九年级数学函数
- 格式:pdf
- 大小:512.54 KB
- 文档页数:23
数学九年级上册函数数学九年级上册函数主要学习了函数的概念、性质、图像和应用等内容。
函数的概念函数是数学中的一个重要的概念,它可以用来描述事物的变化规律。
函数的定义是:给定一个集合X,如果对于X中的每一个元素x,都存在唯一的一个元素y,使得y满足某个条件,那么就说y是x的函数。
在数学上,函数通常用函数的符号f(x)表示,其中f是函数的名称,x是函数的变量。
函数的性质函数具有以下几个重要的性质:1.单值性:函数的值对应于函数的变量是一个唯一的值。
2.可逆性:如果函数f(x)的值对应于函数的变量x是一个唯一的值,那么函数f(x)是可逆的,并且f(f(x))=x。
3.连续性:函数的图像在某个区间上是连续的,那么函数在该区间上是连续的。
函数的图像函数的图像是函数的变量和函数的值在直角坐标系上的点的集合。
函数的图像可以用来直观地表示函数的性质。
函数的应用函数在数学和自然科学中有着广泛的应用。
例如,在数学中,函数可以用来表示数量的变化规律,在自然科学中,函数可以用来表示物理量的变化规律。
九年级上册函数的重点内容九年级上册函数的重点内容包括:●函数的概念和性质●函数的图像●函数的应用在学习函数时,要注意以下几点:●要理解函数的概念和性质,并能够运用这些性质解决实际问题。
●要学会画函数的图像,并能够根据函数的图像分析函数的性质。
●要学会应用函数解决实际问题。
以下是一些学习函数的建议:●多做练习,巩固知识。
●注意联系实际,提高应用能力。
●利用多种学习方法,提高学习效率。
九年级二次函数全部知识点二次函数是数学中的一种重要的函数类型,它在实际生活中有着广泛的应用。
九年级是初中阶段的最后一年,二次函数是九年级数学的重要内容之一。
本文将介绍九年级二次函数的全部知识点,包括定义、图像、性质、解析式等,希望能够帮助同学们更好地掌握这一知识。
一、二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数,并且a ≠ 0。
二次函数中的自变量x是实数,函数值f(x)也是实数。
二次函数的定义域是所有实数集合。
二、二次函数的图像二次函数的图像是一个抛物线,对称轴是垂直于x轴的一条直线。
当a > 0时,抛物线开口朝上;当a < 0时,抛物线开口朝下。
三、二次函数的顶点及最值二次函数的顶点是抛物线的最高点或最低点,其坐标为(h,k),其中h是对称轴的横坐标,k是对称轴与抛物线的交点的纵坐标。
当a > 0时,k为函数的最小值;当a < 0时,k为函数的最大值。
四、二次函数的对称性二次函数的图像关于对称轴是对称的,即对称轴两侧的点关于对称轴上的点有对应关系。
这个对称性质使得我们可以通过观察对称轴两侧的点来了解抛物线的整体形态。
五、二次函数的零点二次函数的零点就是使得函数值等于零的横坐标。
要求二次函数的零点,可以使用因式分解、配方法和求根公式等方法。
六、二次函数和一次函数的关系一次函数是二次函数的特例,当a = 0时,二次函数就变成一次函数。
因此,可以说二次函数是一次函数的推广,二次函数的图像也可以视为一次函数图像的变形。
七、二次函数的解析式二次函数的一般形式是f(x) = ax² + bx + c,其中a、b、c是常数。
根据二次函数的性质,可以通过零点、顶点等信息来确定二次函数的解析式。
八、二次函数的平移和压缩二次函数的平移可以通过改变解析式中的常数来实现,例如改变c可以实现平移,改变a和b可以实现压缩或拉伸。
九年级数学函数知识点归纳数学函数是九年级数学学习的一个重要内容,它是研究数与数的对应关系的一种数学工具。
掌握函数的基本概念和特性对于理解和解决数学问题具有重要意义。
下面将对九年级数学函数的知识点进行归纳,帮助学生更好地理解和掌握相关概念。
一、函数的定义和符号表示函数是一种特殊的对应关系。
给定一个集合A和B,如果对集合A中的每个元素a,都有唯一地对应集合B中的一个元素b,则称此对应关系为函数,记作f:A→B。
在函数表示中,常用的符号包括:1. f(x)表示函数;其中f为函数名,x表示自变量;2. x表示自变量,它的取值范围是定义域;3. f(x)表示函数值,即自变量x经过函数f计算得到的值;4. 定义域表示自变量的所有可能取值;5. 值域表示函数值的所有可能取值。
二、一次函数一次函数也称线性函数,它的通式为f(x) = kx + b。
其中k和b 为常数,k表示斜率,b表示截距。
关于一次函数,需要掌握以下几个知识点:1. 斜率k的含义和计算方法:斜率表示函数曲线的倾斜程度,可以通过任意两点之间的纵向差值与横向差值的比值来表示。
2. 截距b的含义和计算方法:截距表示函数曲线与y轴的交点的纵坐标值。
三、二次函数二次函数是九年级数学中较为复杂的一类函数,它的通式为f(x) = ax² + bx + c。
其中a、b、c为常数,且a ≠ 0。
了解二次函数需要了解以下几个知识点:1. 抛物线的开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a > 0,则抛物线开口向上;若a < 0,则抛物线开口向下。
2. 零点和解析式:二次函数与x轴交点的横坐标叫做零点。
解析式则是二次函数的解析表达形式,通常使用因式分解、配方法、求根公式等方法进行求解。
3. 顶点坐标:二次函数的顶点坐标给出了抛物线的最高或最低点的坐标。
四、指数函数指数函数是形如f(x) = a^x的函数,其中a为常数,且a > 0且a ≠ 1。
九年级所有函数知识点归纳在初中数学课程中,函数是一个非常重要的概念。
它作为数学中的基础概念之一,在解决实际问题时起着重要的作用。
接下来,我们将对九年级的所有函数知识点进行归纳和总结。
一、函数的定义函数是一种数学关系,它将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
用数学符号表示为f(x) = y。
在函数的定义中,要求每一个自变量只对应唯一的因变量。
二、函数的表示方式函数可以通过多种方式来表示。
最常见的方式是函数的显式表达式,如y = 2x + 1。
还有函数的隐式表达式,如x² + y² = 1。
另外,函数还可以通过函数图像、函数表和函数关系式等方式来表示。
三、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 单调性:函数的单调性可以分为增函数和减函数。
增函数是指在定义域内,随着自变量的增大,函数值也增大;减函数则相反。
3. 奇偶性:奇函数和偶函数是函数的一种特殊性质。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
4. 周期性:周期函数是指在一定范围内具有重复的规律性。
例如正弦函数和余弦函数就是周期函数,它们的周期是2π。
5. 对称性:函数的对称性包括轴对称和中心对称两种。
轴对称是指以某一条直线为对称轴,对称图像重合;中心对称则是指以某一点为中心,对称图像重合。
四、函数的基本类型1. 一次函数:一次函数是函数的一种特殊类型,其表达式为y= kx + b,其中k和b为常数。
2. 二次函数:二次函数是函数的另一种特殊类型,其表达式为y = ax² + bx + c,其中a、b和c为常数。
3. 绝对值函数:绝对值函数的表达式为y = |x|,其中x为实数。
4. 幂函数:幂函数是指函数的自变量为底数,指数为常数的函数。
例如y = x²、y = √x等。
5. 指数函数:指数函数是函数的自变量为指数,底数为常数的函数。
初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注重:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
九年级上册数学二次函数知识点篇1:九年级上册数学知识点二次函数九年级上册数学知识点二次函数二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(乘)=a乘^2b乘c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量乘和因变量y之间存在如下关系:一般式y=a乘∧2;b乘c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(乘m)∧2k(a≠0,a、m、k为常数)或y=a(乘-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为乘=-m,顶点的位置特征和图像的开口方向与函数y=a乘∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(乘-乘1)(乘-乘2)[仅限于与乘轴有交点A(乘1,0)和B(乘2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a牛顿插值公式(已知三点求函数解析式)y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。
由此可引导出交点式的系数a=y1/(乘1乘乘2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
乘是自变量,y是乘的二次函数乘1,乘2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2乘的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有1本身图像,旁边注明函数。
2画出对称轴,并注明乘=什么3与乘轴交点坐标,与Y轴交点坐标,顶点坐标。
函数解析式(Analytic function)函数解析式与函数式相类似都是求出函数x与y的函数关系。
在一次函数中就是求K 值也就是它俩的关系。
常用函数的解析式:一次函数y=kx+b正比例函数(也是特殊的一次函数)y=kx反比例函数y=k/x二次函数y=a*x^2+b*x+c注意:通俗地讲,函数反映的是两个变量直接的(变化)关系,严格地说,函数是两个数集之间的一种对应关系(映射)。
而“规律”首先是一个(真)“命题”,而“命题”,在逻辑学指表达判断的语言形式,由系词把主词和宾词联系而成。
例如:‘北京是中国的首都’,这个句子就是一个命题。
在现代哲学、逻辑学、语言学中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。
命题不是指判断(陈述)本身。
更进一步,“规律”是事物、现象和过程内在的、本质的必然的联系。
定律(Laws) 研究宇宙间不变的事实规律所归纳出的结论,不同于理论、假设、定义、定理,是对客观事实的一种表达形式,通过大量具体的客观事实经验累积归纳而成的结论。
与“函数”概念相去甚远,不应混淆。
另外,函数的“表达式”最好不要笼统的称为为“解析式”。
因为很多函数并不解析(解析的概念在大学“复变函数”等课程中学习),为避免误用,最好成为“表达式”,这样更为妥当。
2构成编辑主要有两部分构成:1、表达式;2、自变量的表达范围。
例如:(1)y=2x-5(x>0) (2)y=2x-5(-3我们默认在实数范围内讨论,下同);(4)的自变量范围是:x>=2.5;(5)·的自变量范围是:x≠2.5。
3概念思路编辑解释函数概念;函数就是根据运算规则,“算式中最少有两个互相影响的数值”,这两个数值称为(变量)。
其中一个是“自变量”(X),为什么叫“自变量”呢?因为这个数值可控,我们通过改变它来改变另一个变量(Y),另一个变量(Y)由于是受这个自变量(X)改变而得到的,所以另一个变量(Y)称为这个自变量(X)的函数(在初中旧版教材中称Y为因变量)!为什么叫“函数”?看这个词的构成,“函”的意思是什么?“函是不相隶属机关之间相互商洽工作、询问和答复问题”这个解释正好又能解释到“映射”,“不相隶属机关”就是指这两个变量,它们两个之间相互工作,相互影响。
九年级函数知识点归纳函数是数学中非常重要的概念,在九年级数学课程中也有着重要的地位。
为了帮助大家对九年级函数的知识点有更清晰的理解,下面将对函数的定义、函数的性质以及函数的图像等几个方面进行归纳总结。
1. 函数的定义函数是一种数学关系,它将一个集合中的每一个元素都对应到另一个集合中唯一的元素上。
函数通常用符号表示,如 y=f(x)。
其中,x是自变量,y是因变量,f表示函数的规则。
2. 函数的性质(1) 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
(2) 单调性:函数可以是递增的(随着自变量的增加,因变量增加)、递减的(随着自变量的增加,因变量减小)或者常数函数(因变量保持不变)。
(3) 奇偶性:如果函数满足 f(-x)=-f(x),则函数为奇函数;如果函数满足 f(-x)=f(x),则函数为偶函数。
(4) 周期性:如果存在正数T,使得对于任意x,有f(x+T)=f(x),则函数是周期函数。
3. 函数的图像函数的图像是了解函数性质的一种重要方式。
(1) 直角坐标系中的图像:在直角坐标系中,自变量x位于横轴上,因变量y位于纵轴上,通过将各个自变量对应的因变量连接起来,可以得到函数的图像。
(2) 坐标轴上的特殊点:对于函数图像上的特殊点,如最大值、最小值、切线与坐标轴的交点等,可以通过求导数来判断。
(3) 函数的变化趋势:通过观察函数图像的上升下降、拐点等特点,可以判断函数的单调性、极值点等性质。
4. 常见函数类型(1) 一次函数:y=ax+b,其中a和b为常数,a为斜率,b为截距。
(2) 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0,其图像为抛物线。
(3) 绝对值函数:y=|x|,该函数的图像为以原点为对称轴的V 字形。
(4) 幂函数:y=x^a,其中a为常数,具体形态根据a的值的正负和大小而定。
(5) 反比例函数:y=k/x,其中k为常数,该函数的图像为双曲线。
九年级上册数学函数知识点总结一、二次函数。
1. 二次函数的定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。
- 例如y = 2x^2+3x - 1是二次函数,这里a = 2,b = 3,c=-1。
2. 二次函数的图象。
- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线y = ax^2+bx + c(a≠0)的对称轴为直线x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
3. 二次函数的性质。
- 当a>0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而减小;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大;- 函数有最小值,当x =-(b)/(2a)时,y_min=frac{4ac - b^2}{4a}。
- 当a < 0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而增大;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小;- 函数有最大值,当x =-(b)/(2a)时,y_max=frac{4ac - b^2}{4a}。
4. 二次函数图象的平移。
- 抛物线y = a(x - h)^2+k(a≠0)的图象可以由y = ax^2(a≠0)的图象平移得到。
- 向左平移m个单位时,h的值增加m;向右平移m个单位时,h的值减少m;向上平移n个单位时,k的值增加n;向下平移n个单位时,k的值减少n。
- 例如,将y = 2x^2的图象向右平移3个单位,再向下平移2个单位,得到y = 2(x - 3)^2-2的图象。
5. 二次函数与一元二次方程的关系。
一、角度与弧度制1.角度的定义:角度是从一个弧中截取的一部分,一个完整圆共有360度。
一个度可以被继续等分为60分,每一分可以被继续等分为60秒。
2.弧度的定义:弧度是弧与半径相对应的圆心角所对的弧长的比值。
一个圆的周长为2πr,一个圆的弧长等于其半径乘以所对的圆心角的弧度数。
一个圆的周长为2π弧度。
3.角度与弧度的互相转化:360度=2π弧度;1度=π/180弧度;1弧度=180/π度。
二、单位圆与三角比1.单位圆的定义:单位圆是一个半径为1的圆,在坐标系中,圆心坐标为(0,0)。
2. 正弦、余弦、正切的定义:对于单位圆上任意一点P(x,y),假设与x轴正方向的夹角为θ,则点P的坐标(x,y)可以表示为(x,y)=(cosθ,sinθ)。
3. 正弦、余弦、正切与角度的关系:sinθ = y,cosθ = x,tanθ = y/x。
4. 余弦、正弦、正切与弧度的关系:sinθ = y,cosθ = x,tanθ = y/x。
5.三角函数的周期性:三角函数的周期是2π。
三、基本三角函数恒等式1. 余弦与正弦的关系:cos²θ + sin²θ = 12. 正切与余切的关系:tanθ = 1/cotθ。
3. 正弦与余切的关系:sinθ = 1/cscθ。
4. 余弦与正切的关系:cosθ = 1/secθ。
5. 正弦与正切的关系:sinθ = tanθ/cosθ。
四、三角函数的图像与性质1. 正弦函数的图像与性质:y = sinθ,函数图像为典型的正弦曲线,周期为2π,在(0,0)处取得最小值0,最大值1,满足奇函数性质。
2. 余弦函数的图像与性质:y = cosθ,函数图像为典型的余弦曲线,周期为2π,在(0,0)处取得最大值1,最小值-1,满足偶函数性质。
3. 正切函数的图像与性质:y = tanθ,函数图像为典型的正切曲线,周期为π,无定义点为θ = (2n+1)π/2,其中n为整数。