的边角关系1.锐角三角函数(1)一、教材分析这节课的内容是:义务教育课程标准实验教科书(北师大版)九年级下册第一章《直角三角形的边角关系》中《锐角三角函数》的第一节,是属于数学新知识教学。
学生已经学过有关直角三角形的知识,但对于直角三角形了解只能停留在边与边之间的关系(勾股定理)和角与角之间的关系(直角三角形两锐角互余)。
那么,是否有某种介质能把直角三角形的边与角之间联系在一起呢?这对具有一定数学能力的九年级学生来说,是有挑战性,因为他们是不同类的两个事物(一个是角度的大小,另一个是线段的长度)。
因此,本节课从农村生活中常见的实物——梯子出发,让学生观察多种梯子倾斜的情况。
而对于梯子的倾斜问题学生在生活中也有一定的生活经验,可以通过观察分析出简单的梯子倾斜情况,但对于倾斜角度非常接近的情况,就需要通过本节课的学习,利用直角三角形边和角的关系来判断。
锐角三角函数是在现实生活中有着重要的的作用。
如在测量、建筑、交通运输、工程技术和物理学中,人们常常遇到距离、高度、角度、方位的计算问题,这些问题最终归结于直角三角形的边角关系。
但相比之下,在实际生活中“正切”是最常用,如物体的倾斜程度,高山的坡度等都往往用正切,后面要学的正弦、余弦的定义也能由正切的定义类比得到。
因此本节的内容在教材中的作用非常大。
二、学情分析九年级的学生具有一定的数学基础知识和基本技能,拥有一些数学思想和数学模型,因此他们思维敏捷,自我意识强。
经历观察、质疑、猜想、交流、合作、归纳等过程,利用数形结合,从特殊到一般,能认识事物的一般规律。
但对于农村初中的学生来说,他们的视野范围窄、思维局限、抽象能力不强,特别是自主学习、自主探究的能力差。
三、教学目标分析知识与技能1.了解正切的产生背景,并理解它的概念,会用它表示生活中物体的倾斜程度、坡度等。
2.能够用tanA表示直角三角形中两直角边的比,用正切进行简单的计算。
数学思考体验数与形之间的联系,逐步学习利用数形结合的思想进行自主探究。
第一章直角三角形的边角关系§1.1 从梯子的倾斜程度谈起课时安排2课时从容说课直角三角形中边角之间的关系是现实世界中应用广泛的关系之—.锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般来说,这些实际问题的数量关系往往归结为直角三角形中边与角的关系问题.本节首光从梯子的倾斜程度谈起。
引入了第—个锐角三角函数——正切.因为相比之下,正切是生活当中用的最多的三角函数概念,如刻画物体的倾斜程度,山的坡度等都往往用正切,而正弦、余弦的概念是类比正切的概念得到的.所以本节从现实情境出发,让学生在经历探索直角:三角形边角关系的过程中,理解锐角三角函数的意义,并能够举例说明;能用sinA、cosA、tanA表示直角三角形中两边的比,并能够根据直角三角形的边角关系进行计算.本节的重点就是理解tanA、sinA、cosA的数学含义.并能够根据它们的数学意义进行直角三角形边角关系的计算,难点是从现实情境中理解tanA、sim4、cosA的数学含义.所以在教学中要注重创设符合学生实际的问题情境,引出锐角三角函数的概念,使学生感受到数学与现实世界的联系,鼓励他们有条理地进行表达和思考,特别关注他们对概念的理解.第一课时课题§ 1.1.1 从梯子的倾斜程度谈起(一)教学目标(一)教学知识点1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.(二)能力训练要求1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.3.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点理解正切的意义,并用它来表示两边的比.教学方法引导—探索法.教具准备FLASH演示教学过程1.创设问题情境,引入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?[问题2]随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.这节课,我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起).Ⅱ.讲授新课用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB比梯子EF更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC>∠EFD ,所以梯子AB 比梯子EF 陡.[生]我觉得是因为AC =ED ,所以只要比较BC 、FD 的长度即可知哪个梯子陡.BC<FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子 AB 和EF 的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB 和EF 哪一个更陡呢?[生]385.14==BC AC , 13353.15.3==FD ED . ∵133538〈=, ∴梯子EF 比梯子AB 更陡.多媒体演示:想一想如图,小明想通过测量B 1C 1:及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)和111AC C B 222AC C B 和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]在上图中,我们可以知道Rt △AB 1C 1,和Rt △AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt △AB 1C 1∽Rt △AB 2C 2.[生]由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2//B 1C 1,Rt △AB 1C 1∽Rt △AB 2C 2.[生]相似三角形的对应边成比例,得2221111212211,AC C B C A C B C A AC C B C B ==即. 如果改变B 2在梯子上的位置,总可以得到Rt △B 2C 2A ∽Rt △Rt △B 1C 1A ,仍能得到222111AC C B AC C B =因此,无论B 2在梯子的什么位置(除A 外), 222111AC C B AC C B =总成立. [师]也就是说无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的.现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?[生]∠A 的大小改变,∠A 的对边与邻边的比值会改变.[师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1、B 2在梯子上的位置无 关,即与直角三角形的大小无关.[生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定, 这个比叫做∠A 的正切(tangent),记作tanA ,即tanA=的邻边的对边A A ∠∠ .注意:1.tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”.2.tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比.3.tanA 不表示“tan ”乘以“A ”.4.初中阶段,我们只学习直角三角形中,∠A 是锐角的正切.思考:1.∠B 的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tanA 有关系吗?[生]1.∠B 的正切记作tanB ,表示∠B 的对边与邻边的比值,即 tanB=的邻边的对边B B ∠∠. 2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图1—3 中,梯子越陡,tanA 的值越大;反过来,tanA 的值越大,梯子越陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山 坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m ,就升高60 m ,那么山坡的坡度(即坡角α的正切——tan α就是tan α=α5310060=. 这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.Ⅲ.例题讲解多媒体演示[例1]如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.解:甲梯中,tan α= 125513522=-=∠∠的邻边的对边αα. 乙梯中,tan β=4386==∠∠的邻边的对边ββ. 因为tan β>tan α,所以乙梯更陡.[例2]在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.分析:要求tanA ,tanB 的值,根据勾股定理先求出直角边AC 的长度.解:在△ABC 中,∠C =90°,所以AC=22221220-=-BC AB =16(cm), tanA=,431612===∠∠AC BC A A 的邻边的对边 tanB=.341216===∠∠BC AC B B 的邻边的对边 所以tanA=43,tanB=34. Ⅳ,随堂练习1.如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC 吗?分析:要求tanC.需从图中找到∠C 所在的直角三角形,因为BD ⊥AC ,所以∠C 在Rt △BDC 中.然后求出∠C 的对边与邻边的比,即DCBD 的值. 解:∵△ABC 是等腰直角三角形,BD ⊥AC ,∴CD =21AC =21×3=1.5. 在Rt △BDC 中,tanC =DC BD =5.15.1=1. 2.如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)分析:由图可知,∠A 是坡角,∠A 的正切即tanA 为山的坡度.解:根据题意:在Rt △ABC 中,AB=200 m ,BC =55 m , AC=46.385147955520022⨯≈=-=192.30(m). TanA=.286.030.19255≈=AC BC 所以山的坡度为0.286.Ⅴ.课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“Rt △”中定义了tanA =的邻边的对边A A ∠∠.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在 现实生活中是一个具有实际意义的一个很重要的概念.Ⅵ.课后作业1.习题1.1第1、2题.2.观察学校及附近商场的楼梯,哪个更陡.Ⅶ.活动与探究(2003年江苏盐城)如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)[过程]要求DB 的长,需分别在Rt △ABC 和Rt △ACD 中求出BC 和DC.根据题意,在Rt △ABC 中,∠ABC=45°,AB =12 m ,则可根据勾股定理求出BC ;在Rt △ADC 中,坡比为1:1.5,即tanD=1:1.5,由BC =AC ,可求出CD.[结果]根据题意,在Rt △ABC 中,∠ABC=45°,所以△ABC 为等腰直角三角形.设BC=AC =xm ,则x 2+x 2=122, x=62,所以BC =AC=62.在Rt △ADC 中,tanD=5.11=CD AC , 即5.1126=CD CD=92. 所以DB =CD-BC =92-62=32(m).板书设计§1.1.1 从梯子的倾斜程度谈起(一)1.当直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定.2.正切的定义:在Rt △ABC 中,锐角A 确定,那么∠A 的对边与邻边的比随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =的邻边的对边A A ∠∠. 注:(1)tanA 的值越大.梯子越陡.(2)坡度通常表示斜坡的倾斜程度,是坡角的正切.坡度越大,坡面越陡.3.例题讲解(略)4.随堂练习5.课时小结备课资料[例1](2003年浙江沼兴)若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.分析:根据题意(如图):在Rt △ABC中AC :BC =3:4,AB =10米.设AC =3x ,BC =4x ,根据勾股定理,得(3x)2+(4x)2=10,∴x =2.∴AC =3x=6(米).因此某人沿斜坡前进10米后,所在位置比原来的位置升高6米.解:应填“6 m ”.[例2](2003年内蒙古赤峰)菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.分析:如图,菱形ABCD ,BD =16,AC =12,∠ABO =θ, 在Rt △AOB 中,AO=21AC=6, BO=21BD=8. tan θ=4386==OB OA . 解:应填“43”.第二课时课 题§1.1.2 从梯子的倾斜程度谈起(二)教学目标(一)教学知识点1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.(二)能力训练要求1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成合作交流的意识以及独立思考的习惯.教学重点1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算.教学难点用函数的观点理解正弦、余弦和正切.教学方法探索——交流法.教具准备多媒体演示.教学过程Ⅰ.创设情境,提出问题,引入新课[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.现在我们提出两个问题:[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗?[问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系?Ⅱ.讲授新课1.正弦、余弦及三角函数的定义多媒体演示如下内容:想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答.[生]∵A 1C 1⊥BC 1,A 2C 2⊥BC 2,∴A 1C 1//A 2C 2.∴Rt △BA 1C 1∽Rt △BA 2C 2.211122BA C A BA C A 和 2112BA BC BA BC 和 (相似三角形对应边成比例). 由于A 2是梯子A 1B 上的任意—点,所以,如果改变A 2在梯子A 1B 上的位置,上述 结论仍成立.由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角 的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大 小无关.[生]如果改变梯子A 1B 的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比 值,邻边与斜边的比值随之改变.[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢?[生]函数关系.[师]很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即 cosA=斜边的邻边A ∠锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).[师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?[生]我们在前面已讨论过,当直角三角形中的锐角A 确定时.∠A 的对边与斜边的比值,∠A 的邻边与斜边的比值,∠A 的对边与邻边的比值也都唯一确定.在“∠A 的三角函数”概念中,∠A 是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A 变化时,三个比值也分别有唯一确定的值与之对应.2.梯子的倾斜程度与sinA 和cosA 的关系[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?[生]如图所示,AB =A 1B 1,在Rt △ABC 中,sinA=ABBC,在 Rt △A 1B 1C 中,sinA 1=111B A CB . ∵AB BC <111B A CB , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.[生]同样道理cosA=AB AC cosA 1=111B A CA , ∵AB=A 1B 1AB AC >111B A CA 即cosA>cosA 1, 所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切. 3.例题讲解 多媒体演示.[例1]如图,在Rt △ABC 中,∠B=90°,AC = 200.sinA =0.6,求BC 的长.分析:sinA 不是“sin ”与“A ”的乘积,sinA 表示∠A 所在直角三角形它的对边与斜边的比值,已知sinA =0.6,ACBC=0.6. 解:在Rt △ABC 中,∠B =90°,AC =200. sinA =0.6,即=ACBC0.6,BC =AC ×0.6=200×0.6=120. 思考:(1)cosA =?19(2)sinC =? cosC =?(3)由上面计算,你能猜想出什么结论? 解:根据勾股定理,得 AB =2222120200-=-BC AC =160.在Rt △ABC 中,CB =90°.cosA =54200160==AC AB =0.8, sinC=54200160==AC AB =0.8, cosC =53200120==AC BC =0.6, 由上面的计算可知 sinA =cosC =O.6, cosA =sinC =0.8.因为∠A+∠C =90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”. [例2]做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA ,cos (90°-A)=sinA.解:在Rt △ABC 中,∠C =90°,AC=10,cosA =1312,cosA =AB AC ,∴AB=665121310131210cos =⨯==A Ac ,sinB =1312cos ==A AB Ac 根据勾股定理,得BC 2=AB 2-AC 2=(665)2-102=2222625366065=- ∴BC =625.∴cosB =1356525665625===AB BC ,sinA =135=AB BC 可以得出同例1一样的结论. ∵∠A+∠B=90°,∴sinA :cosB=cos(90-A),即sinA =cos(90°-A); cosA =sinB =sin(90°-A),即cosA =sin(90°-A). Ⅲ.随堂练习 多媒体演示1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.分析:要求sinB ,cosB ,tanB ,先要构造∠B 所在的直角三角形.根据等腰三角形“三 线合一”的性质,可过A 作AD ⊥BC ,D 为垂足.解:过A 作AD ⊥BC ,D 为垂足. ∴AB=AC ,∴BD=DC=21BC=3. 在Rt △ABD 中,AB =5,BD=3, ∴AD =4.sinB =54=AB AD cosB =53=AB BD ,tanB=34=BD AD . 2.在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.解:sinA=AB BC ,∵sinA=54,BC =20,∴AB =5420sin =A BC ==25. 在Rt △BC 中,AC =222025-=15, ∴ABC 的周长=AB+AC+BC =25+15+20=60, △ABC 的面积:21AC ×BC=21×15×20=150. 3.(2003年陕西)(补充练习)在△ABC 中.∠C=90°,若tanA=21, 则sinA= . 解:如图,tanA=AC BC =21. 设BC=x ,AC=2x ,根据勾股定理,得AB=x x x 5)2(22=+.∴sinA=55515===x x AB BC . Ⅳ.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A 的三角函数概念中,∠A 是自变量,其取值范围是0°<∠A<90°;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题. Ⅴ.课后作业习题1、2第1、2、3、4题 Ⅵ.活动与探究已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)[过程]根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在Rt △ABC 中,CD ⊥AB.所以图中含有三个直角三角形.例如∠B 既在Rt △BDC 中,又在Rt △ABC 中,涉及线段BC 、BD 、AB ,由正弦、余弦的定义得cosB =AB BC ,cosB= BCBD. [结果]在Rt △ABC 中,cosB =ABBC又∵CD ⊥AB.∴在Rt △CDB 中,cosB =BCBD∴AB BC =BCBD BC 2=AB ·BD. 板书设计§1.1.2 从梯子倾斜程度谈起(二)1.正弦、余弦的定义在Kt △ABC 中,如果锐角A 确定.sinA =斜边的对边A ∠cosA =斜边的对边A ∠2.梯子的倾斜程度与sinA 和cosA 有关吗? sinA 的值越大,梯子越陡 cosA 的值越小,梯子越陡3.例题讲解4.随堂练习§1.2 30°、45°、60°角的三角函数值课时安排1课时从容说课本节在前两节介绍了正切、正弦、余弦定义的基础上,经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义,并能够进行含有30°、45°、60°角的三角函数值的计算.因此本节的重点是利用三角函数的定义求30°、45°、60°这些特殊角的特殊三角函数值,并能够进行含有30°、45°、60°角的三角函数值的计算.难点是利用已有的数学知识推导出30°、45°、60°这些特殊角的三角函数值.三角尺是学生非常熟悉的学习用具,教学中,教师应大胆地鼓励学生用所学的数学知识如“直角三角形中,30°角所对的边等于斜边的一半”的特性,经历探索30°、45°、60°角的三角函数值的过程,发展学生的推理能力和计算能力.第三课时课题§1.2 30°,45°,60°角的三角函数值教学目标(一)教学知识点1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(二)思维训练要求1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.2.培养学生把实际问题转化为数学问题的能力.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教具重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.教学难点进一步体会三角函数的意义.教学方法自主探索法教学准备一副三角尺多媒体演示教学过程Ⅰ.创设问题情境,引入新课[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.(用多媒体演示上面的问题,并让学生交流各自的想法)[生]我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可.[生]在Rt △ACD 中,∠CAD =30°,AD =BE ,BE 是已知的,设BE=a 米,则AD =a 米,如何求CD 呢?[生]含30°角的直角三角形有一个非常重要的性质:30°的角所对的边等于斜边的一半,即AC =2CD ,根据勾股定理,(2CD)2=CD 2+a 2. CD =33a. 则树的高度即可求出.[师]我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°=aCDAD CD =,则CD= atan30°,岂不简单.你能求出30°角的三个三角函数值吗? Ⅱ.讲授新课1.探索30°、45°、60°角的三角函数值.[师]观察一副三角尺,其中有几个锐角?它们分别等于多少度?[生]一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°. [师]sin30°等于多少呢?你是怎样得到的?与同伴交流. [生]sin30°=21. sin30°表示在直角三角 形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边等于2a.根据勾股定理,可知30°角的邻边为a ,所以sin30°=212=a a . [师]cos30°等于多少?tan30°呢? [生]cos30°=2323=a a .tan30°=33313==a a [师]我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?[生]求60°的三角函数值可以利用求30°角三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=2323=a a , cos60°=212=a a , tan60°=33=aa. [生]也可以利用上节课我们得出的结论:一锐角的正弦等于它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°=23cos60°=sin(90°- 60°)=sin30°=21. [师生共析]我们一同来 求45°角的三角函数值.含 45°角的直角三角形是等腰 直角三角形.(如图)设其中一 条直角边为a ,则另一条直角 边也为a ,斜边2a.由此可求得sin45°=22212==a a , cos45°=22212==a a , tan45°=1=aa[师]下面请同学们完成下表(用多媒体演示)这个表格中的30°、45°、60°角的三角函数值需熟记,另一方面,要能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?[生]30°、45°、60°角的正弦值分母都为2,分子从小到大分别为1,2,3,随着角度的增大,正弦值在逐渐增大.[师]再来看第二列函数值,有何特点呢?[生]第二列是30°,45°、60°角的余弦值,它们的分母也都是2,而分子从大到小分别为3,2,1,余弦值随角度的增大而减小.[师]第三列呢?[生]第三列是30°、45°、60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan45°=1比较特殊.[师]很好,掌握了上述规律,记忆就方便多了.下面同桌之间可互相检查一下对30°、 45°、60°角的三角函数值的记忆情况.相信同学们一定做得很棒. 2.例题讲解(多媒体演示) [例1]计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°.分析:本题旨在帮助学生巩固特殊角的三角函数值,今后若无特别说明,用特殊角三角函数值进行计算时,一般不取近似值,另外sin 260°表示(sin60°)2,cos 260°表示(cos60°)2.解:(1)sin30°+cos45°=2212221+=+, (2)sin 260°+cos 260°-tan45° =(23)2+(21)2-1=43 +41-1 =0.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m) 分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力. 解:根据题意(如图)。