最新人教版初三数学概率初步单元测试题及答案
- 格式:doc
- 大小:139.77 KB
- 文档页数:6
人教版九年级数学《概率初步》单元测试题一、选择题(每题3分,共18分):1.已知事件A :小明刚到教室,上课铃就响了;事件B :掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是( )A.只有事件A 是随机事件B.只有事件B 是随机事件C.都是随机事件D.都是确定性事件2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个球是蓝球的概率为13,则随机摸出一个球是红球的概率是( )A.14B.13C.512D.123.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在下雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“0a a ³是实数,”是不可能事件4.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率是( )A.310B.110C.19D.185.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1、2、3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )A.13B.49C.12D.596.如图,ABC 是一块绿化带,将阴影部分修建为花圃.已知15,9,12,AB AC BC ===阴影部分是ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.6p C.8pD.5p二、填空题(每题3分,共18分):7.“任意画一个四边形,其内角和是360度”是 事件(填随机、必然或不可能).8.投掷一个骰子(六个面上分别标有数字1、2、3、4、5、6)一次,得到正面向上的数字为奇数的概率是 .9.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 . 10.在一个不透明的盒子中装有n 个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有球摇匀,然后随机摸出一个球后放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是 .11.020192,(1)---.把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是 .12.如图,随机地闭合开关12345S S S S S 、、、、中的三个,能够使21L 、L 两个小灯泡同时发光的概率是 .三、解答题(每题10分,共60分):13. 九(1)班从三名男生(含小明)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小明被选中参加比赛是必然事件? (2)当n 为何值时,男生小明被选中参加比赛是不可能事件? (3)当n 为何值时,男生小明被选中参加比赛是随机事件?14.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.15.某市今年中考的理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件m )的概率是多少?16.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A .(2)先从袋子中取出m 个红球,再放入个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.17.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A 1,A 2),(B 1,B 2)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.18.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢,请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.五、解答题(每题12分,共24分):19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.20.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.人教版九年级数学《概率初步》单元测试题(参考答案)一、选择题(每题3分,共18分):1.A2.A3.C4.B5.D6.B二、填空题(每题3分,共18分):7. 必然8.12 9.12 10. 10011. 1412. 15三、解答题(每题10分,共60分)13. (1)当n 为1时,男生小强参加是必然事件.(2)当n 为4时,男生小强参加是不可能事件.(3)当n 为2或3时,男生小强参加是随机事件.14. 1. 解:(1)解法一:画树状图如下:所有出现的等可能结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学)=212=16.(2)P(恰好选中乙同学)=13.15.解:(1)将100米、50米、引体向上、立定跳远分别用A ,B ,C ,D 表示,画树状图如解图:可得所有等可能选择的结果有四种,分别为:AC ,AD ,BC ,BD ;∴两人所选项目完全相同的概率为:P =416=14.16. 解:(1)(2)依题意,得6+m 10=45,解得m =2.17.(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋任取出一只,有A 1A 2,A 1B 2,B 1B 2,B 1A 2四种情况,恰好匹配的有A 1A 2,B 1B 2两种情况,∴P(恰好匹配)=24=12;(2)画树状图如下:所有可能的结果:A 1A 2,A 1B 1,A 1B 2;A 2A 1,A 2B 1,A 2B 2;B 1A 1,B 1A 2,B 1B 2;B 2A 1,B 2A 2,B 2B 1, 可见,从这四只拖鞋中随机地取出两只,共有12种等可能的情况,其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1,∴P(恰好匹配)=412=13.18.解:(1)∵在标号为1,2,3,4,5,6的六个小球中,标号数字为奇数的球有3个,∴摸到标号数字为奇数的小球的概率为:36=12;(2)画树状图如解图:如图,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲赢)=1836=12,P (乙赢)=1836=12,∴这个游戏对甲、乙两人是公平的.三、解答题(每题12分,共24分)19.(1)所有可能的两位数用列表法列举如下表:(2)由(1)知,所有可能的两位数共有16个,即16种等可能结果,其中算术平方根大于4且小于7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.20.(1)12;(2)解法一:(3)由树状图可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:(6分)比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.解法二:比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.。
人教版九年级数学上册《第二十五章概率初步》单元测试卷(带答案)一、选择题1.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180∘B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.射击运动员射击一次,命中靶心2.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A.14B.12C.34D.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是()A.12B.13C.49D.594.如图,电路连接完好,且各元件工作正常,随机闭合开关S1、S2、S3中的两个,能让两个小灯泡同时发光的概率是()A.12B.13C.14D.155.4件外观相同的产品中只有1件不合格,现从中一次抽取2件进行检测,抽到的两件产品中有一件产品合格而另一件产品不合格的概率是()A.38B.13C.23D.126.在一个不透明的箱子里装有m个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m的值为()A.8 B.12 C.16 D.207.有三张卡片,正面分别写有A、B、C三个字母,其它完全相同,反扣在桌面上混合均匀,从中在取两张,同时取到A、B的概率是()A.12B.13C.23D.298.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5二、填空题9.有4根细木棒,长度分别为1cm,2cm,3cm,4cm,从中任选3根,恰好能搭成一个三角形的概率是.10.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是.11.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是.12.在一次科学课上,小明同学设计了如下电路图,随机闭合两个开关,能使其中1个灯泡发亮的概率为.13.篮球运动是一项既能健身娱乐,又能促进社会化文明进程的良好竞技运动项目.某校篮球队进行篮球训练,某队员投篮的统计结果如下表.根据表中数据可知该队员一次投篮命中的概率的估计值是.(精确到0.01)三、解答题14.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.(用列表法或画树状图分别求出两同学获胜的概率)15.如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.16.学校开展学生会主席竞选活动,最后一轮是演讲环节,抽签方式如下:每位选手分别从标有“A”、“B”内容的签中随机抽取一个,就抽取的内容进行演讲.现有小明、小亮和小丽三名选手,求出下列事件发生的概率.(请用“画树状图”或“列举”等方法写出分析过程)(1)三个选手抽中同一演讲内容;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”.17.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2-5x+6=0的解时,则小明获胜;若m,n都不是方程x2-5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?18.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.参考答案1.A2.C3.D4.B5.D6.D7.B8.C9.1410.2511.1212.2313.0.7214.解:画树状图如下:由树状图可知,共有16种等可能的结果数,此时甲获胜的可能性有6种,乙获胜的可能性有10种故甲获胜的概率为616=38,乙获胜的概率为1016=58,而38<58所以游戏不公平.15.解:画树状图如下:由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果∴P(两个数字之和是偶数)=49.16.解:解:(1)根据题意画出树状图如图:由树状图知,共有8种等可能结果,其中三个选手抽中同一演讲内容的有2种结果∴三个选手抽中同一演讲内容的概率为=;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”的有3种结果∴三个选手有两人抽中内容“A”,一人抽中内容“B”的概率为.17.解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解∴m=2,n=3,或m=3,n=2由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有(2,3)(3,2)(2,2)(3,3)共四种m,n都不是方程x2﹣5x+6=0的解的结果有2个小明获胜的概率为41123=,小利获胜的概率为21126=∴小明获胜的概率大.18.解:解:(1)本次调查的学生总人数为8÷16%=50(人)所以x==8%;故答案为:50;8%;(2)500×=200(人)所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8 所以恰好抽到一名男生和一名女生的概率==.。
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
一、选择题1.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2022年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.在一只装有5个红球的袋中摸出1球,一定是红球2.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数3.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.12B.13C.23D.164.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.126.汉代数学家赵爽在注解(周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为()A.1 B.1213C.112D.1137.在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为()A.两次求助都用在第1题B.两次求助都用在第2题C.在第1第2题各用一次求助D.无论如何使用通关概率都相同8.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.169.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
人教版九年级数学上册《第二十五章概率初步》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,属于必然事件的是()A.任意画一个三角形,其内角和为360°B.打开电视机,正在播放里约奥运会的比赛项目C.400人中至少有两个人的生日在同一天D.经过交通信号灯的路口,遇到绿灯2.将5张分别画有等边三角形、平行四边形、矩形、五角星、圆的卡片任意摆放,将有图形一面朝下,从中任意翻开一张,翻到中心对称图形的概率是()A.B.C.D.3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.一套书共有上,中,下三册,将它们任意摆放到书架的同一层上,这三册书从左到右恰好成上,中,下顺序的概率为()A.B.C.D.6.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为()A.B.C.D.7.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.8.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是()A.10个B.15个C.20个D.25个二、填空题9.将两枚骰子同时抛出,得到的两个点中,一个能被另一个整除的概率为.10.两个人做游戏,每个人都从-2,0,2三个数中随机选一个写出来,两个人写的数字相等的概率是.11.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.12.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:.13.如图是由四个直角边长分别为2和4的全等的直角三角形拼成的“赵爽弦图”飞镖板,小明站在投镖线上向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则针扎在阴影部分的概率是.三、解答题14.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,5,这些卡片除数字不同外其余均相同.现从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片。
人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.【答案】D【解析】【分析】根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.【详解】根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D.【点睛】本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.【答案】D【解析】试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个【答案】B【解析】【分析】根据概率的意义依次判断后即可解答.【详解】①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B.【点睛】概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.【答案】B【解析】试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.【详解】画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次【答案】B【解析】【分析】因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.【详解】若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B.【点睛】本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定【答案】A【解析】【分析】列出图表,然后根据概率公式列式进行计算即可得解.【详解】列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A.【点睛】本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.【答案】C【解析】【分析】列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.【详解】列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C.【点睛】本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利【答案】C【解析】试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.【答案】C【解析】【分析】由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.【详解】∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.【答案】32【解析】【分析】已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.【详解】∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.【点睛】本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.【答案】54【解析】【分析】利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.【详解】∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.【点睛】本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.【答案】5.【解析】试题解析:事件A发生的概率为0.05,大量重复做这种试验,则事件A平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)【答案】可能.【解析】试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.【答案】【解析】【分析】从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.【详解】∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.【点睛】本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.【答案】2【解析】【分析】根据概率的意义考虑出取得最后1粒的方法即可得解.【详解】根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.【点睛】本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.【答案】【解析】【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.【点睛】本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.【答案】【解析】【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.【详解】画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.【答案】一【解析】【分析】根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.【详解】第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点睛】本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.【答案】【解析】【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【详解】∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?【答案】(数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.【解析】【分析】(1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.【详解】共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.【答案】所有可能出现的结果见表格;(甲获胜),(乙获胜).【解析】【分析】(1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.【详解】所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.【答案】参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.【解析】【分析】(1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.【详解】根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。
人教版九年级数学上册《第二十五章概率初步》单元检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某个路口,碰到红灯、黄灯和绿灯B.任意抛掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走,他出现在AB,AC与BC边上D.小红任意抛掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”2.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.3.有一箱子装有3张分别标示4,5,6的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,则组成的二位数是6的倍数的概率是()A.B.C.D.4.在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()A.B.C.D.5.如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条6.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=87.如图,等边三角形内接于大,小是等边三角形的内切圆,随意向大内部区域抛一个小球,则小球落在小内部(阴影)区域的概率为()A.B.C.D.8.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.袋中共有2个红球,2个黄球,4个紫球,从中任取一个是白球,这个事件是事件.10.小明第一次抛一枚质地均匀的硬币时,正面向上,他第二次再抛这枚硬币时,正面向上的概率是。
人教版数学九年级上学期《概率初步》单元测试【考试时间:90分钟分数:120分】一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 13.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 310.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.16.有些事情我们事先能肯定它一定不会发生叫________事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?23.不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有个,蓝球有个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.24.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.26.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得点为试开成功;方法二:可以用张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在之间产生一个随机数,若产生的是,则表示试开成功.你认为上述解法对吗?为什么?27.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.28. 端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.答案与解析一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A、掷一次骰子,向上的一面是6点是随机事件,故A错误;B、打开电视机,正在转播足球比赛是随机事件,故B错误;C、地球上,向上抛的篮球会下落是必然事件,故C错误;D、从只有红球的袋子中,摸出1个白球是不可能事件,故D正确;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 1【答案】B【解析】【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.【答案】C【解析】小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个【答案】A【解析】根据概率的定义,,解得n=10.考点:概率的计算点评:此题主要考查了求概率的问题,用到的知识点为:概率=所求情况与总情况数之比,得到所求的情况数是解决本题的关键.5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】列表得:1 2 31 1+1=2 2+1=3 3+1=42 1+2=3 2+2=4 3+2=53 1+3=4 2+3=5 3+3=6∴一共存在9种情况,数字之和等于4的有3种情况,∴随意从每组牌中各抽一张,数字之和等于4的概率是,故选:B.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.【答案】B【解析】【分析】可以认为分三次取球,第一次有10种可以选择,因而有10种情况,第二次剩余9个球,则第二次有9种情况可以选择,第三次有8种情况,因而可以得到三次取球得到的取法的种数,同理求得三次都是红球的取法,利用概率公式即可求解.【详解】任意取出3个球的情况有:10×9×8=720种;第一次取到红球的情况有7种,则取第二次,两次都是红球的情况有7×6种,第三次取球,三次都是红球的情况有7×6×5=210种.则这3个球都是红球的概率是.故选:B.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为【答案】C【解析】【分析】列举出所有情况,再把各选项事件的概率计算出来,加以比较即可.【详解】共有36种情况.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知:点数之和为11的概率为,而不是,所以选项C不正确,故选:C.【点睛】本题考查了可能性大小以及概率求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.【答案】B【解析】将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 3【答案】D【解析】试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖【答案】D【解析】【分析】根据必然事件,随机事件,概率的定义进行判断.【详解】A、在一定条件下必出现的现象叫必然事件,说法正确,故本选项错误;B、不可能事件发生的概率为0,说法正确,故本选项错误;C、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,说法正确,故本选项错误;D、某种彩票中是随机事件,买100张该种彩票不一定会中奖,说法错误,故本选项正确.故选:D.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.【答案】从中任意摸出一个球是红球【解析】【分析】根据随机事件的概率是大于0小于1来设计即可.【详解】一种不透明的袋子中装有2个红球和3个白球,从中任意摸出一个球是红球;故答案为:从中任意摸出一个球是红球.【点睛】此题考查了模拟实验,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.【答案】【解析】【分析】让剩余黑球的个数除以剩余球的总数即为所求的概率.【详解】袋中有2个红球,3个白球和5个黑球,共10球,则每次摸出一只小球不放回,在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是:.故答案为:.【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.【答案】(1). 随机(2). 0(3). 1【解析】【分析】天阴了就会下雨是________事件,其发生的可能性在________到________之间.【详解】天阴了就会下雨是随机0事件,其发生的可能性在0到1之间.故答案是:随机;0;1.【点睛】本题考查了随机事件的定义,掌握随机事件就是可能发生也可能不发生的事件.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)==.故答案为:.考点:列表法与树状图法;概率公式.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.【答案】.【解析】试题分析:根据概率的求法,求出总人数17人,再求出男生的人数与总人数的比值就是其发生的概率.故答案是.考点:概率.106144216.有些事情我们事先能肯定它一定不会发生叫________事件.【答案】不可能【解析】【分析】根据不可能事件的定义直接解答即可.【详解】有些事情我们事先能肯定它一定不会发生叫不可能事件,故答案为:不可能.【点睛】本题考查了不可能事件的定义:不可能事件是指在一定条件下,一定不发生的事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).【答案】后【解析】【分析】根据相应概率判断即可.【详解】明天下雨的概率为80%大于后天下雨的概率为30%,运动会应选在下雨概率小的日子.故答案为:后.【点睛】本题考查了概率,解题的关键是理解概率是反映事件的可能性大小的量.18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)【答案】④【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.根据题意可知:①买10万张彩票一定不中奖,错误;②买30万张彩票一定中奖,错误;③买30万张彩票一定不中奖,错误;④买30万张彩票可能会中奖,正确.故答案为④.【点睛】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.【答案】【解析】【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解分式方程即可求得答案.【详解】根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.【答案】2000【解析】【分析】带标记鱼的频率近似等于概率.利用概率求出鱼塘中鱼的总数即可.【详解】设池中有x条鱼,带标记的鱼的概率近似等于,解得x=2000,故鱼塘中约有2000条鱼.故答案为:2000【点睛】本题考查利用频率估算概率,得到带标记的鱼的概率是解题关键.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.【答案】此游戏对小明有利.【解析】【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【详解】如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,故此游戏对小明有利.【点睛】本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【答案】解:(1)画树状图得:∵共有12种等可能结果,甲得1分的情况有6种,∴P(甲得1分)。
人教版九年级数学上第25章概率初步单元测试题(有答案)一、选择题(共16 小题,每小题 3 分,共48 分)1.下列事件中,为必然事件的是()A.购买一张彩票B.打开电视,正在播放广告C.抛掷一枚普通的硬币,一定正面朝上D.一个袋中只装有个黑球,从中摸出一球是黑球2.某班级中男生和女生各若干,若随机抽取人,抽到男生的概率是,则抽到女生的概率是()A.不确定B.C.D.3.在毕业晚会上,有一项同桌默契游戏,规则是:甲、乙两个不透明的纸箱中都放有红、黄、白三个球(除颜色外完全相同),同桌两人分别从不同的箱中各摸出一球,若颜色相同,则能得到一份默契奖礼物.同桌的小亮和小洁参加这项活动,他们能获得默契奖礼物的概率是()A. B. C. D.4.一个不透明的口袋里装有分别标有汉字“陕”、“西”、“美”、“丽”的个小球,除汉字不同之外,小球没有任何区别,小航从中任取两球,则取出的两个球上的汉字恰能组成“陕西”或“美丽”的概率是()A. B. C. D.5.下列事件中,属于必然事件的是()A.明天枫亭镇会下雨B.打开电视机,正在播广告C.球员在罚球区上投篮一次就投中D.盒中装有个红球和个白球,从中摸出两球,其中至少有一个是红球6.下列事件中发生概率大于且小于的是()A.太阳从西方慢慢升起B.小树会慢慢长高C.水往低处流D.某大桥在分钟内通过了辆汽车7.如图,在的正方形网格中有个格点,已经取定点和,在余下的个点中任取一点,使为直角三角形的概率是()A. B. C. D.8.从个白球、个红球中任意摸一个,摸到红球的概率是()A. B. C. D.9.学校评选出名优秀学生,要选名代表参加全市优秀学生表彰会,已经确定了名代表,则剩余学生参加全市优秀学生表彰会的概率是()A. B. C. D.10.同时抛掷两枚元的硬币,菊花图案都朝上的概率是()A. B. C. D.11.河南新郑黄帝故里“同根同祖同源,和平和睦和谐”拜祖大典,志愿翻译小组有五名同学,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.12.桌子上放着颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿颗,至多可以拿颗,谁先拿到第颗谁就获胜,获胜者可以把剩下的颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料13.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.14.下列说法正确的是()A.打开电视机,正在播放新闻B.调查炮弹的发射距离远近情况适合普查C.给定一组数据,那么这组数据的中位数一定只有一个D.盒子里装有三个红球和三个黑球,搅匀后从中摸出两球,一定一红一黑15.小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗()A.公平B.小倩胜的可能大C.小宏胜的可能大D.以上答案都错16.如果身边没有质地均匀的硬币,下列方法可以模拟掷硬币实验的是()A.掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B.掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C.掷一枚质地均匀的骰子,奇数点朝上代表正面,偶数点朝上代表反面D.转动如图所示的转盘,指针指向“红”代表正面,指针指向“蓝”代表反面二、填空题(共6 小题,每小题 3 分,共18 分)17.对某名牌衬衫抽检的结果如下表:如果销售件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.18.在抽签中,抽中的概率为,则抽不中的概率为________.19.现在某实验室有,二项互相独立的实验,已知成功的概率是,成功的概率是,二项实验同时成功的概率是________.20.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是,摸出白球的概率是,那么摸出黑球的概率是________.21.如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果枚卵全部成功孵化,则只雏鸟都为雄鸟的概率是________.22.在不透明的袋子中装有个白球和个黄球,这些球除了颜色外其它都相同,现从袋子中随机摸出一个球,则它是黄球的概率是________.三、解答题(共5 小题,共54 分)23.(10分) 一只不透明的袋子里共有个球,其中个白球,个红球,它们除颜色外均相同.从袋子中随机摸出一个球是白球的概率是多少?从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.24.(11分) 有两个可以自由转动的转盘、,转盘被分成四个相同的扇形,分别标有数字、、、,转盘被分成三个相同的扇形,分别标有数字、、.小明自由转动转盘,小颖自由转动转盘,当两个转盘都停止后,记下各个转盘指针所指区域内对应的数字(指针指向分界线时重转)完成下列问题:计算所得两数之积为的倍数的概率,并用画树状图或列表法说明理��.小明和小颖用上述两个转盘做游戏,规则如下:若转出的两数之积为奇数,小明赢;若转出的两数之积为偶数,小颖赢,你认为这个游戏公平吗?若不公平,请你重新设计一个对游戏双方公平的游戏规则.25.(11分) 如图可以自由转动的转盘被等分,指针落在每个扇形内的机会均等.现随机转动转盘一次,停止后,指针指向数字的概率为________;小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.26.(11分) 某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共吨生活垃圾,数据统计如下表(单位:吨):27.(11分)在一个口袋中有个完全相同的小球,把它们分别标号为,,,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件为“两次取的小球的标号的和是的整数倍”,记事件为“两次取的小球的标号的和是或的整数倍”,请你判断等式是否成立,并说明理由.答案1.D2.C3.B4.A5.D6.D7.D8.A9.D10.C11.B12.B13.B14.C15.B16.C17.18.19.20.21.22.23.解:(1)(摸出一个球是白球),画树形图:共有中等可能的结果,(两次摸出的求都是白球).24.解:画树状图如下:共有种等可能的结果,其中两数之积为的倍数有种可能,所以所得两数之积为的倍数的概率;这个游戏不公平,理由如下:小明赢的概率,小颖赢的概率,则,所以这个游戏不公平.对游戏双方公平的游戏规则可为:若转出的两数之积为的倍数,小明赢;若转出的两数之积为的倍数,小颖赢.25.列表得:所有等可能的情况有种,其中两数之积为偶数的情况有种,之积为奇数的情况有种,∴(小明获胜),(小华获胜),∵,∴该游戏不公平.26.解:画树状图得:∵共有种情况,其中投放正确的有种情况,∴;∵,∴估计该小区“厨余垃圾”投放正确的概率约为.27.解:等式不成立,理由:列表得:共种等可能的结果,其中为的倍数的有种,为或的倍数的有种,故,,故不成立.人教版数学九年级上册《第二十五章概率初步》单元测试卷一、填空题1.一个布袋里装有2个红球和2个白球,它们除颜色外都相同,从中任意摸出2个球,摸到的两个球都是红球的概率为________.2.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.3.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为________。
人教版数学九年级上册第25章《概率初步》综合检测试题一、选择题1. 下列说法错误的是( )A .必然事件发生的概率是1B .通过大量重复试验,可以用频率估计概率C .概率很小的事件不可能发生D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中,正确的说法是 ( )A.①②③B.①②④C.①③④D.②③④3.从1~9这九个自然数中任取一个,是2的倍数的概率是( ) A.92 B.94 C.95 D.32 4从如图的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )A.41B.21C.43D.15.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全。
小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是( ) A.18 B.38 C.58 D.786.小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆,下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是( ) A.19 B.13 C.23 D.297.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A.6 B.3 C.2 D.18.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ) A.21 B.31 C.61 D.121 9.在盒子里放有三张分别写有整式a +1、a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A.13 B.23 C.16 D.3410.若自然数n 使得三个数的加法运算“n +(n +1)+(n +2)”产生进位现象,则称n 为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A.0.88B.0.89C.0.90D.0.91二、填空题11.玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有__________________种.12.方格中的概率是__________________.13.14.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是__________________.15.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为__________________.16.平行四边形中,AC 、BD 是两条对角线,现从以下四个关系式 ① AB =BC ;② AC =BD ;③AC ⊥BD ;④AB ⊥BC 中任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__________________.17.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次就拨对密码的概率小于20101, 则密码的位数至少需要__________________位. 18.如果鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果2枚鸟卵全部成功孵化,则2只雏鸟都为雄鸟的概率为__________________.19.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;如果和为偶数,则哥哥胜.该游戏对双方__________________(填“公平”或“不公平”)20.一个材质均匀的正方体的六个面上分别标有字母A 、B 、C A 面朝上的概率是__________________. 三、解答题21.一黑色口袋中有1只红球,2只白球,1只黄球,这些球除了颜色外都相同,每次摸一只,小明认为袋中共有三种颜色不同的球,所以认为摸到红球、白球或者黄球的可能性是相同的,你认为呢?22.在掷骰子的游戏中,有同学认为点数6很难投掷,所以得出结论:投掷出6的可能性要小.你认为这种说法正确吗?23.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6.如果用小刚抛掷正方体骰子朝上的数字x ,小强抛掷正方体骰子朝上的数字y 来确定点P (x ,y ),那么他们各抛掷一次所确定的点P 落在已知直线y =-2x +7图象上的概率是多少?24.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?25.已知关于x 的不等式ax +3>0(其中a ≠0).(1)当a =-2时,求此不等式的解,并在数轴上表示此不等式的解集;(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a ,求使该不等式没有..正整数解的概率. 26.张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?参考答案:一、1.C. 2.D.3.B. 4.A. 5.A. 6.A. 7.B. 8.C.9.B. 10.A.二、11.4. 12.31. 13.14. 14.14. 15.925. 16.12. 17.4. 18.14. 19.不公平. 20.31.三、21.口袋中有1只红球,2只白球,1只黄球,,这些球除了颜色外都相同,所以摸出每一只球的可能性是相同的,把白球编号白1白2,那么从袋中摸一球共有四种可能:红球、白球1、白球2、黄球.22.这种说法不对,每一面出现的可能性是相等的,与点数无关,所以共6种等可能的结果出现:1、2、3、4、5、6.23.由题意可得1≤-2x +7≤6,即276,271.x x -+≤⎧⎨-+≥⎩解得12≤x ≤6,因为1≤x ≤6,且x 为正整数,所以x =1,2,3.要使点P 落在直线y =-2x +7图象上,则对应的y =5,3,1.所以满足条件的点P 有(1,5),(2,3),(3,1).又因为抛掷骰子所得P 点的总个数为36,所以点P 落在直线y =-2x +7图象上的概率P =336=112. 24.列表如下:由列表可知:小刚得1分的概率为29,小明得1分的概率为79,所以这个游戏不公平,对小明有利.修改规则的答案不唯一:如“若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分;若两个转盘转出的颜色相同,则小明得1分;否则两人均不给分”.25.(1)当a =-2时,原不等式转化为-2x +3>0,解得x <32.解集在数轴上表示如图.(2)用列举法:取a =-1,不等式ax +3>0的解为x <3,不等式有正整数解;取a =-2,不等式ax +3>0的解为x <23,不等式有正整数解;取a =-3,不等式ax +3>0的解为x <1,不等多没有正整数解;取a =-4,不等式ax +3>0的解为x <43,不等式没有正整数解;…所以整数a 取-3至-10中任意一个整数时,不等式没有正整数解.所以P (不等式没有正整数解)=108=54. 26.(1)因为一个圆被平分成6等分,其中3个等分是白色,3个等分是阴影,所以P (阴影)=P (阴影)=36=12,所以张红的设计方案是公平的.(2)列表如下:由此和共有9种情况,其中和是奇数的有4种,偶数的是有5种,所以P (奇数)=49,P (偶数)=59,而5>4,所以王伟的设计方案不公平.3 0。
人教版九年级数学上册第25章概率初步单元测试题(含答案)一.选择题(共10小题)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球3.必然事件的概率是()A.﹣1 B.0C.0.5 D.14.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.(4题图)(10题图)5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.6.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断7.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4 B.6C.8D.128.一只不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.如果想使摸到这三种颜色的球的概率相等,下列做法正确的是()A.向袋子里分别投放1个白球,1个黄球,1个红球B.向袋子里分别投放3个白球,2个黄球,1个红球C.向袋子里分别投放2个白球,1个黄球D.向袋子里投放2个白球9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.10.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()A.B.C.D.二.填空题(共10小题)11.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为事件(填“必然”或“不可能”或“随机”).12.“打开电视机,它正在播广告”这个事件是事件(填“确定”或“随机”).13.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.15.甲乙两人用2两张红心和1两张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.16.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是的.(填“公平”或“不公平”)17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.19.设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有个黄球.20.同时掷二枚普通的骰子,数字和为1的概率为,数字和为7的概率为,数字和为2的概率为.三.解答题(共5小题)21.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.24.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.25.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 2510.23 0.21 0.30 0.26 0.253摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.人教版九年级数学上册第25章概率初步单元测试题参考答案一.选择题(共10小题)1.D 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.A二.填空题(共10小题)11.随机 12.随机13.14.15.不公平16.公平17.1418.12 19.1 20.0三.解答题(共5小题)21.解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.22.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.23.解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.24.解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平.25.解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.(3)用B代表一个黑球,W1、W2、W3 代表白球,将摸球情况列表如下:总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.。
人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、单选题1.随机闭合开关123S S S 、、中的两个,能让灯泡发光的概率是( )A .34B .23C .12D .132.如图,随机闭合开关1S ,2S ,3S 中的两个,则能让两盏灯泡同时发光的概率为( )A .23B .12C .13D .163.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是( )A .34 B .14 C .12 D .564.在一个不透明的袋子中有4个标号分别为1,2,3,4的完全相同的小球,摸出一个球后不放回,再摸出一个球,两次摸到的球标号都是偶数的概率是()A.16B.14C.13D.125.抛掷三枚硬币,则出现一枚正面向上、两枚正面向下的概率是()A.12B.14C.38D.586.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是()A.B.14C.116D.7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①②B.②③C.①③D.①②③8.正方形ABCD内,有一个内切圆⊙O.电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数a个,⊙O内的点数b个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是()A.π≈abB.π≈4baC.π≈baD.π≈4ab9.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数()A.7 B.6 C.5 D.410.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球. A.30 B.15 C.20 D.1211.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.1512.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是()A.12B.13C.14D.16二、填空题13.班里有18名男生,15名女生,从中任意抽取a人打扫卫生,若女生被抽到是必然事件,则a的取值范围是_____.14.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是_____.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC和BD的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m2.16.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n的值大约是_______.三、解答题17.在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机摸出一个乒乓球,记下数字后放回盒子,摇匀后再随机摸出一个乒乓球,记下数字.()1请用树形图或列表法求两次摸出乒乓球上的数字相同的概率;()2若再向盒子里放入n个写有数字1的乒乓球,使得从盒子里随机摸出一个乒乓球,摸到写有数字1的乒乓球的概率为34,求n的值.18.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.()1请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;()2小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.19.一透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)如果一次摸两个球,用树状图或列表法求出摸到的两个球标有的数字的积为奇数的概率;(3)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.21.游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.22.两个自由转动的转盘如图所示,一个分为3等份,分别标有数字1,2,3,另一个分为4等份,分别标有数字4, 5,6,7.转盘上有固定指针,同时转动两个转盘,当转盘停止转动后,指针指向的数字即为转出的数字.甲、乙两人制定游戏规则如下:一人先猜数,然后另一人再转动转盘,若猜出的数字与转出的两个数字之和相等,则猜数的人获胜,否则转动转盘的人获胜.猜数者可从下面A,B两种方案中选一种:方案A:猜“奇数”或猜“偶数”其中的一种;方案B:猜“是3的整数倍”或猜“不是3的整数倍”其中的一种.()1如果你是猜数的游戏者,为了尽可能获胜,你将选择哪种方案,猜该种方案中的哪一种情况?请说明理由;()2为了保证参与游戏双方的公平性,你应选择哪种猜数的方案?为什么?23.为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.24.小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.25.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在6≤m<7内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).26.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请直接写出a,b的值;(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验2 000次,那么“兵”字面朝上的次数大约是多少?参考答案一、单选题1.随机闭合开关中的两个,能让灯泡发光的概率是( )A .B .C .D . 【答案】B【解析】【分析】分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.【详解】根据题意列出所有可能的情况,如下:共有6种情况,必须闭合开关灯炮才发光,即能让灯泡发光的概率是. 故选B. 【点评】此题考查列表法与树状图法,解题关键在于列出所有结果的表格.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为( ) 123S S S 、、342312133S 42=631S 2S 3SA .B .C .D . 【答案】C【解析】【分析】画出树状图,找出所有等可能的结果,计算即可.【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故选C. 【点评】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.3.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“”“”“”“”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是( )23121316()21=63P 两盏灯泡同时发光1234A .B .C .D . 【答案】A 【解析】【分析】举出所有情况,求出两指针所指的数字的积为奇数的情况占总情况的比值即可.【详解】解:如表所示:所有出现的情况如下,共有16种情况,积为奇数的有4种情况,所以在该游戏中乙获胜的概率是:. 故选A.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.4.在一个不透明的袋子中有个标号分别为,,,的完全相同的小球,摸出一个球后不放回,再摸出一个球,两次摸到的球标号都是偶数的概率是( )A .B .C .D . 【答案】A 3 41 41 256123164412341 61 41 31 2【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到的球标号都是偶数的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,两次摸到的球标号都是偶数的有2种情况,∴两次摸到的球标号都是偶数的概率是:. 故选A.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.5.抛掷三枚硬币,则出现一枚正面向上、两枚正面向下的概率是( )A .B .C .D . 【答案】C【解析】【分析】先求得将一枚硬币向上连续抛掷三次共有的情况;再根据其中出现一枚正面向上、两枚正面向下的情况数,计算即可.【详解】解:画树状图得: 21126 1 21 43 85 8将一枚硬币向上连续抛掷三次,共有8种情况,其中出现一枚正面向上、两枚正面向下有3种,所以其概率=. 故选C.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.6.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是( )A . B. C . D .【答案】D【解析】连掷两次骰子出现的点数情况,共36种:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).3814116而点数都是4的只有(4,4)一种,所以得到的点数都是4的概率是,故选D. 7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①②B .②③C .①③D .①②③【答案】A 【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【详解】当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以这次“钉尖向上”的概率是:308÷500=0.616,故①正确.随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选A.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答. 8.正方形ABCD 内,有一个内切圆⊙O .电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,136电脑自动统计正方形内的点数a 个,⊙O 内的点数b 个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是( )A .π≈B .π≈C .π≈D .π≈ 【答案】B【解析】【分析】根据圆的面积与正方形的面积的比等于落在相应位置的点数的比,列式求解即可.【详解】设圆的半径为r,则正方形的边长为2r,根据题意得:≈, 则π≈. 故选B .【点评】本题考查了利用频率估计概率的知识,解题的关键是能够了解落在圆内的概率约等于圆与正方形的面积的比,难度不大.9.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数( )A .7B .6C .5D .4【答案】A【解析】【分析】利用列表法找到点数之和为几的次数最多,选择那个数获胜的纪律就越大. a b 4b a b a 4a b224r r b a4b a【详解】根据题意列表如下:两人抛掷骰子各一次,共有36种等可能的结果,点数之和为7的有6种,最多,故选择7获胜的可能性大.故选A.【点评】本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.10.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球. A.30 B.15 C.20 D.12【答案】B【解析】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x 个,∴0.4(x +10)=10,解得x =15.故选B .11.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A .1B .C .D . 【答案】B 【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是, 故选B .【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.12.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y =x -2图象上的概率是()A .B .C .D . 【答案】D【解析】画树状图如下:共有6种等可能的结果,其中只有(1,-1)在一次函数y=x-2图象上,所以点在一次函数y=x-2图象上的概率=. 故选:D .点睛:本题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果,再找出某事件所占有的可能数,然后根据概率的概念求这个事件的概率.也考查了点在一次函数图形上,则点的横纵坐标满121415121213141616足一次函数的解析式.二、填空题13.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.【答案】18<a <33【解析】【分析】利用随机事件的定义进而得出答案.【详解】∵班里有18个男生15个女生,从中任意抽取a 人打扫卫生,女生被抽到的是必然事件,∴18<a <33.【点评】本题考查的知识点是随机事件的定义,解题关键是正确把握定义.14.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是_____.【答案】 【解析】【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【详解】总面积为20,∵阴影区域的边长为2,15=∴面积为2×2=4;故飞镖落在阴影区域的概率为,故答案为 【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率;关键是得到两个正方形的边长.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC 和BD 的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m 2.【答案】4.【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%附近,∴小石子落在不规则区域的概率为0.25,∵AC=8m,BD=4m,∴面积为×8×4=16m 2, 设不规则部分的面积为s,则=0.25, 41205 151216s解得:s=4,故答案为:4.【点评】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.16.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 的值大约是_______.【答案】10【解析】由题意可得,可得概率为:,解得,n=10,故估计n 大约有10个. 故答案为:10.三、解答题 17.在一个不透明的盒子里,装有四个分别写有数字、、、的乒乓球(形状、大小一样),先从盒子里随机摸出一个乒乓球,记下数字后放回盒子,摇匀后再随机摸出一个乒乓球,记下数字.请用树形图或列表法求两次摸出乒乓球上的数字相同的概率;若再向盒子里放入个写有数字的乒乓球,使得从盒子里随机摸出一个乒乓球,摸到写有数字的乒乓球的概率为,求的值. 【答案】(1);(2). 【解析】【分析】(1)首先根据题意画出树状图,然后根据表格求得所有等可能的情况与两次摸出乒乓球上的数字相同的情况,再利用概率公式即可求得答案;(2)首先根据概率公式可得:,解此方程组即可求得答案. 【详解】解:画树状图得:40.4n=1234()1()2n 1134n 148n =3344n n +=+()1∵共有种等可能的结果,两次摸出乒乓球上的数字相同的有种情况,∴两次摸出乒乓球上的数字相同的概率为:; 根据题意得:, 解得:. 经检验:是原分式方程的解.【点评】考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.如图是两个可以自由转动的转盘,甲转盘被等分成个扇形,乙转盘被等分成个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于的概率;小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于,小颖获胜;指针所指区域内的数字之和等于,为平局;指针所指区域内的数字之和大于,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1).(2)所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢. 【解析】【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出16441164=()21344n n +=+8n =8n =34()110()210101013。
人教版数学九年级上册第25章概率初步单元测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.从1−9这九个自然数中任取一个,是2的倍数的概率是()A.23B.59C.49D.292.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A.0.34B.0.17C.0.66D.0.763.一副扑克牌,去掉大小王,从中任抽一张,抽到的牌是6的概率是()A.12B.14C.110D.1134.袋中有同样大小的3个球,其中2个红色,1个白色.从袋中任意地同时摸出两个球,这两个球的颜色相同的概率是()A.16B.14C.13D.125.掷一次骰子(每面分别刻有1−6点),向上一面的点数是质数的概率等于()A.16B.12C.13D.236.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测7.一个不透明的袋中装有除颜色外均相同的2个红球、1个白球,从中随机摸出2个球,则下列说法正确的是()A.至少有一个是白球B.至少有一个是红球C.一定是一个白球、一个红球D.一定是两个红球8.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A.13B.14C.19D.239.在一个不透明的布袋中,红色、黑色的球共有10个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在20%附近,则口袋中红球的个数很可能是()A.2个B.5个C.8个D.10个10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个二、填空题(共 8 小题,每小题 3 分,共 24 分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放12.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为________.13.小明和小颖按如下规则做游戏:桌面上放有8粒豆子,每次取1粒或2粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为1,那么小明第一次应该取走________粒.14.“刘翔在110米跨栏比赛中一定不会输给其他任何一个选手”是________事件(填“必然”,“不可能”或“不确定”).15.从一个装有2个白球,3个红球,5个黄球的口袋中,随机摸一个不是白球的概率为________.16.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为________.17.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是________.18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是________.三、解答题(共 8 小题,共 66 分)19.(6分) 在一个不透明的袋中装有3个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.(1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(6分) 为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?21.(9分) 小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图12所示两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,小明去:数字之和为1时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求小明去的概率;(2)这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.22.(9分) 判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.(1)若两张卡片均为死,该臣民最终活着;(2)若两张卡片均为死,该臣民被杀死;(3)若两张卡片上分别写着一“生”一“死”,该臣民最终活着.23.(9分) 在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,−1,用树状图或列表的方法解决下列问题:(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率.24.(9分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.25.(9分)在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或+P(A)是否成立,并说明理由.3的整数倍”,请你判断等式P(B)=1326.(9分) 解答下列问题:(1)在一个不透明的口袋中有10个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了200次,其中有50次摸到了红球,那么估计口袋中有白球多少个?(2)请思考并作答:在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用a、b、c等字母表示).答案 1.C 2.C 3.D 4.C 5.B 6.A 7.B 8.A 9.A 10.C 11.0.6 12.310 13.214.不确定 15.45 16.14 17.25 18.1919.解:(1)画树状图如下:一共有6种等可能的结果,组成的两位数是奇数的有13,23,21,31共4种情况,两位数是奇数的概率为23;(2)∵组成的两位数是4的倍数的有2种情况, ∴P (小明得3分)=13,P (小华得3分)=23,∴该游戏不公平.可改游戏规则为:组成的两位数是4的倍数,小明得2分,否则小华得1分. 20.解:(1)根据题意得:P (甲获得电影票)=23;(2)列表如下:则P (乙获得电影票)=59;(3)∵23>59, ∴此游戏对甲更有利. 21.解:(1)画树状图得:∵共有12种等可能的结果,小明去的有3种情况; ∴小明去的概率为:312=14;(2)公平. 理由:∵数字之和为1的有3种情况, ∴P (小亮去)=312=14,∴P (小明去)=P (小亮去),∴这个游戏规则对小明、小亮双方公平.22.解:(1)不可能事件(2)必然事件(3)随机事件 23.解:(1)列表得:所以两标号互为相反数的概率=26=13;(2)列表如下:∴P (不经过第三象限)=29. 24.(1)14.25.解:等式P(B)=13+P(A)不成立, 理由:列表得:其中为2的倍数的有5种,为2或3的倍数的有7种, 故P(A)=59,P(B)=79, 故P(B)=13+P(A)不成立.26.解:(1)∵实验总共摸了200次,其中有50次摸到了红球, ∵口袋中有10个红球,假设有x 个白球, ∴1010+x =50200,解得:x =30,∴口袋中有白球30个;(2)可以拿出a 个标上记号,然后搅匀后再拿出b 个,带记号的有c 个,即可估计白球的个数. 设球的总个数为x ,b x=ca ,∴x =ab c.∴白球的个数为abc .。
人教新版九年级上学期《第25章概率初步》单元测试卷一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.32.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.483.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.18.艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.19.某校对初三500名学生体育进行坐位体前屈测试,根据男生及女生的成绩整理绘制成如下不完整的统计图,请根据统计图提供的信息,回答下列问题:(1)男生有人,女生有人;扇形统计图中a=,b=,并补全条形统计图;(2)求图①中“8分a%”所对应的扇形圆心角的度数;(3)若该校学生中随机抽取一名男生,则这名男生的坐位体前屈测试成绩为10分的概率是多少?20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,求这两个小球的号码之和大于4的概率.21.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).22.如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.在一个口袋中有3个完全相同的小球,把它们分别标上数字:﹣1,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字,求“两次都是正数”的概率.24.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.小明和小华从甲、乙两口袋中分别随机地摸出一个小球,若2个数字的乘积为偶数,就算小明赢,否则就算小华赢.请判断这个游戏是否公平,并用概率知识说明理由.人教新版九年级上学期《第25章概率初步》单元测试卷参考答案与试题解析一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.48【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【解答】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选:B.【点评】考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.3.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.【分析】直接利用概率公式计算.【解答】解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨【分析】根据概率的意义找到正确选项即可.【解答】解:本市降雨的概率是90%,是说明天下雨发生的可能性很大,但不一定就一定会发生.所以只有D合题意.故选:D.【点评】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.【分析】列举出所有情况,看直角三角形的情况数占总情况数的多少即可.【解答】解:4条线段的全部组合有:3,4,5和3,4,6和3,5,6和4,5,6.能构成直角三角形的是3,4,5一组,∴P(构成三角三角形)=,故答案为:.【点评】本题主要考查概率公式的应用,解题的关键是熟练掌握三角形三边间的关系、勾股定理逆定理及概率公式的运用.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.【分析】根据题意分析可得:3个数字两辆相加有3种情况,其中有1种情况可使牌面上两数和为0,故其概率是.【解答】解:一共有3种情况,这个两位数是0的有1种情况;∴P(两数和为0)=.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午九年级的课表中听一节课有16种等可能结果,其中听数学课的有3种可能,∴听数学课的可能性是,故答案为:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,根据总人数为25求出跳高项目的女生人数,进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.【点评】此题主要考查了概率公式,扇形统计图以及条形统计图,利用已知图形得出正确信息是解题关键.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?【分析】(1)全班共有50名学生,共有12名学生获奖,让获奖总人数除以学生总数即为能获得荣誉的机会;(2)全班共有50名学生,共有7名学生当选三好生、模范生,让当选三好生、模范生的总人数除以学生总数即为能当选三好生、模范生的机会;(3)利用(1)(2)的计算过程可得后四项为必须数据;(4)可以利用50个不同颜色的球来模拟实验.【解答】解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.【点评】概率等于所求情况数与总情况数之比;注意理解可以用一个班的获奖情况来估计整个学校的学生获奖情况;模拟实验需在等可能的情况下进行模拟,一般采用摸球法.11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?【分析】(1)由m=24,摸到黑球的概率不少于,根据题意可得≥,继而求得答案;(2)由若m=,摸到白种球概率的最大,可得==,则可求得x的值,继而求得答案.【解答】解:(1)∵口袋中有三个颜色的球共m个,其中白球x+3个,红球2x 个,m=24,∴黑球有:24﹣(x+3)﹣2x=21﹣3x,∵摸到黑球的概率不少于,∴≥,解得:x≤3,∴口袋中的红球的个数最多6个;(2)∵m=,白球x+3,∴摸到白种球概率为:==,∴当x=2时,摸到白种球概率的最大,∴m=10,白球5个,红球4个,∴袋中黑球有:10﹣5﹣4=1(个);∴若m=,当摸到白种球概率的最大时,袋中黑球有1个.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.【分析】(1)2次实验,每次实验都有3种情况,列举出所有情况即可;(2)看两人摸到的球的颜色相同的情况占所有情况的多少即可求得小明赢的概率,进而求得小英赢的概率,比较即可.【解答】解:(1)根据题意,画出树状图如下:或列表格如下:所以,游戏中所有可能出现的结果有以下9种:红1红1,红1红2,红1黄,红红1,2红2红2,红2黄,黄红1,黄红2,黄黄,这些结果出现的可能性是相等的;(2)这个游戏对双方不公平.理由如下:由(1)可知,一次游戏有9种等可能的结果,其中两人摸到的球颜色相同的结果有5种,两人摸到的球颜色不同的结果有4种.∴P(小英赢)=,P(小明赢)=,∵P(小英赢)≠P(小明赢),∴这个游戏对双方不公平.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由【分析】(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.【解答】解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.【分析】分别求得时间A和事件B的概率后即可确定P(B)=+P(A)是否成立.【解答】解:等式P(B)=+P(A)不成立,理由:列表得:共9种等可能的结果,其中为2的倍数的有5种,为2或3的倍数的有7种,故P(A)=,P(B)=,故P(B)=+P(A)不成立.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.【分析】首相根据题意画出树状图,然后由树状图求得所有等可能的结果与白色上衣配米色裤子的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵所有等可能结果共6种,其中正好是白色上衣配米色裤子的只有1种,∴所求概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,=.所以,P(积为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【分析】(1)利用概率的求解方法,借助于方程求解即可;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验.【解答】解:(1)设袋中黄球的个数为x个,=∴x=1∴袋中黄球的个数为1个;(2分)(2)方法一、列表如下:(6分)∴一共有12种情况,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:.(8分)方法二,画树状图如下:。
最新人教版数学九年级上册
概率初步单元测评附参考答案
(时间:100分钟,满分:110分)
班级:姓名:学号:得分:
一、选择题(每题4分,共48分)
1.下列事件是必然事件的是( )
A.明天天气是多云转晴
B.农历十五的晚上一定能看到圆月
C.打开电视机,正在播放广告
D.在同一月出生的32名学生,至少有两人的生日是同一天
2.下列说法中正确的是( )
A.可能性很小的事件在一次实验中一定不会发生
B.可能性很小的事件在一次实验中一定会发生
C.可能性很小的事件在一次实验中有可能发生
D.不可能事件在一次实验中也可能发生
3.下列模拟掷硬币的实验不正确的是( )
A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下
B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上
C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上
D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上
4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )
A. B. C. D.
5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )
A. B. C. D.
6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )
A. B. C. D.
7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )
A. B. C. D.
8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( )
A. B.
C. D.
9.四张完全相同的卡片上,分别画有圆、矩形、等边三
角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )
A. B. C. D.
10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )
A. B.
C. D.
11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )
A. B.
C. D.
12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是
一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)
14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.
15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.
16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.
17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.
18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.
三、解答题(每题7分,共28分)
19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.
20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.
21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.
请你:⑴列举(用列表或画树状图)所有可能得到的数字之积
⑵求出数字之积为奇数的概率.
22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:
⑴用树状图表示出所有可能的寻宝情况;
⑵求在寻宝游戏中胜出的概率.
答案与解析
一、选择题
1.D
2.C
3.D
4.A
5.D
6.D
7.D
8.A
9.B 10.B 11.D 12.B
二、填空题
13.确定 14.; 15. 16.6; 17. 18 18.
三、解答题
19.设口袋中有个白球,,口袋中大约有30个白球 20.
21.解:⑴用列表法来表示所有得到的数字之积
⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.
22.解:⑴树状图如下:
⑵由⑴中的树状图可知:P(胜出)。