2013届高考数学一轮复习精讲精练(新人教A版)第08章 直线和圆的方程
- 格式:doc
- 大小:354.00 KB
- 文档页数:12
最新高中数学精讲精练第八章直线和圆的方程【知识图解】【方法点拨】1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.3.熟练运用待定系数法求圆的方程.4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.第1课直线的方程【考点导读】理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是50,,66πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是10320-+=-=或x y x y3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】例1.已知两点A (-1,2)、B (m ,3)(1)求直线AB 的斜率k ; (2)求直线AB 的方程;(3)已知实数m 1⎡⎤∈-⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,11k m =+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1211y x m -=++. (3)①当m =-1时,2πα=;②当m ≠-1时,∵(1,1k m ⎫=∈-∞⋃+∞⎪⎪+⎣⎭∴2,,6223ππππα⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦故综合①、②得,直线AB 的倾斜角2,63ππα⎡⎤∈⎢⎥⎣⎦点拨:本题容易忽视对分母等于0和斜率不存在情况的讨论.例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程;(2)当|PA|·|PB|取最小值时,求直线l 的方程.分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k ,0),B(0,1-2k ),且2-1k>0, 1-2k >0,即k <0. △AOB 的面积S=12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k -,即k =12-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0.(2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k,0),B(0,1-2k ), ∴|PA|·4=,当且仅当k 2=1,即k =±1时, |PA|·|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|·|PB|=||||44sin cos sin 2PE PF θθθ⋅=≥ 当且仅当θ=4π时, |PA|·|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.分析 本题关键是如何使用好中点坐标,对问题进行适当转化.解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有4303(2)5(4)50a b a b ++=⎧⎨-----=⎩,解得25a b =-⎧⎨=⎩ 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),且l 的斜率k =nm ,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50m n m n -++++=⎧⎨-----=⎩,消去常数项得-3m =n ,所以k =-3,从而直线l 的方程为3x +y +1=0.例2图解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。
一.基础题组1.【2013年普通高等学校招生全国统一考试(四川卷)文科】抛物线28y x =的焦点到直线0x -=的距离是( )(A )(B )2(C (D )12.【2013年普通高等学校招生全国统一考试(广东卷)文科】垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=3.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是( )(A) 相切(B) 相交 (C) 相离 (D) 不确定4.【2013年普通高等学校招生全国统一考试(江西卷)文科】若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 .5.【2013年普通高等学校招生全国统一考试(山东卷)文科】过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.6.【2013年普通高等学校招生全国统一考试(浙江卷)文科】直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.二.能力题组7.【2013年全国高考统一考试天津数学(文)卷】 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( )(A) 12- (B) 1 (C) 2 (D) 128.【2013年高考新课标Ⅱ数学(文)卷】 设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( )(A ) y=x-1或y=-x+1 (B )X-1)或y=(x-1)(C )y=x-1)或y=x-1) (D )x-1)或y=(x-1) 【答案】C(A )1 (B )2三.拔高题组10.【2013年普通高等学校招生全国统一考试(四川卷)文科】在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是_______.11.【2013年普通高等学校招生全国统一考试(湖北卷)文科】已知圆O :225x y +=,直线l : cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .12.【2013年普通高等学校统一考试江苏卷】在平面直角坐标系xoy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为 .质、二次函数的最值. 较难题.13.【2013年普通高等学校统一考试江苏卷】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【2013年普通高等学校招生全国统一考试(四川卷)文科】已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于M 、N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.。
2.设正方形ABCD(A 、B 、C 、D 顺时针排列)的外接圆方程为x 2+y 2-6x+a=0(a<9),C 、D 点所在直线l 的斜率为31.(1)求外接圆圆心M 点的坐标及正方形对角线AC 、BD 的斜率;(2)如果在x 轴上方的A 、B 两点在一条以原点为顶点,以x 轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;(3)如果ABCD的外接圆半径为2 ,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.25342534253421≥-≤-≤-≥-∴-==∴m m m m k k 或即或 2.如图8-11,已知:射线OA 为y=kx(k>0,x>0),射线OB 为了y=-kx(x>0),动点P(x ,y)在∠AOx 的内部,PM ⊥OA 于M ,PN ⊥kOB 于N ,四边形ONPM 的面积恰为k .(1)当k 为定值时,动点P 的纵坐标y 是横坐标x 的函数,求这个函数y=f(x)的解析式;(2)根据A 的取值范围,确定y=f(x)的定义域.2.已知三种食物P、Q、R的维生素含量与成本如下表所示.食物P 食物Q 食物R维生素A(单位/kg)400 600 400维生素B(单位/kg)800 200 400成本(元/kg) 6 5 4现在将xkg的食物P和ykg的食物Q及zkg的食物R混合,制成100kg的混合物.如果这100kg的混合物中至少含维生素A44000单位与维生素B48000单位,那么x、y、z为何值时,混合物的成本最小?所以,k最小值=2×30+20+400=480(元),此时z= 100-30-20=50.答:取x=30,y=20,z=50时,混合物的成本最小,最小值是480元.难点4直线与圆1.已知点T是半圆O的直径AB上一点,AB=2、OT=t (0<t<1),以AB为直腰作直角梯形AA'B'B,使AA'垂直且等于AT,使BB'垂直且等于BT,A'B'交半圆于P、Q两点,建立如图所示的直角坐标系.(1)写出直线A'B'的方程;(2)计算出点P、Q的坐标;(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.难点5有关圆的综台问题1.设P是圆M:(x-5)2+(y-5)2=1上的动点,它关于A(9,0)的对称点为Q,把P绕原点依逆时针方向旋转90°到点S,求|SQ|的最值.易错点1 直线的方程1.已知点 A )(,,),0,3()0,0(),1,3(等于其中那么有相交于与的平分线设λλCE BC E BC AE BAC C B =<31.3.21.2.--D C B A 【错误解答】 ∵.3|,|3||,21,2||,1||=∴=====λCE BC AB AC 故由内角平分线定理得4.设直线ax+by+c=0的倾斜角为a,且sina+cosa=0,则a 、b 满足 ( )A.A+b=1B.a-b=1C.a+b=0D.a-b=0【错误解答】C..0.19tan ,1tan 0cos sin C b a bk a a a a 故选又=+∴-===-=⇒=+.21|13|11|2|2221=++-==++-=k b k d k b k d.,4,250,43.255255,2121D b b k b b k 故选条故符合题意的直线有或此时或或此时解得===-=-=-=【易错点点睛】当1k 21-=时此时k AB =-,21不符合题意。
第八章 直线与圆一.基础题组1.【2013年普通高等学校招生全国统一考试(四川卷)理科】抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )(A )12(B )2(C )1 (D二.能力题组2.【2013年普通高等学校招生全国统一考试(山东卷)理】过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为A.032=-+y xB.032=--y xC.034=--y xD.034=-+y x3.【2013年普通高等学校统一考试江苏数学试题】在平面直角坐标系xoy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点P,A之间的最短距离为,则满足条件的实数a的所有值为.三.拔高题组4.【2013年普通高等学校招生全国统一考试(江西卷)理】过点(错误!未找到引用源。
,0)引直线ι与曲线y=交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线ι的斜率等于()A.错误!未找到引用源。
B.-错误!未找到引用源。
C.错误!未找到引用源。
D-错误!未找到引用源。
【答案】B5.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知点A(-1,0);B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1) (B)(1-错误!未找到引用源。
,12) ( C)(1-错误!未找到引用源。
,1]3(D)[13,12)6.【2013年普通高等学校招生全国统一考试(湖南卷)】在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等于( )A .2B .1C .83D .43【答案】D ;7.【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.。
高中数学第七章-直线和圆的方程考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程.§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线.附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠) 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当 90≠θ,则有21121tan k k k k +-=θ. 5. 过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A CBy Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。
重点强化训练(四) 直线与圆A 组 基础达标 (建议用时:30分钟)一、选择题1.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0互相垂直”的( ) 【导学号:】A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0互相垂直得(a +1)(a -1)+3a ×(a +1)=0,解得a =14或a =-1.∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0互相垂直”的充分不必要条件.]2.(2017·浙江五校联考)已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )A .2B .-2C .1D .-1D [因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.]3.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab 的最大值为( )A.62B.32C.94D .2 3C [两圆外切,则|C 1C 2|=r 1+r 2=2+1=3. ∴(a +b )2+(-2+2)2=9,则(a +b )2=9. 由基本不等式,ab ≤⎝⎛⎭⎪⎫a +b 22=94.]4.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6 D.⎣⎢⎡⎦⎥⎤0,π3 D [因为l 与圆x 2+y 2=1有公共点,则l 的斜率存在,设斜率为k ,所以直线l 的方程为y +1=k (x +3),即kx -y +3k -1=0, 则圆心到l 的距离d =|3k -1|1+k2. 依题意,得|3k -1|1+k2≤1,解得0≤k ≤ 3. 故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.]5.(2017·嘉兴一中模拟)已知圆C :(x -1)2+(y -2)2=2,y 轴被圆C 截得的弦长与直线y =2x +b 被圆C 截得的弦长相等,则b =( )A .- 6B .± 6C .- 5D .± 5D [在(x -1)2+(y -2)2=2中,令x =0,得(y -2)2=1,解得y 1=3,y 2=1,则y 轴被圆C 截得的弦长为2,所以直线y =2x +b 被圆C 截得的弦长为2,所以圆心C (1,2)到直线y =2x +b 的距离为1,即|2×1-2+b |5=1,解得b =± 5.] 二、填空题6.经过两条直线3x +4y -5=0和3x -4y -13=0的交点,且斜率为2的直线方程是__________. 【导学号:】2x -y -7=0 [由⎩⎪⎨⎪⎧3x +4y -5=0,3x -4y -13=0,得⎩⎪⎨⎪⎧x =3,y =-1,即两直线的交点坐标为(3,-1),又所求直线的斜率k =2.则所求直线的方程为y +1=2(x -3),即2x -y -7=0.]7.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =__________.2 [因为点P (2,2)为圆(x -1)2+y 2=5上的点,由圆的切线性质可知,圆心(1,0)与点P (2,2)的连线与过点P (2,2)的切线垂直.因为圆心(1,0)与点P (2,2)的连线的斜率k =2,故过点P (2,2)的切线斜率为-12,所以直线ax -y +1=0的斜率为2,因此a =2.]8.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为__________.0或6 [由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9,所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC 可知△ABC 是直角边长为3的等腰直角三角形.故可得圆心C 到直线x -y +a =0的距离为322.由点到直线的距离得|-1-2+a |2=322, 解得a =0或a =6.] 三、解答题9.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.【导学号:】[解] 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.2分(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.6分(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,10分解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.15分10.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).2分 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1.6分 (2)设PQ 的中点为N (x ,y ).在Rt △PBQ 中,|PN |=|BN |.8分设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,12分 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.15分B 组 能力提升 (建议用时:15分钟)1.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [将直线l 的方程化为一般式得kx -y +1=0, 所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1, 所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分不必要条件.]2.(2017·浙江模拟训练卷(四))已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y -2≥0,2x -y -4≤0,y ≤2,点Q在圆O :x 2+y 2=1上,则|PQ |的最小值为________,若直线PQ 与圆O 相切,则切线段PQ 长的最大值为________. 【导学号:】2-1 23 [可行域是以A (0,2),B (2,0),C (3,2)为顶点的三角形区域(含边界),且可行域在圆外.(图略)则|PQ |的最小值是圆心到直线x +y -2=0的距离减去圆的半径,即为2-1. 因为直线PQ 与圆相切于点Q ,所以|PQ |=|OP |2-1,要使PQ 的长最大,则|OP |要取最大值.而|OA |=|OB |<|OC |=13,即|OP |max =|OC |,则|PQ |max =|OC |2-1=2 3.]3.已知圆C :x 2+y 2-6x -4y +4=0,直线l 1被圆所截得的弦的中点为P (5,3).(1)求直线l 1的方程;(2)若直线l 2:x +y +b =0与圆C 相交,求b 的取值范围;(3)是否存在常数b ,使得直线l 2被圆C 所截得的弦的中点落在直线l 1上?若存在,求出b 的值;若不存在,说明理由.[解] (1)圆C 的方程化为标准方程为(x -3)2+(y -2)2=9,于是圆心C (3,2),半径r =3.2分若设直线l 1的斜率为k ,则k =-1k PC =-112=-2. 所以直线l 1的方程为y -3=-2(x -5),即2x +y -13=0.4分(2)因为圆的半径r =3,所以要使直线l 2与圆C 相交,则有|3+2+b |2<3,6分所以|b +5|<32,于是b 的取值范围是-32-5<b <32-5.9分(3)设直线l 2被圆C 截得的弦的中点为M (x 0,y 0),则直线l 2与CM 垂直, 于是有y 0-2x 0-3=1, 整理可得x 0-y 0-1=0.又因为点M (x 0,y 0)在直线l 2上,所以x 0+y 0+b =0.所以由⎩⎪⎨⎪⎧x 0-y 0-1=0,x 0+y 0+b =0,解得⎩⎪⎨⎪⎧x 0=1-b2,y 0=-1+b2.12分代入直线l 1的方程得1-b -1+b2-13=0, 于是b =-253∈(-32-5,32-5),故存在满足条件的常数b .15分。
2013高中数学精讲精练第八章直线和圆的方程【知识图解】【方法点拨】1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.3.熟练运用待定系数法求圆的方程.4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.第1课 直线的方程【考点导读】理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是50,,66πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是10320-+=-=或x y x y3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】例1.已知两点A (-1,2)、B (m ,3)(1)求直线AB 的斜率k ; (2)求直线AB 的方程;(3)已知实数m 1⎡⎤∈-⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,11k m =+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1211y x m -=++. (3)①当m =-1时,2πα=;②当m ≠-1时,∵(1,1k m ⎫=∈-∞⋃+∞⎪⎪+⎣⎭∴2,,6223ππππα⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦故综合①、②得,直线AB 的倾斜角2,63ππα⎡⎤∈⎢⎥⎣⎦例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|²|PB|取最小值时,求直线l 的方程.分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k ,0),B(0,1-2k ),且2-1k>0, 1-2k >0,即k <0. △AOB 的面积S=12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k -,即k =12-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0.(2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k,0),B(0,1-2k ), ∴|PA|²4=,当且仅当k 2=1,即k =±1时, |PA|²|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|²|PB|=||||44sin cos sin 2PE PF θθθ⋅=≥ 当且仅当θ=4π时, |PA|²|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.分析 本题关键是如何使用好中点坐标,对问题进行适当转化.解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有4303(2)5(4)50a b a b ++=⎧⎨-----=⎩,解得25a b =-⎧⎨=⎩ 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),例2图且l 的斜率k =nm ,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50m n m n -++++=⎧⎨-----=⎩,消去常数项得-3m =n ,所以k =-3,从而直线l 的方程为3x +y +1=0.解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。
【反馈练习】1.已知下列四个命题①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;②经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程a x +by=1表示;④经过定点A(0,b)的直线都可以用方程y =kx+b 表示,其中正确的是①③④ 2.设直线l 的方程为()()232603x k y k k +--+=≠,当直线l 的斜率为-1时,k 值为__5__,当直线l 在x 轴、y 轴上截距之和等于0时,k 值为1或33.设直线 a x+b y+c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的关系式为0=-b a4.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是)2,6(ππ 5.若直线4x-3y-12=0被两坐标轴截得的线段长为c 1,则c 的值为51 6.若直线(m 2─1)x ─y ─2m +1=0不经过第一象限,则实数m 的取值范围是112⎛⎫ ⎪⎝⎭,7.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程分析:利用点斜式或直线与方程的概念进行解答解:∵P (2,3)在已知直线上,∴ 2a 1+3b 1+1=0,2a 2+3b 2+1=0 ∴2(a 1-a 2)+3(b 1-b 2)=0,即2121a a b b --=-32∴所求直线方程为y -b 1=-32(x -a 1)∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=08.一条直线经过点P (3,2),并且分别满足下列条件,求直线方程: (1)倾斜角是直线x -4y +3=0的倾斜角的2倍;(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点) 解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=41,tan θ=tan2α=158, 从而方程为8x -15y +6=0 (2)设直线方程为a x+b y =1,a >0,b >0, 代入P (3,2),得a3+b 2=1≥2ab 6,得ab ≥24,从而S △AOB =21ab ≥12, 此时a 3=b 2,∴k =-ab=-32点拨:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值第2课 两条直线的位置关系【考点导读】1.掌握两条直线平行与垂直的条件,能根据直线方程判定两条直线的位置关系,会求两条相交直线的交点,掌握点到直线的距离公式及两平行线间距离公式.2.高考数学卷重点考察两直线平行与垂直的判定和点到直线的距离公式的运用,有时考察单一知识点,有时也和函数三角不等式等结合,题目难度中等偏易. 【基础练习】1.已知过点A(-2,m )和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为-82.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为2x +y -1=03.若三条直线2380,x y ++=10x y --=和102x ky k +++=相交于一点,则k 的值等于12- .【范例导析】例1.已知两条直线1l :x +m 2y +6=0, 2l :(m -2)x +3my +2m =0,当m 为何值时, 1l 与2l (1) 相交;(2)平行;(3)重合? 分析:利用垂直、平行的充要条件解决.解:当m=0时,1l :x +6=0,2l :x =0,∴1l ∥2l , 当m=2时,1l :x +4y +6=0,2l :3y +2=0 ∴1l 与2l 相交;当m ≠0且m ≠2时,由mm m 3212=-得m =-1或m =3,由m m 2621=-得m =3 故(1)当m ≠-1且m ≠3且m ≠0时1l 与2l 相交。
(2)m =-1或m =0时1l ∥2l , (3)当m =3时1l 与2l 重合。
点拨:判断两条直线平行或垂直时,不要忘了考虑两条直线斜率是否存在.例2.已知直线l 经过点P (3,1),且被两平行直线1l :x +y +1=0和2l :x +y +6=0截得的线段之长为5。