九年级数学用函数观点看一元二次方程测试题
- 格式:doc
- 大小:195.00 KB
- 文档页数:8
26.2 用函数观点看一元二次方程一、选择题:1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧;它们的距离的平方等于2549;则m 的值为( )A 、-2B 、12C 、24D 、-2或242、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2;4);B (8;2);如图所示;则能使21y y >成立的x 的取值范围是( ) A 、2-<x B 、8>x C 、82<<-x D 、2-<x 或8>x第2题图第4题图 3、如图;抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E;且△ABE 是等腰直角三角形;AE =BE;则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S ABE =∆其中正确的有( )A 、4个B 、3个C 、2个D 、1个4、设函数1)1(22++-+-=m x m x y 的图像如图所示;它与x 轴交于A 、B 两点;线段OA 与OB 的比为1∶3;则m 的值为( )A 、31或2B 、31 C 、1 D 、2 二、填空题: 1、已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (α;0);B (β;0);且1722=+βα;则k = 。
2、抛物线m x m x y 2)12(2---=与x 轴的两交点坐标分别是A (1x ;0);B (2x ;0);且121=x x ;则m 的值为 。
3、若抛物线1212-++-=m mx x y 交x 轴于A 、B 两点;交y 轴于点C;且∠ACB =900;则m = 。
4、已知二次函数1)12(2--+=x k kx y 与x 轴交点的横坐标为1x 、2x )(21x x <;则对于下列结论:①当2-=x 时;1=y ;②当2x x >时;0>y ;③方程1)12(2--+x k kx =0有两个不相等的实数根1x 、2x ;④11-<x ;12->x ;⑤k k x x 21241+=-;其中所有正确的结论是 (只填写顺号)。
1. 若y=mx2+nx-p(其中m, n, p是常数)为二次函数, 则( )A.m, n, p均不为0 B。
m≠0, 且n≠0C. m≠0D. m≠0, 或p≠02.当ab>0时, y=ax2与y=ax+b的图象大致是( )3. 二次函数y=-x2+2x的图象可能是( )4. 已知二次函数的图象过(1,0), (2,0)和(0,2)三点, 则该函数的解析式是( )A. y=2x2+x+2B. y=x2+3x+2C. y=x2-2x+3D. y=x2-3x+25.二次函数y=ax2+bx+c的图象如图所示, 则下列结论正确的是( )A.a>0,b>0,c<0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b>0,c>06.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=- t2+20t+1.若此礼炮在升空到最高处时引爆, 则引爆需要的时间为( )A. 3 sB. 4 sC. 5 sD. 6 sA.如图, 是二次函数y=ax2+bx+c的图象, 点P(a+b, ac)是坐标平面内的点, 则点P在( )第一象限 B.第二象限C.第三象限D.第四象限8.已知函数y=ax+b的图象经过第一、二、三象限, 那么y=ax2+bx+1的图象大致为( )9.有一人患了流感, 经过两轮传染后共有100人患了流感, 那么每轮传染中平均一个人传染的人数为()A. 8人B. 9人C. 10人D. 11人10.二次函数y=x2+2x-5取最小值时, 自变量x的值是( )11.A.2 B.-2 C.1 D.-112.某制药厂生产的某种针剂,每支成本3元,由于连续两次降低成本,现在的成本是2.43元,则平均每次降低的百分数是 ____ ;已知抛物线y=x2+(m-1)x-的顶点的横坐标是2, 则m的值是________.13.已知x2-7xy+12y2=0, 那么x与y的关系是_________.14.已知, 则的值为_________.15.已知a2+3a=7,b2+3b=7,且a≠b,则a+b=_______.16.一个两位数, 个位数字比十位数字大3, 个位数字的平方刚好等于这个两位数, 则这个两位数为 _______.17.若一个三角形的三边长均满足方程 ,则此三角形的周长为____.18.若函数y=-x2+4x+k 的最大值等于3, 则k 的值等于_____。
3.3 从函数观点看一元二次方程和一元二次不等式【知识点梳理】知识点一:一元二次不等式的概念一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或20(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.知识点二:二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.知识点三:一元二次不等式的解集的概念使一元二次不等式成立的所有未知数的值组成的集合叫做这个一元二次不等式的解集. 知识点四:二次函数与一元二次方程、不等式的解的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设24b ac ∆=-,它的解按照0∆>,0∆=,0∆<可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集. 24b ac ∆=-0∆> 0∆= 0∆<二次函数 2y ax bx c=++(0a >)的图象20(0)ax bx c a ++=>的根有两相异实根 1212,()x x x x <有两相等实根122bx x a ==-无实根20(0)ax bx c a ++>>的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20(0)ax bx c a ++<>的解集{}12x xx x <<∅ ∅(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.知识点五:利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题中的未知数;(2)由题中给出的不等关系,列出关于未知数的不等式(组); (3)求解所列出的不等式(组); (4)结合题目的实际意义确定答案. 知识点六:一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即20(0)ax bx c a ++>≠恒成立00a >⎧⇔⎨∆<⎩恒成立20(0)ax bx c a ++<≠00.a <⎧⇔⎨∆<⎩(2)分离参数,将恒成立问题转化为求最值问题. 知识点七:简单的分式不等式的解法 系数化为正,大于取“两端”,小于取“中间”【题型归纳目录】题型一:解不含参数的一元二次不等式 题型二:一元二次不等式与根与系数关系的交汇 题型三:含有参数的一元二次不等式的解法 题型四:一次分式不等式的解法题型五:实际问题中的一元二次不等式问题 题型六:不等式的恒成立问题 【典型例题】题型一:解不含参数的一元二次不等式例1.(2022·全国·高一课时练习)不等式()273x x +≥-的解集为( )A .(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .13,2⎡⎤--⎢⎥⎣⎦C .(]1,2,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭D .12,3⎡⎤--⎢⎥⎣⎦【方法技巧与总结】解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.例2.(多选题)(2022·湖南·株洲二中高一开学考试)与不等式220x x -+>的解集相同的不等式有( ) A .220x x --<+ B .22320x x -+> C .230x x -+≥D .220x x +->例3.(2022·全国·高一课时练习)解下列不等式: (1)262318x x x -≤-<; (2)1232x x +≥-; (3)2320x x -+>.题型二:一元二次不等式与根与系数关系的交汇例4.(2022·全国·高一专题练习)若不等式220ax bx +-<的解集为{}|21x x -<<,则a b +=( ) A .2-B .0C .1D .2【方法技巧与总结】 三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:例5.(2022·全国·高一课时练习)若关于x 的不等式2260ax x a -+>的解集为{|1}x m x <<,则=a ______,m =______.例6.(2022·江苏·高一专题练习)若不等式20ax bx c ++>的解集为{}12x x -<<,则不等式()21(1)2a x b x c ax ++-+>的解集是( )A .{}03x x <<B .{0x x <或}3x >C .{}13x x <<D .{}13x x -<<例7.(2022·浙江·磐安县第二中学高一开学考试)已知不等式20ax bx c ++>的解集为()2,3,则20cx bx a ++>的解集为( ) A .11,32⎛⎫ ⎪⎝⎭B .11,,32⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,23⎛⎫-- ⎪⎝⎭D .11,,23∞∞⎛⎫⎛⎫--⋃-+ ⎪ ⎪⎝⎭⎝⎭例8.(2022·全国·高一专题练习)设集合{}|1A x x =≥,{}2|0B x x mx =-≤,若{}|14A B x x ⋂=≤≤,则m 的值为_________.例9.(2022·江苏·高一专题练习)已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________.例10.(2022·全国·高一单元测试)已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.题型三:含有参数的一元二次不等式的解法例11.(2022·全国·高一课时练习)不等式()()222240a x a x -+--≥的解集为∅,则实数a的取值范围是( ) A .{2|a a <-或2}a ≥ B .{}22a a -<< C .{}22a a -<≤D .{}2a a <【方法技巧与总结】解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.例12.(2022·江苏·盐城市田家炳中学高一期中)已知不等式220ax bx -+>的解集为{}12x x x 或.(1)求实数a ,b 的值;(2)解关于x 的不等式()20x ac b x bx -++>(其中c 为实数).例13.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.例14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>.例15.(2022·全国·高一专题练习)解关于x 的不等式2110x a x a ⎛⎫-++< ⎪⎝⎭.例16.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.例17.(2022·全国·高一专题练习)若关于x 的不等式2220x m x m -++<()的解集中恰有4个正整数,求实数m 的取值范围.例18.(2022·陕西·长安一中高一期中)已知关于x 的不等式()()230a b x a b +-<+的解集为34x x ⎧⎫>-⎨⎬⎩⎭.(1)写出a 和b 满足的关系;(2)解关于x 的不等式()()()222120a b x a b x a ---->++.题型四:一次分式不等式的解法例19.(2022·全国·高一课时练习)不等式()()232101xx x x -++≤-的解集为( )A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【方法技巧与总结】分式不等式转化为整式不等式的基本类型有哪些? (1)()()00cx dax b cx d ax b+>⇔++>+ (2)()()00cx dax b cx d ax b+<⇔++<+ (3)()()00cx dax b cx d ax b+≥⇔++>+且0ax b +≠ (4)()()00cx dax b cx d ax b+≤⇔++≤+且0ax b +≠ 例20.(2022·湖南·株洲二中高一开学考试)已知不等式210ax bx ++>的解集为1123xx ⎧⎫-<<⎨⎬⎩⎭∣,求不等式30ax x b +≤-的解集.例21.(2022·陕西·长安一中高一期末)不等式22301x x x +-≥+的解集为__________. 例22.(2022·全国·高一课时练习)不等式301x x +>-的解集为______________.例23.(2022·宁夏·灵武市第一中学高一期末)不等式201xx->+的解集为___________. 例24.(2022·全国·高一课时练习)不等式21131x x ->+的解集是____________. 例25.(2022·全国·高一课时练习)关于x 的不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >,(1)求关于x 的不等式220x bx a +-<的解集 (2)求关于x 的不等式11x ax b->-的解集.题型五:实际问题中的一元二次不等式问题例26.(2022·贵州黔东南·高一期末)黔东南某地有一座水库,设计最大容量为128000m 3.根据预测,汛期时水库的进水量n S (单位:m 3)与天数()*n n N ∈的关系是5000()(10)n S n n t n =+≤,水库原有水量为80000m 3,若水闸开闸泄水,则每天可泄水4000m 3;水库水量差最大容量23000m 3时系统就会自动报警提醒,水库水量超过最大容量时,堤坝就会发生危险;如果汛期来临水库不泄洪,1天后就会出现系统自动报警. (1)求t 的值;(2)当汛期来临第一天,水库就开始泄洪,估计汛期将持续10天,问:此期间堤坝会发生危险吗?请说明理由.【方法技巧与总结】利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论. 例27.(2022·全国·高一课时练习)某旅店有200张床位.若每张床位一晚上的租金为50元,则可全部租出;若将出租收费标准每晚提高10x 元(x 为正整数),则租出的床位会相应减少10x 张.若要使该旅店某晚的收入超过12600元,则每张床位的出租价格可定在什么范围内?例28.(2022·湖南·高一课时练习)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.刹车距离是分析交通事故的一个重要指标.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离()m s 与车速()km/h x 分别有如下关系式:210.10.01s v v =+,220.050.005s v v =+.问:甲、乙两辆汽车是否有超速现象?例29.(2022·湖北十堰·高一期中)某学校欲在广场旁的一块矩形空地上进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均种满宽度相同的鲜花.已知两块绿草坪的面积均为200平方米.(1)若矩形草坪的长比宽至少多10米,求草坪宽的最大值; (2)若草坪四周及中间的宽度均为2米,求整个绿化面积的最小值.题型六:不等式的恒成立问题例30.(2022·全国·高一单元测试)对任意实数x ,不等式2230kx kx +-<恒成立,则实数k 的取值范围是( ) A .()0,24B .(]24,0-C .(]0,24D .[)24,∞+【方法技巧与总结】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数.例31.(2022·全国·高一课时练习)若0a >,且关于x 的不等式22334ax ax a -+-<在R 上有解,求实数a 的取值范围.例32.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________.例33.(2022·江苏·盐城市田家炳中学高一期中)已知命题p :x R ∃∈,210x ax -+<,若命题p 是假命题,则实数a 的取值范围为_________.例34.(2022·全国·高一专题练习)不等式 2(2)4(2)120a x a x -+--<的解集为R ,则实数a 的取值范围是( )A .{}|12a a -≤<B .{}|12a a -<≤C .{}|12a a -<<D .{}|12a a -≤≤例35.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭ C .6,7⎛⎫-∞ ⎪⎝⎭D .1515-+⎝⎭例36.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.例37.(2022·全国·高一课时练习)在x ∃∈R ①,2220x x a ++-=,②存在集合{24}A x x =<<,非空集合{}3B x a x a =<<,使得A B =∅这两个条件中任选一个,补充在下面问题中,并解答.问题:求解实数a ,使得命题{}:12p x x x ∀∈≤≤,20x a -≥,命题q :______都是真命题. 注:如果选择多个条件分别解答,按第一个解答计分.【同步练习】一、单选题 1.(2022·全国·高一课时练习)不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <-D .{}63x x -<<2.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥3.(2022·全国·高一课时练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9B .8C .6D .44.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( ) A .{}1a a >-B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-5.(2022·全国·高一课时练习)已知()()()2022y x m x n n m =--+<,且(),αβαβ<是方程0y =的两实数根,则α,β,m ,n 的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<<6.(2022·湖南·长沙一中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( )A .2275a -<< B .25a > C .27a <- D .2011a -<< 7.(2022·全国·高一单元测试)已知 0,0x y >>且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是( )A . 1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<< 8.(2022·全国·高一课时练习)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为( )A .1322a a ⎧⎫-<<⎨⎬⎩⎭ B .{}02a a << C .{}11a a -<< D .3122a a ⎧⎫-<<⎨⎬⎩⎭ 二、多选题9.(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥ 10.(2022·江苏·高一)已知关于x 的一元二次不等式()22120ax a x --->,其中0a <,则该不等式的解集可能是( )A .∅B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,2a ⎛⎫- ⎪⎝⎭ 11.(2022·福建省龙岩第一中学高一开学考试)已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤或}4x ≥,则下列结论中,正确结论的序号是( )A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭ D .0a b c ++> 12.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( )A .5-B .3-C .πD .5三、填空题13.(2022·全国·高一专题练习)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为__________.14.(2022·陕西·千阳县中学高一开学考试)不等式517x ≥--的解集为__________. 15.(2022·全国·高一专题练习)关于x 的不等式()210x a x a -++<的解集中恰有1个整数,则实数a 的取值范围是_________.16.(2022·全国·高一课时练习)知关于x 的不等式2240ax bx ++<的解集为4(,)m m ,其中0m <,则44b a b+的最小值为______. 四、解答题17.(2022·全国·高一专题练习)解下列不等式:(1)22530x x +->;(2)220x x +-≤;(3)4220x x --≥;(4)21x x >.18.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈.(1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值;(2)求关于x 的不等式2321ax x ax -+>-的解集.19.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数)(1)220x x a ++<(2)102ax x ->-.20.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++(a ,b ,R c ∈)只能同时满足下列三个条件中的两个:①0y <的解集为{}13x x -<<;②1a =-;③y 的最小值为4-.(1)请写出满足题意的两个条件的序号,并求a ,b ,c 的值;(2)求关于x 的不等式()()2223y m x m m ≥-+-∈R 的解集.21.(2022·四川省成都市第八中学校高一开学考试)已知ABC 的两边AB AC ,的长是关于x的一元二次方程2223320x k x k k -++++=()的两个实数根,第三边BC 长为5. (1)求AB AC AB AC +⋅,(用k 表示);(2)k 为何值时,ABC 是以BC 为斜边的直角三角形,并求此时三角形的周长.。
26.2 用函数的观点看一元二次方程◆基础扫描1.二次函数221y x x =-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .3 2.已知:二次函数24y x x a =-+,下列说法错误的是( )A .当x <1时,y 随x 的增大而减小;B .若图象与x 轴有交点,则4a ≤;C .当3a =时,不等式24x x a -+>0的解是1<x <3;D .若将图象向左平移1个单位,再向上平移3个单位后过点(1,-2),则3a =-. 3.二次函数2y ax bx c =++的部分对应值如下表:二次函数y ax bx c =++图象的对称轴为x = ,2x =对应的函数值y = 。
4.如图,抛物线的对称轴是1x =,与x 轴交于A 、B 两点,若B 点的坐标是0),则A 点的坐标是 . 5.已知抛物线241y x x =-+与x 轴交于A 、B 两点,则A 、B 两点间的距离为 。
◆能力拓展6.二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.7.如图二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于C 、D 两点,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D.(1)求D 点的坐标; (2)求一次函数的表达式;(3)根据图象写出使一次函数值大于二次函数值的x 的取值范围.◆创新学习8.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC .试判断:PB PA +与BC AC + 的大小关系,并说明理由.参考答案1.B 2.B 3.1x = 8y =- 4.(2.6.(1)11x =,23x =(2)13x << (3)2x > (4)2k <7.(1)D(-2,3) (2)1y x =-+ (3)2x <-或1x >8.(1)设抛物线的解析式为89252-⎪⎭⎫ ⎝⎛-=x a y∵抛物线经过)14,8(A ,∴89258142-⎪⎭⎫ ⎝⎛-a =,解得:21=a∴8925212-⎪⎭⎫ ⎝⎛-=x y (或225212+-=x x y )(2)令0=x 得2=y ,∴)2,0(B 令0=y 得0225212=+-x x ,解得11=x 、42=x ∴)0 , 1(C 、) 0, 4(D(3)结论:BC AC PB PA +≥+理由是:①当点C P 与点重合时,有BC AC PB PA +=+ ②当时异于点点C P ,∵直线AC 经过点)14,8(A 、)0,1(C , ∴直线AC 的解析式为22-=x y设直线AC 与y 轴相交于点E ,令0=x ,得2-=y ,∴)2,0(-E , 则)2,0()2,0(B E 与点-关于x 轴对称 ∴EC BC =,连结PE ,则PB PE =, ∴AE EC AC BC AC =+=+, ∵在APE ∆中,有AE PE PA >+ ∴BC AC AE PE PA PB PA +=>+=+ 综上所得BC AC BP AP +≥+.。
初三数学用图象法解一元二次方程试题1.如图,抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,则不等式ax2+bx <kx的解集为.【答案】0<x<3【解析】根据图形抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,即可得出关于x的不等式ax2+bx<kx的解集.解:∵抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,∴关于x的不等式ax2+bx<kx的解集是0<x<3.故答案为:0<x<3.2.如图,已知函数与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式ax2+bx>0的解为.【答案】x<﹣3或x>0【解析】所求不等式变形后,可以看做求二次函数的函数值大于反比例函数值时x的范围,由二次函数与反比例函数图象的交点,利用图象即可得到满足题意的x的范围,即为所求不等式的解集.解:∵反比例函数与二次函数图象交于点P,且P的纵坐标为1,∴将y=1代入反比例函数y=﹣得:x=﹣3,∴P的坐标为(﹣3,1),将所求的不等式变形得:ax2+bx>﹣,由图象可得:x<﹣3或x>0,则关于x的不等式ax2+bx>0的解为x<﹣3或x>0.故答案为:x<﹣3或x>03.已知:二次函数y=﹣x2+2x+3(1)求抛物线的对称轴和顶点的坐标;(2)画出函数图象;(3)根据图象:①写出函数值y为正数时,自变量x的取值范围;②写出当﹣2<x<2时,函数值y的取值范围.【答案】解:(1)y=﹣x2+2x+3=﹣(x2﹣2x+1﹣4)=﹣(x﹣1)2+4对称轴为直线x=1,顶点坐标为(1,4).(2)抛物线与x轴交与(﹣1,0)和(3,0),与y轴交与点(0,3)图象为:(3)①当y为正数时,﹣1<x<3②当﹣2<x<2时,﹣5<y<4;【解析】(1)配方后即可确定顶点坐标及对称轴;(2)确定顶点坐标及对称轴、与坐标轴的交点坐标即可确定抛物线的解析式;(3)根据图象利用数形结合的方法确定答案即可;4.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A.x>1B.x<﹣1C.0<x<1D.﹣1<x<0【答案】D【解析】根据图形双曲线y=与抛物线y=x2+1的交点A的横坐标是1,即可得出关于x的不等式+x2+1<0的解集.解:∵抛物线y=x2+1与双曲线y=的交点A的横坐标是1,∴x=1时,=x2+1,再结合图象当0<x<1时,>x2+1,∴﹣1<x<0时,||>x2+1,∴+x2+1<0,∴关于x的不等式+x2+1<0的解集是﹣1<x<0.故选D.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3B.x>3C.x<﹣1D.x>3或x<﹣1【答案】A【解析】根据已知图象可以得到图象与x轴的交点是(﹣1,0),(3,0),又y<0时,图象在x轴的下方,由此可以求出x的取值范围.解:∵依题意得图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3,∴x的取值范围﹣1<x<3.故选A.6.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么下列结论错误的是()A.当y<0时,x>0B.当﹣3<x<0时,y>0C.当x<时,y随x的增大而增大D.上述抛物线可由抛物线y=﹣x2平移得到【答案】A【解析】由图象可知,抛物线经过原点(0,0),二次函数y=ax2﹣3x+a2﹣1与y轴交点纵坐标为a2﹣1,所以a2﹣1=0,解得a的值.再图象开口向下,a<0确定a的值,进而得出二次函数的解析式,即可得出答案.解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.∴y=﹣x2﹣3x,∴二次函数与图象的交点为:(﹣3,0),(0,0),∴当y<0时,x<﹣3或x>0,故A选项错误;当﹣3<x<0时,y>0,故B选项正确;当x<时,y随x的增大而增大故C选项正确;上述抛物线可由抛物线y=﹣x2平移得到,故D选项正确;故选:A.7.如图,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(﹣1,5)、B(9,3),请你根据图象写出使y1≥y2成立的x的取值范围()A.﹣1≤x≤9B.﹣1≤x<9C.﹣1<x≤9D.x≤﹣1或x≥9【答案】A【解析】根据A、B的坐标,及两个函数的图象即可求出y1≥y2时,即直线下面部分,进而得出自变量x的取值范围.解:由两个函数的图象知:当y1≥y2时,﹣1≤x≤9.故选:A.8.如图,二次函数y1=ax2+bx+c与一次函数y2=kx+n的图象相交于A(0,4),B(4,1)两点,下列三个结论:①不等式y1>y2的解集是0<x<4②不等式y1<y2的解集是x<0或 x>4③方程ax2+bx+c=kx+n的解是x1=0,x2=4其中正确的个数是()A.0个B.1个C.2个D.3个【答案】D【解析】根据相交两函数的图象可进行判断.解:①通过图象可知,在点A和B之间y1的图象在y2的上面,也就是y1>y2,且解集是0<x<4,此选项正确;②通过图象可知,在点A的左边和在B的右边,y1的图象在y2的下面,也就是y1<y2,且解集是x<0或x>4,此选项正确;③两函数图象的交点就是y1=y2的解,且解是x1=0,x2=4,此选项正确.故选D.9.如图,已知函数与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式ax2+bx>0的解为()A.﹣3<x<0B.x<﹣3C.x>0D.x<﹣3或x>0【答案】D【解析】利用反比例函数的解析式求出点P的坐标,再根据图形写出抛物线在反比例函数图象上方的部分的x的取值范围即可.解:∵点P的纵坐标为1,∴﹣=1,∴x=﹣3,∴点P(﹣3,1),由图可知,ax2+bx+>0时,即ax2+bx>﹣时,x的取值范围是x<﹣3或x>0.故选D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是()A.abc<0B.a+c<b C.b>2a D.4a>2b﹣c【答案】C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及图象经过的点的情况进行推理,进而对所得结论进行判断.解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.。
九年级数学一元二次方程测试题(含答案)一、选择题(每题3分)1.用配方法解方程x-2x-5=时,原方程应变形为()B.(x-1)²=62.若关于x的一元二次方程kx-2x-1=有两个不相等的实数根,则k的取值范围是()A.k>-13.关于x的方程(a-6)x-8x+6=有实数根,则整数a的最大值是()D.94.方程x-9x+18=的两个根是等腰三角形的底和腰,则这个三角形的周长为()C.155.设a,b是方程x²+x-2009=的两个实数根,则a+2a+b的值为()B.20076.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x,则可列方程()B.60.05(1+x)=63%7.如图5,在△ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x²+2x-3=的根,则ABCD的周长为()C.2+228.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm²,设金色纸边的宽为xcm,那么CB+CE满足的方程是()B.x²+65x-350=0二、填空题:(每题3分)9.一元二次方程x²=16的解是±4.10.若关于x的一元二次方程x+(k+3)x+k=的一个根是-2,则另一个根是-1.2022年3月23日,第1页共5页1.(2009年包头)解:根据韦达定理,x1+x2=m,x1x2=2m-1,所以(x1-x2)²=(x1+x2)²-4x1x2=(m²-8m+4)-4(2m-1)=m²-8m+8.答案:m²-8m+8.2.(2009年甘肃白银)解:根据定义,43=4²-3²=7,所以7x=24,x=5.答案:5.3.(2009年包头)解:设两段铁丝长度分别为x和20-x,则两个正方形的边长分别为x/4和(20-x)/4,根据均值不等式,两个正方形面积之和的最小值为2(x/4)(20-x)/4=5(x-5)²,当x=10时取得最小值,即最小值为125.答案:125.4.(2009年兰州)解:根据韦达定理,x1+x2=-6,x1x2=3,所以bc=x1x2=3,x1·x2=3/a=3/1=3.答案:3.5.(2009年甘肃白银)解:根据定义,43=1,所以1x=24,x=25.答案:25.6.(2009年广东省)解:设2x-3=t,则原方程转化为t=0,新方程为2t=3,解得t=3/2,所以x=3/4.答案:3/4.7.解方程:x-3x-1=0,移项得x=1/3.答案:1/3.8.(2009年鄂州)解:根据韦达定理,k+2±√(k²-4k)≠0,所以k²-4k>0,解得k4.又因为当k=0或k=4时,方程的两根相等,所以k∈(0,4)的范围内,方程有两个不相等的实数根。
人教版九年级数学考试题测试题人教版初中数学二次函数与一元二次方程 附答案1.求下列二次函数的图象与x 轴的交点坐标,并作草图验证. (1)y=12x 2+x+1; (2)y=4x 2-8x+4; (3)y=-3x 2-6x-3; (4)y=-3x 2-x+42.一元二次方程x 2+7x+9=1的根与二次函数y=x 2+7x+9的图象有什么关系? 试把方程的根在图象上表示出来.3.利用二次函数的图象求下列一元二次方程的根. (1)4x 2-8x+1=0; (2)x 2-2x-5=0;(3)2x 2-6x+3=0; (3)x 2-x-1=0.4.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B ,与x 轴交于A, C 两点. 求△ABC 的周长和面积.5..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).6.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,B(6,5)A(0,2)14121086420246xCy1213x x =.(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.7.试用图象法判断方程x 2+2x=-2x的根的个数.答案:1.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点( 1,0),(43-,0),草图略.2.该方程的根是该函数的图象与直线y=1的交点的横坐标.3.(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.7,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .64.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3. 5.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5 (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+米) 即该男生把铅球推出约13.75米6.(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3.故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC=12AB·OC=12×2×3=3.7.只有一个实数根.附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
人教版九年级秋期一元二次方程和二次函数综合测试题(9月份月考备用)考试范围:一元二次方程和二次函数;考试时间:100分钟;总分:120分一.选择题(共10小题,满分30分,每小题3分)1.下列方程中是关于x 的一元二次方程的是( )A .()22545x x -=B .20ax bx c ++=C .2310y x +-=D .2221x x =+2.关于x 的一元二次方程20ax bx c ++=()0a ¹的两根为11x =,21x =-那么下列结论一定成立的是( )A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -£3.用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=4.将代数式x 2+6x +2化成(x +p )2+q 的形式为( )A .(x -3)2+11B .(x +3)2-7C .(x +3)2-11D .(x +2)2+45.关于x 的一元二次方程2310kx x +-=有实数根,则k 的取值范围是( )A .94k £-B .94k ³-C .94k £-且0k ¹D .94k ³-且0k ¹6.方程 (x ﹣5)(x ﹣6)=x ﹣5 的解是( )A .x=5B .x=5 或x=6C .x=7D .x=5或 x=77.已知3是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰ABC V 的两条边的边长,则ABC V 的周长为( )A .7B .10C .11D .10或118.我们知道方程2230x x +-=的解是1213x x ==-,,现给出另一个方程()()22322330x x +++-=,它的解是( )A .1213x x ,==B .1213x x ==-,C .1213x x =-=,D .1213x x =-=-,9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x 台其他电脑,由题意列方程应为( )A .1+2x =100B .x (1+x )=100C .(1+x )2=100D .1+x +x 2=10010.当﹣1<k <3时,则直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有( )A .1个B .2个C .3个D .4个二.填空题(共5小题,满分15分,每小题3分)11.把方程(21)(2)53x x x +-=-整理成一般形式是 .12.若关于x 的方程2(1)250k x kx k +-+-=有两个实数根,则k 的取值范围.13.已知2x =-是方程220x kx -+=的一个根,则实数k 的值为 .14.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是m x ,根据题意可列方程为 .15.下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是.三.解答题(共8小题,满分75分)16.用适当的方法解下列方程:(1)249211x x x ++=+;(2)()()313x x --=;(3)()()2225431y y -=-;(4)22410x x --=.17.已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)18.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?19.如图,抛物线()21y a x =+的顶点为A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求抛物线的解析式;(2)若点()3,C b -在该抛物线上,求b 的值;(3)若点()12,D y ,()23,E y 在此抛物线上,比较1y 与2y 大小.202+=有一位同学解答如下:这里,a b =c =,∴(224432b ac -=-=.∴2x ==.请你分析以上解答有无错误,如有错误,请作出正确解答.21.如图所示,在ABC V 中,90B Ð=°,6cm AB =,12cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动.如果P ,Q 分别从点A ,B 同时出发,几秒钟后PBQ V 的面积等于28cm ?22.如图,一次函数y kx b =+的图象与二次函数2y ax =的图象交于点()1A m ,和()24B -,,与y 轴交于点C .(1)求k b a ,,的值;(2)求AOB V 的面积.23.如图,在▱ABCD 中,AB =4,点D 的坐标是(0,8),以点C 为顶点的抛物线y =a (x ﹣h )2+k 经过x 轴上的点A ,B .(1)求点A ,B ,C 的坐标;(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.1.D【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A 、()22545x x -=,化简之后不是一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0中,如果a =0不是一元二次方程,故此选项不合题意;C 、2310y x +-=含有2个未知数,因此不是一元二次方程,故此选项不合题意;D 、2221x x =+是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.A【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .4.B【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【详解】x 2+6x +2=x 2+6x +32-32+2=(x +3)2-7.故选B .5.D【分析】本题考查的是一元二次方程根的判别式,一元二次方程的定义,掌握“一元二次方程有实数根,则0D ³”是解题的关键.根据一元二次方程有实数根,则0D ³列出不等式,解不等式即可,需要注意0k ¹.【详解】解:由题意得()2Δ34100k k ì=-´´-³í¹î,解得:94k ³-且0k ¹,故选:D .6.D【详解】(x-5)(x-6)=x-5(x-5)(x-6)-(x-5)=0(x-5)(x-7)=0解得:x 1=5,x 2=7;故选D .7.D【分析】本题主要考查了解一元二次方程,一元二次方程解的定义,构成三角形的条件,等腰三角形的定义,先把3x =代入原方程求出m 的值,进而解方程求出3x =或4x =,再分当腰长为3时,则底边长为4,当腰长为4时,则底边长为3,两种情况利用构成三角形的条件进行求解即可.【详解】解:∵3是关于x 的方程()2120x m x m -++=的一个实数根,∴()231320m m ++=-,解得6m =,∴原方程为27120x x -+=,解方程27120x x -+=得3x =或4x =,当腰长为3时,则底边长为4,∵334+>,∴此时能构成三角形,∴此时ABC V 的周长为33410++=;当腰长为4时,则底边长为3,∵344+>,∴此时能构成三角形,∴此时ABC V 的周长为34411++=,综上所述,ABC V 的周长为10或11,故选D .8.D【分析】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,用换元法解题即可得到结果.【详解】把方程()()22322330x x +++-=看作关于23x +的一元二次方程,∴231x +=或233x +=-,∴1213x x =-=-,.故选D .【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键.9.C【分析】此题可设每轮感染中平均一台电脑会感染x 台电脑,则第一轮共感染x +1台,第二轮共感染x (x +1)+x +1=(x +1)(x +1)台,根据题意列方程即可.【详解】设每轮感染中平均一台电脑会感染x 台电脑,根据题意列方程得(x +1)2=100,故选C .【点睛】考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.10.D【分析】画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象,根据图象即可求得结论.【详解】解:画出函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î的图象如图:由图象可知,直线y =k 与函数y =22(1)1(3)(5)1(3)x x x x ì--£í-->î交点个数有4个,故选:D .【点睛】本题考查了二次函数的性质,数形结合是解题的关键.11.2270x -=【分析】通过移项合并同类项即可得到答案 .【详解】解:方程(21)(2)53x x x +-=-整理成一般形式后,得224253x x x x -+-=-,即2270x -=.故答案为:2270x -=.【点睛】本题主要考查一元二次方程的一般形式,掌握移项、合并同类项是关键.12.54k -≥且1k ¹-【分析】本题考查了一元二次方程的定义,一元二次方程根的判别式,根据题意可得Δ0³,且10k +¹,求解即可.【详解】解:根据题意,可得2Δ(2)4(1)(5)0k k k =--´+´-³,且10k +¹,即16200k +³且1k ¹-,解得:54k -≥且1k ¹-,故答案为:54k -≥且1k ¹-.13.3-【分析】将2x =-代入220x kx -+=,即可求解.【详解】将2x =-代入220x kx -+=,得:()()22220k --´-+=,解得:3k =-,故答案为:3-.【点睛】本题考查了一元二次方程的解定义,细心计算是关键,属于基础题型.14.()()1302030202x x --=´´【分析】本题主要考查了一元二次方程的应用,设道路的宽应为x 米,由题意有()()1302030202x x --=´´,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.【详解】解:设道路的宽应为x 米,由题意有()()1302030202x x --=´´.故答案为:()()1302030202x x --=´´.15.①②④【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;②求出当0x =时,y 的值即可得;③根据二次函数的增减性即可得;④先求出二次函数22()1y x m m =--++的顶点坐标,再代入函数21y x =+进行验证即可得.【详解】Q 当0m >时,将二次函数2y x =-的图象先向右平移m 个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象;当0m <时,将二次函数2y x =-的图象先向左平移m -个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象\该函数的图象与函数2y x =-的图象形状相同,结论①正确对于22()1y x m m =--++当0x =时,22(0)11y m m =--++=即该函数的图象一定经过点(0,1),结论②正确由二次函数的性质可知,当x m £时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则结论③错误22()1y x m m =--++的顶点坐标为2(),1m m +对于二次函数21y x =+当x m =时,21y m =+即该函数的图象的顶点2(),1m m +在函数21y x =+的图象上,结论④正确综上,所有正确的结论序号是①②④故答案为:①②④.【点睛】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键.16.(1)121,1x x ==(2)120,4x x ==(3)134y -(4)12x x ==【分析】(1)利用配方法即可求解;(2)整理方程后,利用因式分解法即可求解;(3)利用因式分解法即可求解;(4)利用公式法即可求解.【详解】(1)解:整理方程得:222x x += ∴2213x x ++=()213x +=1x +=∴121,1x x ==(2)解:整理方程得:240x x -=∴()40x x -=∴120,4x x ==(3)解:()()22025231y y ---ùëû=é()()87430y y ---=∴1273,84y y ==-(4)解:由方程可知:2,4,1a b c ==-=-∴2D =∴12x x ====【点睛】本题考查求解一元二次方程.掌握各类求解方法是解题关键.17.(1)见解析;(2)p =0、2、-2.【详解】解:(1)原方程可化为x 2﹣5x +4﹣p 2=0,∵△=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∴不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x +4﹣p 2=0,∴x ∵方程有整数解,∴p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.18.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得(40-x )(20+2x )=1200,整理,得x 2-30x +200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,∴x 2=20应舍去,∴x =10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.19.(1)()21y x =-+(2)4b =-(3)12y y >【分析】(1)由点A 坐标求出1OA =,进一步得到点B 坐标,再利用待定系数法求解;(2)将()3,C b -代入()21y x =-+,即可求出b 值;(3)根据对称轴和开口方向判断增减性,再结合D ,E 两点的横坐标判断即可.【详解】(1)解:∵抛物线()21y a x =+的顶点为A ,∴()1,0A -,则1OA =,∵OA OB =,∴()0,1B -,代入()21y a x =+中,得:()2101a -=+,解得:1a =-,∴()21y x =-+;(2)将()3,C b -代入()21y x =-+中,得:()231b =--+,解得:4b =-;(3)∵抛物线()21y x =-+的对称轴为直线1x =-,且开口向下,∴当1x >-时,y 随x 的增大而减小,∵23<,∴12y y >.【点睛】本题考查了求二次函数解析式,二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,利用增减性判断函数值的大小.20.有错误,正确解答见解析【分析】将方程化为一般式,利用求根公式求解即可.【详解】解:有错误,错误的原因是没有将方程化为一般形式.2+=20+-=,故方程中的a b =c =-,224464b ac -=--=.所以x ==即1x =,2x =-.【点睛】本题考查一元二次方程的解-公式法,解题的关键是记住求根公式,属于中考常考题型.21.2秒或4秒【分析】设t 秒后, PBQ V 的面积等于28cm , 分别表示出线段PB 和线段BQ 的长,然后根据面积为8列出方程求得时间即可.【详解】设t 秒后, PBQ V 的面积等于28cm , 根据题意得:()12682t t ´-=,解得:12t =或24t =,答: 2秒或4秒后,PBQ V 的面积等于28cm .【点睛】本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB 和线段BQ 的长是解答本题的关键.22.(1)112k a b =-==,,(2)AOB V 的面积为3【分析】(1)用待定系数法,先将()24B -,代入2y ax =,求出a 的值为1,再将()1A m ,代入2y x =,求出点()11A ,,然后将()11A ,,()24B -,代入y kx b =+分别求出k b ,的值.(2)利用y 轴将AOB V 分割为AOC △和BOC V ,分别算出它们的面积后,即可求出AOB V 的面积.【详解】(1)∵点()2,4B -在二次函数2y ax =的图象上,∴44a =解得:1a =∴二次函数关系式为:2y x =将()1A m ,代入2y x =得:1m =∴()11A ,∵点()11A ,,()24B -,在一次函数y =kx +b 的图象上∴124k b k b +=ìí-+=î,解得:12k b =-ìí=î,∴112k a b =-==,,;(2)由(1)可知一次函数关系式2y x =-+当0x =时,2y =则一次函数2y x =-+与y 轴交点坐标为()02C ,∵2OC =,点A 横坐标为1A x =,点B 的横坐标为2-∴AOC S =V 12A OC x ×=1212´´1==BOC S V 12B OC x ×=1222´´2=∴123AOB AOC BOC S S S =+=+=V V V ∴AOB V 的面积为3.【点睛】本题考查了待定系数求二次函数解析式,求一次函数解析式,面积问题,求得解析式是解题的关键.23.(1)()()()2,0,6,0,4,8A B C ;(2)22168y x x =-++【分析】(1)根据平行四边形的性质可得4CD AB ==,根据D 的坐标,即可求得C 的坐标,根据C 为顶点,根据二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,即可求得,A B 的坐标;(2)根据(1)的结论求得抛物线解析式,设平移后的解析式为:代入D 的坐标即可求得b 的值,进而求得平移后的抛物线的解析式.【详解】(1)Q ▱ABCD 中,AB =4,点D 的坐标是(0,8),//CD AB \,(4,8)C \,Q C 为抛物线的顶点,\抛物线的对称轴为4x =,Q 二次函数与x 轴交于点,A B ,则,A B 关于对称轴4x =对称, 且4AB =,(2,0),(6,0)A B \,(2)Q ()()()2,0,6,0,4,8A B C ,设抛物线解析式为(2)(6)y a x x =--将(4,8)C 代入8(42)(46)a =--解得2a =-,\抛物线解析式为22(2)(6)2(4)8y x x x =---=--+,设向上平移b 个单位后新抛物线的解析式为22(4)8y x b =--++,依题意,新抛物线过点(0,8)D ,则82168b =-´++,解得32b =,\平移后的抛物线解析式为:22(4)40y x =--+即22168y x x =-++.【点睛】本题考查了平行四边形的性质,二次函数的性质,顶点式,二次函数图像的平移,掌握二次函数的性质是解题的关键.。
用函数观点看一元二次方程练习题有疑问的题目请发在“51加速度学习网”上,让我们来为你解答( )51加速度学习网 整理一、基础题1.已知二次函数y=ax 2-5x+c 的图象如图所示,请根据图象回答下列问题: (1)a=_______,c=______.(2)函数图象的对称轴是_________,顶点坐标P__________. (3)该函数有最______值,当x=______时,y 最值=________. (4)当x_____时,y 随x 的增大而减小. 当x_____时,y 随x 的增大而增大. (5)抛物线与x 轴交点坐标A_______,B________; 与y 轴交点C 的坐标为_______;ABC S ∆=_________,ABP S ∆=________.(6)当y>0时,x 的取值范围是_________;当y<0时,x 的取值范围是_________. (7)方程ax 2-5x+c=0中△的符号为________.方程ax 2-5x+c=0的两根分别为_____,____. (8)当x=6时,y______0;当x=-2时,y______0. 2.已知下表:x 0 1 2 ax 2 1 ax 2+bx+c33(1)求a 、b 、c 的值,并在表内空格处填入正确的数; (2)请你根据上面的结果判断:①是否存在实数x,使二次三项式ax 2+bx+c 的值为0?若存在,求出这个实数值;若不存在,请说明理由.②画出函数y=ax 2+bx+c 的图象示意图,由图象确定,当x 取什么实数时,ax 2+ bx+c>0?14B AxO y3.请画出适当的函数图象,求方程x 2=12x+3的解. 4.若二次函数y=-12x 2+bx+c 的图象与x 轴相交于A(-5,0),B(-1,0). (1)求这个二次函数的关系式;(2)如果要通过适当的平移,使得这个函数的图象与x 轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V 为自变量,刹车距离s 为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.5010015015010050s(m)v(km/h)O速度V(km/h) 48 64 80 96 112 … 刹车距离s(m)22.53652.57294.5…二、能力提升6.如图所示,矩形ABCD 的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB 在x 轴上,点C 在直线y=x-2上. (1)求矩形各顶点坐标;(2)若直线y=x-2与y 轴交于点E,抛物线过E 、A 、B 三点,求抛物线的关系式; (3)判断上述抛物线的顶点是否落在矩形ABCD 内部,并说明理由.C BAxO D y E7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=53. (1)求这条抛物线的关系式.(2)证明:这条抛物线与x 轴的两个交点中,必存在点C,使得对x 轴上任意点D 都有AC+BC≤AD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为 2.5m 时,达到最大高度 3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手时,他跳离地面多高?3.05m4m2.5mxOy9.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元, 已知P=110x2+5x+1000,Q=-30x+45.(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x2-kx-1与x轴两交点的横坐标,一个大于2,另一个小于2,试求k的取值范围.11.如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2= 17, 且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.(1)求C点的坐标;(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E 三点的抛物线的关系式,并画出此抛物线的草图.(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.CB AE xOyE'答案:1.(1)a=1;c=4 (2)直线x=52,59,24⎛⎫- ⎪⎝⎭ (3)小; 52;94- (4)55;22≤≥ (5)(1,0);(4,0);(0,4); 6;278; (6)x<1或x>4;1<x<4 (7)正号;x1=1;x2=4 (8)>;>2.(1)由表知,当x=0时,ax 2+bx+c=3;当x=1时,ax 2=1;当x=2时,ax 2+bx+c=3.∴31423c a a b c =⎧⎪=⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=⎩, ∴a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)①在x 2-2x+3=0中,∵△=(-2)2-4×1×3=-8<0, ∴不存在实数x 能使ax 2+bx+c=0.②函数y=x 2-2x+3的图象示意图如答图所示, 观察图象得出,无论x 取什么实数总有ax 2+bx+c>0. 3.:在同一坐标系中如答图所示,画出函数y=x 2的图象,画出函数y=12x+3 的图象, 这两个图象的交点为A,B,交点A,B 的横坐标32-和2就是方程x 2=12x+3的解.4.:(1)∵y=12-x 2+bx+c,把A(-5,0),B(-1,0)代入上式,得∴()221(5)5021(1)(1)02b c b c ⎧⎛⎫-⨯-+⨯-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-+⨯-+= ⎪⎪⎝⎭⎩,352a b =-⎧⎪⎨=-⎪⎩,∴y=215322x x ---. (2)∵y=215322x x ---=21(3)22x -++∴顶点坐标为(-3,2),∴欲使函数的图象与x 轴只有一个交点,应向下平移2个单位.13122x=1xy O 632BAxyO5.:(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数. (3)设所求函数关系式为:s=av 2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c,得222484822.5646436969672a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 解得35123160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.∴23351216s v v =+ (4)当v=80时, 223333808052.55121651216v v +=⨯+⨯=∵s=52.5, ∴23351216s v v =+当v=112时, 22333311211294.55121651216v v +=⨯+⨯=∵s=94.5,∴23351216s v v =+经检验,所得结论是正确的.6.:(1)如答图所示.∵y=x-2,AD=BC=2,设C 点坐标为(m,2), 把C(m,2)代入y=x-2,2=m-2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1, ∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x-2,∴令x=0,得y=-2,∴E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax 2+bx+c,∴201640c a b c a b c =-⎧⎪++=⎨⎪++=⎩, 解得12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩∴y=215222x x -+-.(3)抛物线顶点在矩形ABCD 内部. ∵y=215222x x -+-, ∴顶点为59,28⎛⎫ ⎪⎝⎭. ∵5142<<, ∴顶点59,28⎛⎫⎪⎝⎭在矩形ABCD 内部. 7.(1)解:设所求抛物线的关系式为y=ax 2+bx+c,∵A(0,3),B(4,6),对称轴是直线x=53. ∴31646523c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩, 解得981543a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴y=2915384x x -+.(2)证明:令y=0,得2915384x x -+=0, ∴ 124,23x x ==∵A(0,3),取A 点关于x 轴的对称点E,∴E(0,-3).设直线BE 的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3,∴k=94,∴y=94x-3 . 由 94x-3=0,得x=43.故C 为4,03⎛⎫ ⎪⎝⎭,C 点与抛物线在x 轴上的一个交点重合, 在x 轴上任取一点D,在△BED 中,BE< BD+DE. 又∵BE=EC+BC,EC=AC,ED=AD,∴AC+BC<AD+BD. 若D 与C 重合,则AC+BC=AD+BD. ∴AC+BC≤AD+BD. 8:(1)图中各点字母表示如答图所示.∵OA=2.5,AB=4,∴OB=4-2.5=1.5. ∴点D 坐标为(1.5,3.05). ∵抛物线顶点坐标(0,3.5),∴设所求抛物线的关系式为y=ax 2+3.5, 把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5,3.05m2.5mxOyBDA∴a=-0.2,∴y=-0.2x 2+3.5(2)∵OA=2.5,∴设C 点坐标为(2.5,m),∴把C(2.5,m)代入y=-0.2x 2+3.5, 得m=- 0.2×2.52+3.5=2.25.∴该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).9:(1)∵P=110x 2+5x+1000,Q=-30x+45.∴W=Qx-P=(-30x +45)-(110x 2+5x+1000)= 224010015x x -+-.(2)∵W=224010015x x -+-=-215(x-150)2+2000.∵-215<0,∴W 有最大值.当x=150吨时,利润最多,最大利润2000元. 当x=150吨,Q=-30x+45=40(元). 10:∵y=2x 2-kx-1,∴△=(-k)2-4×2×(-1)=k 2+8>0,∴无论k 为何实数, 抛物线y=2x 2-kx-1与x 轴恒有两个交点. 设y=2x 2-kx-1与x 轴两交点的横坐标分别为x 1,x 2,且规定x 1<2,x 2> 2, ∴x 1-2<0,x 2-2>0.∴(x 1-2)(x 2-2)<0,∴x 1x 2-2(x 1+x 2)+4<0.∵x 1,x 2亦是方程2x 2-kx-1=0的两个根,∴x 1+x 2=2k ,x 1·x 2=-12, ∴124022k --⨯+<,∴k>72.∴k 的取值范围为k>72.法二:∵抛物线y=2x 2-kx-1与x 轴两交点横坐标一个大于2,另一个小于2,∴此函数的图象大致位置如答图所示. 由图象知:当x=2时,y<0. 即y=2×22-2k-1<0,∴k>72.∴k 的取值范围为k>72. 11:(1)线段OA,OB 的长度是关于x 的一元二次方程x 2-mx+2(m-3)=0 的两个根,x 2x 12xyO∴(1)2(3)(2)OA OB m OA OB m +=⎧⎨=-⎩又∵OA 2+OB 2=17,∴(OA+OB)2-2·OA ·OB=17.③把①,②代入③,得m 2-4(m-3) =17,∴m 2-4m-5=0.解之,得m=-1或m=5. 又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x 2-5x+4=0,解之,得x=1或x=4. ∵BC>AC,∴OB>OA,∴OA=1,OB=4,在Rt △ABC 中,∠ACB=90°,CO ⊥AB, ∴OC 2=OA ·OB=1×4=4.∴OC=2,∴C(0,2) (2)∵OA=1,OB=4,C,E 两点关于x 轴对称, ∴A(-1,0),B(4,0),E(0,-2).设经过A,B,E 三点的抛物线的关系式为y=ax 2+bx+c,则016402a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ,解之,得12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴所求抛物线关系式为y=213222x x --. (3)存在.∵点E 是抛物线与圆的交点. ∴Rt △ACB ≌Rt △AEB,∴E(0,-2)符合条件. ∵圆心的坐标(32,0 )在抛物线的对称轴上. ∴这个圆和这条抛物线均关于抛物线的对称轴对称. ∴点E 关于抛物线对称轴的对称点E′也符合题意. ∴可求得E′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2) 12.(1)y=-2x 2+1,y=-2x+1. (2)y=x 2-2x-3(3)∵伴随抛物线的顶点是(0,c), ∴设它的解析式为y=m(x-0)2+c(m≠0).∴设抛物线过P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭, ∴22442ac b b m c a a -⎛⎫=-+ ⎪⎝⎭解得m=-a,∴伴随抛物线关系式为y=-ax 2+c. 设伴随直线关系式为y=kx+c(k≠0).∵P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭在此直线上,∴2442ac b b k c a a -⎛⎫=-+ ⎪⎝⎭ , ∴k=2b . ∴伴随直线关系式为y=2bx+c (4)∵抛物线L 与x 轴有两交点,∴△1=b 2-4ac>0,∴b 2<4ac.∵x 2>x 1>0,∴x 1+ x 2= -b a >0,x 1x 2=ca>0,∴ab<0,ac>0. 对于伴随抛物线y=-ax 2+c,有△2=02-(-4ac)=4ac>0.由-ax 2+c=0,得x=ca∴,0,,0c c C D a a ⎛⎫⎫-⎪⎪ ⎪⎪⎝⎭⎭,∴c a . 又AB=x 2-x 122221212124()()44b c b ac x x x x x x a a a -⎛⎫-=+---⋅ ⎪⎝⎭.由AB=CD,得24b ac a -ca整理得b 2=8ac,综合b 2>4ac,ab<0,ac>0,b 2=8ac,得a,b,c 满足的条件为b 2=8ac 且ab<0,(或b 2=8ac 且bc<0).13.(1)证明:∵y=mx 2-(m+5)x+5,∴△=[-(m+5)]2-4m×5=m 2+10m+25-20m=(m- 5)2. 不论m 取任何实数,(m-5)2≥0,即△≥0,故抛物线与x 轴必有交点. 又∵x 轴上点的纵坐标均为零,∴令y=0,代入y=mx 2-(m+5)x+5,得mx 2-(m+5)x+ 5=0,(mx-5)(x-1)=0, ∴x=5m或x=1.故抛物线必过x 轴上定点(1,0). (2)解:如答图所示,∵L:y=x+k,把(1,0)代入上式,得0=1+k,∴k=-1,∴y=x-1.又∵抛物线与x 轴交于两点A(x 1,0),B(x 2,0),且0<x 1<x 2,AB=4,M(3,2)yO∵x 1x 2>0,∴x 1=1, x 2=5,∴A(1,0),B(5,0),把B(5,0)代入y=mx 2-(m+5)x+5,得0=25m-(m+5)×5+5.∴m=1,∴y=x 2-6x+5.∵M 点既在直线L:y=x-1上,又在线段AB 的垂直平分线上,∴M 点的横坐标x 1+2AB =1+42. 把x=3代入y=x-1,得y=2.∴圆心M(3,2),∴半径r=MA=MB=22(31)222--=,∴MA 2=MB 2=8.又AB 2=42= 16,∴MA 2+MB 2=AB 2,∴△ABM 为直角三角形,且∠AMB=90°,∴S 弓形ACB=S 扇形AMB- S △290(22)12222242ππ⨯-⨯=-.有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网整理。
二次函数与一元二次方式练习题 附答案一、选择题(共15 小题)1、已知二次函数 2)y=ax +bx+c 的图象以下列图, 对称轴为直线 x=1,则以下结论正确的选项是(A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小 2 、已知二次函数y=ax 2+bx+c 的图象以下列图,那么以下判断不正确的选项是()A 、 ac < 0B 、 a ﹣b+c > 0C 、 b=﹣ 4aD 、关于 x 的方程 ax 2+bx+c=0 的根是 x 1=﹣ 1, x 2=523、已知抛物线 y=ax +bx+c 中, 4a ﹣ b=0, a ﹣ b+c > 0,抛物线与 x 轴有两个不同样的交点,且 这两个交点之间的距离小于 2,则以下判断错误的选项是( )A 、 abc <0B 、 c > 0C 、 4a > cD 、 a+b+c > 04、抛物线 y=ax 2+bx+c 在 x 轴的下方,则所要满足的条件是()A 、 a <0, b 2﹣ 4ac < 0B 、 a < 0, b 2﹣ 4ac > 0C 、 a > 0, b 2﹣4ac <0D 、 a > 0, b 2﹣ 4ac > 05、以下列图,二次函数 21, 2),且与 x 轴交点的横坐y=ax +bx+c ( a ≠0)的图象经过点(﹣ 标分别为 x 1, x 2,其中﹣ 2< x 1<﹣ 1, 0< x 2<1,以下结论: ① abc > 0;② 4a ﹣ 2b+c <0;③ 2a ﹣ b < 0;④b 2+8a > 4ac . 其中正确的有()A 、1 个B 、2 个C 、3 个D 、4 个6、已知: a > b > c ,且 a+b+c=0,则二次函数 y=ax 2+bx+c 的图象可能是以下列图象中的 ()1A 、B 、C 、D 、7、已知 y =a x 2+b x+c,y =a x 2+b x+c 且满足.则称抛物线y , y 互为 “友好抛物线 ”,则1111222212以下关于 “友好抛物线 ”的说法不正确的选项是()A 、 y 1, y 2 张口方向、张口大小不用然同样B 、由于 y 1, y 2 的对称轴同样C 、若是 y 的最值为 m ,则 y 的最值为 kmD 、若是 y 与 x 轴的两交点间距离为212d ,则 y 1 与 x 轴的两交点间距离为|k|d8、已知二次函数的 y=ax 2+bx+c 图象是由的图象经过平移而获得,若图象与x 轴交于 A 、 C(﹣ 1, 0)两点,与 y 轴交于 D (0,),极点为 B ,则四边形 ABCD 的面积为( )A 、 9B 、 10C 、 11D 、 129、依照以下表格的对应值:判断方程 ax 2+bx+c=0( a ≠0, a , b , c 为常数)的一个解 x 的范围是()A 、 8< x < 9B 、 9< x < 10C 、 10< x < 11D 、 11<x < 1210、如图,已知二次函数y=ax 2 +bx+c 的部分图象,由图象可知关于 x 的一元二次方程2)ax +bx+c=0 的两个根分别是 x 1=1.6, x 2=(A 、﹣ 1.6B 、 3.2C 、 4.4D 、以上都不对11、如图,抛物线 2与双曲线 y=的交点 A 的横坐标是 1,则关于 2y=x +1 x 的不等式 +x +1< 0的解集是( )A 、 x > 1C 、 0< x < 1B 、 x <﹣ 1D 、﹣ 1< x < 012、已知二次函数 y=ax 2+bx+c 的图象以下列图, 则关于 x 的不等式bx+a > 0 的解集是 ()A 、 x <B 、 x <C 、 x >D 、 x >13、方程 7x 2﹣( k+13)x+k 2﹣ k ﹣ 2=0( k 是实数)有两个实根 α、β,且 0< α< 1,1< β< 2, 那么 k 的取值范围是( )A 、 3< k < 4B 、﹣ 2< k <﹣ 1C 、 3< k < 4 或﹣ 2< k <﹣ 1D 、无解14、关于整式 x 2和 2x+3,请你判断以下说法正确的选项是()A 、关于任意实数x ,不等式 x 2> 2x+3 都成立B 、关于任意实数 x ,不等式 x 2< 2x+3都成立C 、 x < 3 时,不等式 x 2< 2x+3 成立D 、 x > 3 时,不等式 x 2> 2x+3 成立二、解答题(共7 小题)215、已知抛物线 y=x +2px+2p ﹣2 的极点为 M ,(2)设抛物线与 x 轴的交点分别为 A , B ,求实数 p 的值使 △ABM 面积达到最小.216、已知:二次函数 y=( 2m ﹣ 1) x ﹣( 5m+3) x+3m+5(1) m 为何值时,此抛物线必与 x 轴订交于两个不同样的点; (2) m 为何值时,这两个交点在原点的左右两边; (3) m 为何值时,此抛物线的对称轴是y 轴;(4) m 为何值时,这个二次函数有最大值.17、已知下表:( 1)求 a 、 b 、 c 的值,并在表内空格处填入正确的数;( 2)请你依照上面的结果判断:① 可否存在实数 x ,使二次三项式 2ax +bx+c 的值为 0?若存在, 求出这个实数值; 若不存在, 请说明原由.② 画出函数 y=ax 2+bx+c 的图象表示图,由图象确定,当 x 取什么实数时, ax 2+bx+c > 0.18 、 请 将 下 表 补 充 完 整 ;(Ⅱ)利用你在填上表时获得的结论,解不等式﹣x 2﹣ 2x+3<0; (Ⅲ)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ) 试写出利用你在填上表时获得的结论解一元二次不等式ax 2+bx+c >0(a ≠0)时的解题 步骤.219、二次函数 y=ax +bx+c (a ≠0)的图象以下列图,依照图象解答以下问题:( 1)写出方程 ax 2+bx+c=0 的两个根;( 2)写出不等式 ax 2+bx+c > 0 的解集;(3)写出 y 随 x 的增大而减小的自变量 x 的取值范围;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围.20、阅读资料,解答问题.x 2﹣ 2x ﹣ 3> 0.例.用图象法解一元二次不等式:解:设 y=x 2﹣2x ﹣ 3,则 y 是 x 的二次函数.∵ a=1>0,∴抛物线张口向上.22又∵当 y=0 时, x ﹣ 2x ﹣ 3=0,解得 x 1=﹣ 1,x 2=3.∴由此得抛物线y=x ﹣2x ﹣ 3 的大体图象以下列图.观察函数图象可知:当 x <﹣ 1或 x > 3 时, y > 0.∴ x 2﹣ 2x ﹣ 3>0 的解集是: x <﹣ 1 或 x > 3.x 2﹣ 2x ﹣ 3< 0 的解集是(1)观察图象,直接写出一元二次不等式: _________ ;(2)模拟上例,用图象法解一元二次不等式:x 2﹣5x+6< 0.(画出大体图象) .三、填空题(共 4 小题)21、二次函数 y=ax 2+bx+c (a ≠0)的图象以下列图,依照图象解答以下问题:(1)写出方程 ax 2+bx+c=0 的两个根. x 1= _________ , x 2= _________ ;(2)写出不等式 ax 2+bx+c > 0 的解集. _________ ; (3)写出 y 随 x 的增大而减小的自变量 x 的取值范围. _________ ;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围. _________ .22、如图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与 x 轴一交点为 B (3 ,0),则由图象可知,不等式 2.ax +bx+c > 0 的解集是 _________23、二次函数 y=ax 2+bx+c 和一次函数 y=mx+n 的图象以下列图,则 ax 2+bx+c ≤ mx+n 时, x的取值范围是_________ .24、如图,已知函数 y=ax 2+bx+c 与 y=﹣的图象交于 A (﹣ 4,1)、B (2,﹣ 2)、 C ( 1,﹣ 4)三点,依照图象可求得关于 x 的不等式 ax 2+bx+c <﹣的解集为 _________ .答案与评分标准一、选择题(共 15 小题)21、( 2011?山西)已知二次函数 y=ax +bx+c 的图象以下列图,对称轴为直线 x=1,则以下结论正确的选项是( )A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小考点 :二次函数图象与系数的关系;抛物线与 x 轴的交点。
26.2《用函数观点看一元二次方程 》检测题
一、选择题
1、抛物线21y x x =-+与x 轴的交点个数为 ( )
(A) 0 (B) 1 (C)2 (D) 不能确定 2、函数21y x =+的图象与函数223y x x =+-的图象交点的个数为 ( )
(A )0 (B) 1 (C) 2 (D) 3 3、下列二次函数中,函数值恒小于0的函数是 ( ) (A )232y x x =-+- (B)223y x x =--- (C) 232y x x =-+ (D) 223y x x =-+
4、二次函数2y ax bx c =++,当ac <0时,函数的图象与x 轴的交点情况是 ( )
(A )没有交点 (B) 只有一个交点 (C) 有两个交点 (D) 不能确定
5、已知抛物线232y x x a =-+与x 轴有交点,则a 的取值范围是 ( ) (A) a ≤1
3 (B) a <13 (C) a ≤13
- (D) a ≥13
6、无论x 为任何实数,抛物线2y ax bx c =++永远在x 轴上方的条件是 ( )
(A) a >0,24b ac -<0 (B) a >0, 24b ac ->0 (C) a <0, 24b ac ->0 (D) a <0, 24b ac -<0
7、已知函数))((3n x m x y ---=,并且b a ,是方程0))((3=---n x m x 的两
个根,则实数b
,的大小关系可能是
,
n
a
m,
A.n
< C.n
<
b
m
<
a<
<
m<
a
a
m<
b
<
n
< B.b
D.b
<
<
n
a<
m
8、若二次函数5
2+
+
=2)2
(则b、k的值分别为
y+
-
=bx
x
y配方后为k
x
()
A.0.5
B.0.1
C.—4.5
D.—4.1
9、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的
关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相
等,则在下列时间中炮弹所在高度最高的是()
A.第8秒 B.第10秒 C.第12秒 D.第
15秒
10、如图3,从地面竖立向上抛出一个小球,小球的高度h(单位:m)
与小球运动时间t(单位:s)之间的关系式为2
h-
t
=,那么小球
30t
5
从抛出至回落到地面所需要的时间是:
(A)6s (B)4s (C)3s (D)2s
二、填空题
11、抛物线y=x2-x-2与x轴的交点坐标是______,与y轴的交点
坐标是______。
12、抛物线y=2x2-5x+3与y轴的交点坐标是______,与x轴的交
点坐标是______。
13、抛物线2(4)(y x x =-+-与x 轴的两个交点坐标为________________。
14、抛物线23y x x m =-+与x 轴只有一个交点,则m=________。
15、若抛物线2y x bx c =++经过第一、二、四象限,则方程20
x bx c ++=的根的情况是____________。
16、二次函数24y x x m =-++的值恒小于0,则m 的取值范围是
___________。
17、若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元
二次方程022=++-k x x 的一个解31=x ,另一个解=2x
18、某种火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用公式h =-5t 2+150t +10表示.经过______s ,火箭达到它的最高点.
19、若抛物线y=x 2-(2k+1)x+k 2+2,与x 轴有两个交点,则整数k 的最小值是______.
20、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图1所示,由抛物线的特征你能得到含有a 、b 、c 三个字母的等式或不等式为______(写
(第1题图)
出一个即可).
三、解答题
21、利用函数的图象求下列方程的解:(1)x2+x-6=0; (2)2x2
-3x-5=0
22、抛物线y=x2+x-k与直线y=-2x+1的交点的纵坐标为3。
(1)求抛物线的解析式
(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标.
23、抛物线y=ax2+bx+c与直线y=x-2相交于(m,-2),(n,3)
两点,且抛物线的对称轴为直线x=3,求抛物线的解析式。
24、已知二次函数22
y x ax a
=++-,求证:它的图象与x轴总有两个交点。
25、如图,一位篮球运动员跳起投篮,球沿抛物线y =-15x 2
+3.5运
行,然后准确落入框内。
已知篮框的中心离地面的距离为3.05米。
求:
(1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的
高度为2.25米,请问他距离篮框中心的水平距离是多少?
26、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).
(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)
(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.
参考答案
一.选择题
1.A
2.C
3.B
4.C
5.A
6.A 7 .A 8.D 9.B 10.A
二.填空题
11.(2,0),(1,0) (0,-2) 12.(0,3) ( ),(1,0) 13.(-4,0),(2,0) 14.m=
15.有两个不想等的实数根 16.m<-4 17. 18.75s 19.-2
20.a+b+c<0
三.解答题
21.略 22.二次函数解析式:y= x2+x+3 ,另一交点坐标是(-2,5)
23.解:由题意可知:(m,-2),(n,3)在直线y=x-2上,所以m=0,n=5, 又因为对称轴是x=3
抛物线上两点(0,-2),(5,3)可知a=-0.4 b=-2.4 c=-2 所以抛物线解析式为:y=-0.4 x2
-2.4x-2
24.利用b2-4ac>0求解
25. 略 26.略。