土壤农化分析
- 格式:doc
- 大小:255.50 KB
- 文档页数:19
土壤农化分析(教案)第一章:土壤的组成与性质1.1 土壤的组成了解土壤的组成,包括矿物质、有机质、水分和空气等。
探讨各组成部分对土壤性质的影响。
1.2 土壤的性质学习土壤的物理性质,如土壤质地、结构、孔隙度等。
研究土壤的化学性质,包括酸碱度、有机质含量、养分含量等。
第二章:土壤样品采集与处理2.1 土壤样品的采集学习土壤样品采集的方法和技巧。
探讨不同土壤类型和不同采样点对样品采集的影响。
2.2 土壤样品的处理了解土壤样品的处理步骤,包括干燥、研磨、过筛等。
掌握处理过程中注意事项,确保样品的准确性和可靠性。
第三章:土壤养分的测定3.1 土壤有机质的测定学习土壤有机质的测定方法,如重铬酸钾滴定法、燃烧法等。
探讨不同方法的特点和适用条件。
3.2 土壤养分的测定了解土壤养分(氮、磷、钾等)的测定方法,如凯氏蒸馏法、钼锑抗比色法等。
掌握不同方法的操作步骤和注意事项。
第四章:土壤质量评价与监测4.1 土壤质量评价方法学习土壤质量评价的方法,如土壤质量指数、土壤污染指数等。
探讨不同评价方法的适用范围和局限性。
4.2 土壤监测与管理了解土壤监测的方法和技术,包括土壤样品的定期采集、分析等。
探讨土壤健康管理的方法和措施,如土壤改良、施肥等。
第五章:土壤污染与防治5.1 土壤污染类型与来源学习土壤污染的类型,包括重金属污染、有机污染等。
探讨土壤污染的来源,包括农业、工业、生活等。
5.2 土壤污染防治措施了解土壤污染防治的方法和措施,如土壤物理修复、化学修复、生物修复等。
探讨不同修复技术的适用条件和效果评估。
第六章:土壤肥力与植物营养6.1 土壤肥力的概念与评价理解土壤肥力的内涵,学习土壤肥力评价指标,如土壤有机质、全氮、有效磷、速效钾等。
探讨土壤肥力评价的方法和土壤肥力分级。
6.2 植物营养与土壤关系学习植物所需主要营养元素(N、P、K等)的生理功能和植物营养诊断方法。
探讨土壤供应营养元素的能力及土壤-植物营养系统的平衡。
土壤农化分析.3版
土壤农化分析是一项重要的农业领域业务,它可以帮助农民更好地管理土壤,提高农业生产的效率和经济效益。
土壤农化分析的主要内容是通过分析土壤的化学特性,测定土壤的外部和内部条件,以便了解土壤的理化特性、生物性特性、水土环境特性和养分状况等。
具体而言,土壤农化分析主要包括以下内容:
一、土壤性质分析:土壤是一种复杂的物质,它要反映土壤结构、机理和特性,还要反映土壤形成的环境条件等。
因此,土壤性质分析是土壤农化分析的重要组成部分。
二、土壤化学分析:土壤是自然界最重要的物质,其中含有大量的元素和其它有机和无机物质。
因此,土壤化学分析是了解土壤农业意义的重要手段。
三、土壤胶体分析:土壤胶体分析可以帮助我们了解土壤中有机物质含量和结构,以及其对有机物的质量降解的可能性等。
五、土壤养分分析:土壤养分分析可以帮助我们了解土壤中的生物可利用营养物质,同时可以检测土壤中有机物和无机物的细微变化,从而了解土壤的综合状况。
土壤农化分析的意义不言而喻,它是从事农业生产的人们掌握农田土壤性质、养分状况和生物生产潜力的过程,能够根据你的分析结果,采取有效的调节配方,以提高土壤肥力、改善土壤状况,有效地提高农业生产效率,从而保护我们的环境,实现可持续发展。
土壤农化分析(教案)第一章:土壤的组成与结构1.1 土壤的组成1.2 土壤的质地1.3 土壤的剖面结构1.4 土壤的分类与分布第二章:土壤肥力与养分2.1 土壤肥力的概念与评价2.2 土壤养分的来源与转化2.3 土壤养分的测定与调控2.4 土壤改良与施肥技术第三章:土壤水分与土壤侵蚀3.1 土壤水分的来源与分布3.2 土壤水分的测定与调控3.3 土壤侵蚀的类型与过程3.4 土壤侵蚀的防治措施第四章:土壤污染与土壤环境质量4.1 土壤污染的类型与来源4.2 土壤污染的测定与评价4.3 土壤污染的防治措施4.4 土壤环境质量的监测与保护第五章:土壤农化分析方法与技术5.1 土壤样品的采集与处理5.2 土壤养分的测定方法5.3 土壤水分的测定方法5.4 土壤污染物的测定方法第六章:土壤生物学与土壤生态学6.1 土壤生物学的概述6.2 土壤生物的分类与作用6.3 土壤生态系统的结构与功能6.4 土壤生物多样性与保护第七章:土壤农化实验设备与操作7.1 土壤农化实验设备介绍7.2 土壤样品处理设备与操作7.3 土壤养分测定设备与操作7.4 土壤污染物测定设备与操作第八章:土壤农化数据处理与分析8.1 土壤农化数据的基本处理方法8.2 土壤养分数据的统计分析8.3 土壤污染数据的的风险评估8.4 土壤农化数据的信息化管理第九章:土壤农化研究方法与进展9.1 土壤农化研究的基本方法9.2 土壤肥力评价方法与进展9.3 土壤污染研究方法与进展9.4 土壤环境质量研究方法与进展第十章:土壤农化分析案例研究10.1 土壤养分状况调查与评价案例10.2 土壤污染调查与修复案例10.3 土壤肥力改良与提升案例10.4 土壤水资源利用与保护案例第十一章:土壤与植物营养的关系11.1 土壤养分的植物吸收与利用11.2 植物营养诊断与土壤测试11.3 土壤-植物系统中营养物质的循环11.4 植物营养的平衡与调控第十二章:土壤改良与农业可持续发展12.1 土壤侵蚀的控制与土壤保持12.2 土壤盐碱化的改良技术与方法12.3 有机农业与土壤有机质管理12.4 农业可持续发展与土壤资源保护第十三章:土壤环境监测与污染防控13.1 土壤环境监测的方法与技术13.2 土壤污染的生物标志物与生物监测13.3 土壤污染的风险评估与管理13.4 土壤环境保护的政策与实践第十四章:土壤农化技术的应用与管理14.1 土壤肥力提升技术及其应用14.2 土壤污染物去除与修复技术14.3 土壤水资源管理技术及其应用14.4 土壤生物多样性保护与应用第十五章:土壤农化分析的未来趋势15.1 土壤组学与土壤生物标志物的研究15.2 土壤与数字土壤地图15.3 土壤纳米技术在土壤农化分析中的应用15.4 土壤农化分析的挑战与创新方向重点和难点解析重点:1. 土壤的组成与结构,包括不同质地的土壤及其剖面结构。
土壤农化分析第1章土壤农化分析的基本知识1、实验室用纯水如何得到?应该符合哪些要求,如何检验?2、试剂有哪些规格?如何选用和保存?3、常用器皿特点如何?如何选用?如何洗涤?玻璃器皿洗涤应遵循什么原则?4、常见滤纸的类别?各有何特点?如何选用?5、稀酸、稀碱如何配制?如何标定?第2章土壤样品的采集与制备1、如何使采集样品最具有代表性?2、土壤样品制备过程应该注意哪些事项3、采集混合土壤样品的原则是什么?第3章土壤样品的采集与制备1、重铬酸钾外加热容量法测定土壤有机质的原理是什么?2、铬酸、磷酸湿烧法测定有机质与重铬酸钾外加热容量法在原理上有何不同?3、列举常见土壤有机质测定方法,并比较其方法的优缺点。
4、长期沤水的水稻土采用哪种方法分析其有机质含量?为什么?第4章土壤N和S分析1、土壤氮素形态有哪些?相互关系如何?测定时应注意什么问题?2、土壤有效N有哪些形态,为什么测定土壤有效N特别困难?3、酚二磺酸比色法测定硝态氮时应注意什么问题?4、化学方法提取土壤硝态氮、氨态氮常用的浸提剂有哪些?5、简述半微量凯氏法测定土壤全氮的原理、步骤及注意事项?常用的催化剂有哪些?6、简述碱解扩散法测定土壤有效N的原理及步骤?第5章土壤P分析1、如何选择合适的土壤有效磷浸提剂?为什么0.5MNaHCO3是石灰性土壤有效磷较好的浸提剂?2、钼锑抗比色法测定P的原理及显色条件如何?干扰因素有哪些?如何消除?3、影响有效P浸提的因素有哪些?4、钼蓝比色法测定P时用的还原剂有抗坏血酸和SnCl2,使用二者对比色过程的影响如何?5、简述酸性土壤有效P测定的0.03MNH4F-0.025molHCl提取-钼蓝法测定的磷素形态,测定原理、步骤及注意事项。
6、土壤无机P形态有哪些?如何采用化学方法分级测定?第6章土壤K分析1、土壤钾素的存在形态及相互关系。
2、测定土壤全钾时样品的分解方法有哪些?试比较其优缺点。
3、浸提土壤交换性K最通用的是哪几种浸提剂?为什么1mol/L乙酸铵作为土壤速效钾的标准浸提剂,它有什么优点?4、简述1mol/L乙酸铵提取-火焰光度计测定土壤速效钾的原理、步骤及注意事项。
土壤农化分析教案第一章:土壤概述1.1 土壤的定义与重要性1.2 土壤的组成与结构1.3 土壤的分类与分布1.4 土壤的功能与特性第二章:土壤样品采集与处理2.1 土壤样品的采集方法2.2 土壤样品的处理与保存2.3 土壤样品的前处理技术2.4 土壤样品的代表性分析第三章:土壤理化性质分析3.1 土壤颗粒组成分析3.2 土壤水分含量分析3.3 土壤有机质含量分析3.4 土壤pH值分析第四章:土壤养分分析4.1 土壤氮素分析4.2 土壤磷素分析4.3 土壤钾素分析4.4 土壤中其他微量元素分析第五章:土壤污染与修复5.1 土壤污染的类型与来源5.2 土壤污染的影响与评估5.3 土壤修复技术与方法5.4 土壤环境质量标准与监测第六章:土壤肥力评价6.1 土壤肥力的概念与组成6.2 土壤肥力评价方法6.3 土壤肥力指标与评价体系6.4 土壤改良与施肥策略第七章:土壤微生物与土壤肥力7.1 土壤微生物的种类与功能7.2 土壤微生物与土壤肥力的关系7.3 土壤微生物群落分析方法7.4 土壤微生物活性评价与调控第八章:土壤水分与土壤侵蚀8.1 土壤水分的分布与循环8.2 土壤侵蚀的类型与过程8.3 土壤侵蚀的影响与评估8.4 土壤保持与侵蚀控制措施第九章:土壤呼吸与碳循环9.1 土壤呼吸的概念与过程9.2 土壤呼吸的影响因素9.3 土壤碳循环的意义与过程9.4 土壤碳库管理与全球气候变化第十章:土壤环境监测与保护10.1 土壤环境监测的方法与技术10.2 土壤环境保护的政策与法规10.3 土壤环境污染的防治策略10.4 土壤资源的可持续利用与保护第十一章:土壤电化学分析11.1 土壤电化学特性的重要性11.2 土壤电导率分析11.3 土壤pH电位分析11.4 土壤Eh电位分析第十二章:土壤中重金属污染分析12.1 重金属在土壤中的行为12.2 土壤重金属污染的测定方法12.3 土壤重金属污染的评价与风险管理12.4 土壤重金属污染的植物修复技术第十三章:土壤有机污染物分析13.1 土壤有机污染物的类型与特性13.2 土壤中有机污染物的检测技术13.3 土壤有机污染物的迁移与转化13.4 土壤有机污染物的环境风险评估第十四章:土壤酶学与土壤生态学14.1 土壤酶的种类与功能14.2 土壤酶活性与土壤肥力的关系14.3 土壤生态学原理与应用14.4 土壤生物多样性保护与生态系统服务第十五章:土壤农化分析实验室管理15.1 实验室的质量控制与标准化15.2 土壤样品的预处理与分析技术15.3 现代分析技术在土壤农化分析中的应用15.4 土壤农化分析结果的报告与解读重点和难点解析第一章:土壤概述重点:理解土壤的定义、重要性、组成、结构、分类和分布。
土壤农化分析完整土壤农化分析是农业生产管理中的重要环节,通过对土壤中有机质、养分、微生物等方面的分析,可以准确评估土壤质量和肥力水平,为农民提供科学的土壤管理措施,从而提高农作物的产量和质量。
下面将详细介绍土壤农化分析的步骤和意义。
一、土壤样品的采集在进行土壤农化分析之前,首先要采集代表性的土壤样品。
采样区域应该相对均匀,并且不同类型的土壤要分别采样。
采集土壤样品时要避开路旁、斜坡、河边等容易受到人为污染的地方。
采样工具要干净,避免带入外来污染。
采样深度一般为0-20厘米,将不同位置的样品混合均匀后取一部分作为分析样品。
二、土壤有机质的测定有机质是土壤中的重要组分,对土壤肥力和土壤结构有着重要影响。
有机质的含量可以通过测定土壤中的有机碳含量来判断。
一般可以采用干燥法、酸碱滴定法、元素分析仪等方法进行测定。
三、土壤养分的测定土壤养分是农业生产中的关键要素,包括全氮、全磷、全钾、速效氮、速效磷、速效钾等。
测定土壤养分可以采用化学分析法,如盐酸消化法、硝酸铵提取法等。
四、土壤酸碱度的测定土壤的酸碱度对植物生长和养分吸收有重要影响。
常用的测定土壤酸碱度的方法有pH值测定法和酸碱滴定法。
pH值可以通过酚酞指示剂和pH计进行测定。
五、土壤微生物的测定土壤中的微生物包括细菌、真菌、放线菌等,对土壤生态系统的稳定性和养分转化有着重要的作用。
常用的测定土壤微生物量的方法有好氧培养法、快速测定法等。
六、土壤理化性质的测定土壤的理化性质对农业生产也具有重要影响。
常用的测定土壤理化性质的方法有土壤颗粒组成的测定、土壤含水量的测定、土壤容重的测定等。
1.评估土壤质量和肥力水平,为农民提供科学的土壤管理措施。
通过分析土壤中有机质、养分、微生物等的含量和分布情况,可以了解土壤的肥力状况和潜在的问题,指导农民进行有针对性的施肥和土壤改良工作。
2.提高农作物的产量和质量。
通过合理施肥和土壤管理,提高土壤肥力和改良土壤结构,可以增加农作物对养分的吸收利用率,提高产量和品质。
土壤农化分析主要是测定土壤的各种化学成分的含量和某些性质。
常见的测定项目有:土壤矿质全量测定(即测定硅、铝、铁、锰、钛、磷、钾、钠、钙、镁的含量),土壤活性硅、铝、铁、锰含量测定,土壤全氮、全磷和全钾含量的测定,土壤有效养分(铵态氮、硝态氮、有效磷和钾)含量测定,土壤微量元素含量和有效性微量元素(铁、硼、锰、铜、锌和钼)含量测定,土壤有机质含量测定,以及土壤酸碱度、土壤阳离子交换量、土壤交换性盐基的组成的测定等。
其中土壤矿质全量、有机质含量、全氮量、有效养分含量、土壤酸碱度、阳离子交换量和交换性盐基组成等是必须进行测定的项目,故称土壤常规分析。
其他测定项目则可根据分析目的取舍。
20世纪30~40年代兴起的土壤测试,也可列入土壤化学分析范畴。
土壤化学分析方法很多,经典的方法有重量法、容量法和比色法。
现代实验室多采用自动化、半自动化仪器进行土壤常规分析。
这种实验室通常由4个系统组成:①样品半自动粉碎系统;②样品半自动提取系统;③由自动分析仪或流动注射分析仪、原子吸收/火焰发射光谱仪、pH自动分析仪和碳氮自动分析仪等组成的自动分析系统;④中央数据处理系统。
土壤矿质全量分析常用能量色散X射线能谱法或带电粒子活化分析仪或中子活化分析仪进行。
采用此法,土壤样品无需经任何处理即可直接测定,从而避免了因化学处理而造成土壤样品中成分的损失或杂质的掺入及对土壤样品的稀释作用等缺陷。
主要测定土壤中物质存在状态、运动形式以及能量的转移等。
常见的测定项目有:土壤含水量、土水势、饱和和非饱和导水度、水分常数、土壤渗漏速度、土壤机械组成、土壤比重和土壤容重、土壤孔隙度、土壤结构和微团聚体、土壤结持度、土壤膨胀与收缩、土壤空气组成和呼吸强度、土壤温度和导热率、土壤机械强度、土壤承载量和应力分布以及土壤电磁性等。
土壤物理分析除经典方法外,多借助现代化仪器进行,如应用水银注入测孔仪测定土壤结构(孔径可小至5纳米);应用磨片、光学技术及扫描电镜测定土壤结构的微域变化;应用带有电子计算机的中子-γ射线联用仪在田间直接测定土壤水分和土壤比重;应用气相色谱仪和三轴剪力仪分别测定土壤空气组成和土壤力学性质等。
土壤农化分析范文
土壤农业分析的基本过程包括:土壤采样、样品描述、样品分析和数据分析。
1.土壤采样:确定样品点,以及每个样品点的土壤样品量和层次。
土壤采样必须细心,有效的采样是正确分析的基础。
2.样品描述:对土壤样品进行描述,以确定其外观,质地,湿度,发臭,结壳,水分,颗粒大小,成份,结构,水吸收,形液比,润湿度,渗透和比重等特征。
3.样品分析:根据土壤农化分析技术的要求,对样品进行细致的化学分析,以检测其有机质、悬浮固体、水溶性无机盐、pH值、土壤密度和土壤空隙度等土壤质地和化学性质的含量。
4.数据分析:根据实验室测定的结果,运用统计学分析方法,综合分析和比较土壤质地和化学性质的变化,为作物种植,施肥调控奠定基础。
土壤农业分析是根据土壤质地和化学特性进行的,它有助于对土壤的肥力状况进行详细查询,为农作物提供充足的养分。
一、名词解释(20分)1. 系统误差:是由分析过程中某些固定原因引起的。
例如方法本的缺陷、计量仪器不准确、试剂不纯、环境因素的影响以及分析人员恒定的个人误差等。
2.偶然误差:又称随机误差,是指某些偶然因素,例如气温、气压、湿度的改变,仪器的偶然缺陷或偏离,操作的偶然丢失或沾污等外因引起的误差。
3.加标回收率:,评价分析方法的准确度的指标。
4. 对照试验: 只是一个条件(即因素)不同,其他条件(因素)都相同的情况下所进行的一组实验。
5. 土壤有效氮:包括无机氮和部分有机质中易分解的、比较简单的有机氮。
它是铵态氮、硝态氮、氨基酸、酰胺和易水解的蛋白质氮的总和,通常也称水解氮,它能反映土壤近期内氮素供应情况。
6. 粗蛋白质:粗蛋白质是含氮物质的总称。
包括真蛋白质和含氮物(氨化物)。
7 相对偏差:绝对误差与真值之比,常用百分数表示。
8 空白试验:用蒸馏水代替试液,用同样的方法进行试验,称为空白试验。
9 稀释热法:直接利用浓硫酸和重铬酸钾(2:1)溶液迅速混和时所产生的热(温度在120℃左右)来氧化有机碳,称为稀释热法(水合热法)。
10 好气培养法:好气培养法为取一定量的土壤,在适宜有温度、水分、通气条件下进行培养,测定培养过程中释放出的无机态氮,即在培养之前和培养之后测定土壤中铵态氮和硝态氮的总量,二者之差即为矿化氮。
11 厌气培养法:即在淹水情况下进行培养,测定土壤中由铵化作用释放出的铵态氮。
12 后煮:有机杂环态氮还未完全转化为铵态氮,因此消煮液清亮后仍需消煮一段时间,这个过程叫“后煮”。
13 土壤全磷:土壤中各种形态磷素的总和二、填空题(20分)1 含有机质高于50g·kg-1者,称土样0.1g,含有机质为20~30g·kg-1者,称土样( 0.3 )g,少于20g·kg-1者,称土样0.5g以上。
2 经典测定土壤有机质的方法有干烧法或湿烧法,放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
土壤农化分析
土壤农化分析包括四个方面:
土壤分析、肥料分析、植物分析和农产品分析。
其中土壤分析主要是土壤水分、土壤物理性质、土壤化学性质以及土壤酸碱度的分析,肥料分析主要有有机肥料、单质化学肥料及复合肥有效成分的分析,植物分析主要是植物营养诊断、植物体常量元素及微量元素分析,农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析,四部分内容组成了整个土壤农化分析。
土壤农化分析在近几年得到了长足的进步,同时相应的现代化分析仪器,也如雨后春笋般纷纷出现。
土壤分析主要分为土壤样品的采集和处理,土壤水分的测定,土壤有机质的测定,土壤中氮的测定,土壤中磷的测定,土壤钾素的测定,土壤阳离子交换量的测定,土壤可溶性盐分的测定,土壤微量元素的测定,土壤酸碱度的测定,土壤容重和孔度的测定(环刀法)。
肥料分析主要分为肥料样品的采集与制备,肥料含水量的测定,氮素化肥分析,磷素化肥分析,钾素化学肥料全钾量分析,复合肥料的分析,有机肥料的分析。
植物分析包括植物样品的采集、制备与保存,植物营养诊断,植物水分的测定,植物粗灰分的测定,植物常量元素的分析,植物微量元素分析,植物全碳的测定。
农产品分析包括农产品样品的采取制备与保存,水分的测定(植物产品),蛋白质的分析,农产品中碳水化合物的分析,植物中粗脂肪的测定,植物中维生素C的测定,农产品酸度测定(滴定法),农产品氨基酸的测定,果品硬度的测定,果品中可溶性固形物的测定(折射仪法)。
土壤农化分析已经单独成书,是在《土壤肥料、植物及农产品分析》基础上,再增加一定的内容修订而成的,土壤农化分析一书将更加齐全、更加全面的介绍土壤相关的各因素的成分分析。
网络上也有不少土壤农化分析相关的资料,请读者可以自主查询。
1、混合土样采集的原则和要求?(1)采样原则:具有高度的代表性、统一性。
(2)两点要求:①避免一切主观因素的影响,做到随机、多点取样;②几个相互比较的样品组应由同一时间(早春或晚秋)、同等数量(同样取样工具,取同样深度、宽度和厚度)的土样组成。
2、混合样品的采集目的、缺点、过程?(1)目的:把土壤不均一性的影响减小到最低限度,以减小采样误差,提高分析数据的可靠性,并且大大减轻了工作量。
(2)缺点:是多点样品混合后的测定值,从分析结果看不出该地块土壤的细微变化。
(3)过程:①采样区的划分及采样点的布置;②采样路线;③采样工具;④采样方法。
3土样过筛的注意事项?在橡皮垫上用木棍磨碎,或粉碎机。
*注意事项:(1)石跞不能碎;土样要逐次全部过筛,不能半途弃去。
(2)过筛孔径的大小,主要根据①分析项目的要求;②称样量的多少而定。
4、那些测定项目需要用20目的土样,那些需要100目的土样?说明原因?(分别列举三个)(1)100目(0.15mm或0.25mm): 土壤全N、有机质、矿质全量、Si、Fe、Al等(2)20目:测定速效N、P、K。
(3)它们(全量)的测定不受磨碎程度的影响,且土粒愈细与试剂反应愈充分。
(减少样误差和氧化完全)5、何为土壤有机质?土壤有机质是土壤中各种形态有机化合物的总称,它包括土壤中各种动植物残体、微生物及其分解与合成的各种有机形态。
6、土壤有机质的测定原理?(见实验报告)重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2OK2Cr2O7-在H2SO4存在下,土壤有机C氧化成CO2,释放出的CO2可以按照上述干烧法测定;也可把CO2导入过量Ba(OH)2溶液中使成BaCO3,然后用已知的标准酸(HCl)滴定剩余的Ba(OH)2,由净消耗的酸量求OM含量。
(用过量的,一定量的K2Cr2O7-H2SO4溶液氧化土壤有机C,使Org-C氧化成剩余的K2Cr2O7,用标准FeSO4回滴,根据净用氧化剂(K2Cr2O7)量来计算有机C量,反应式为:氧化:3C+2CrO2-7 +16H+→ 3CO2+4Cr23++8H2O滴定CrO2-7+6Fe2-+14H+ →2Cr3+ +6Fe3++7H2O终点指示剂有邻菲罗啉,二苯胺等。
其中邻菲罗啉批示剂终点时显常用。
[(C12H8N2)3Fe]3++e→[(C12H8N2)3Fe ]2+遇到强氧化剂,兰色Fe2+ 提供还原剂为砖红色滴定过程的颜色变化,开始为过量,CrO2-7的橙色,为主→灰绿→Cr3+的兰绿→砖红色。
FeSO4过量半滴即变成砖红色,表示终点已到。
)7、土壤有机质的测定方法和测定步骤:(P32)方法:重铬酸钾容量法—外加热法或重铬酸钾氧化还原滴定法。
8、土壤有机质测定的计算公式:土壤有机C% = (a-b) *cFe *0.003 *f *100m土壤OM%= 土壤有机C% *1.7249、土壤有机质的测定中干烧法与湿烧法的优点和缺点:(1) 优点:①均为经典方法,具有较高精密度,可作为标准方法;②使有机C 分解完全;③不受还原物质的影响。
(2)缺点:①干烧法需要特殊的仪器设备和较高的操作技术;②操作费时,碳酸盐有干扰。
10、重铬酸钾氧化还原滴定法优点和缺点:(注释——重铬酸钾氧化还原滴定法根据加热方式不同,又分为外热源法和稀释热法。
)(1)优点:操作简便、快速,不要求特殊仪器及很熟练的操作技术,土壤中碳酸盐无干扰,适于大批量样品的分析。
(2)缺点:①对样品OM 含量有一定要求,超过15%不易得到准确结果(可用稀释热法补救);②Fe2+、Cl-、MnO2等均对氧还反应有干扰;③与干烧法相比,反应不够彻底,氧化不完全,准确度差些。
11、重铬酸钾外热源法(外加热法)的优点和缺点:(1)优点:①氧化有机C 比较完全(是干烧法的90%以上);②各土壤间的变异较小;测定结果精密度较好。
(2)缺点:加热温度高,不易控制恒温,所以易产生误差。
12、土壤水分测定方法、原理和测定过程?(P22)1、新鲜土样水分的测定土壤水分的测定方法很多,实验室一般采用酒精烘烤法、酒精烧失法和烘干法。
(一)烘干法实验原理:烘干法是测定土壤含水量的常用方法,测定本身的误差取决于天平的精确度和取样的代表性。
同时烘干过程中温度与烘干时间的控制也是影响测定结果准确度的重要因素,样品要求在105℃烘干6-8小时,以确保将土壤样品中的自由水和吸湿水驱走,而化学结合水不至于排出,有机质也只有微量的氧化分解挥发损失。
对于腐殖质含量较高的土壤(>8%)、泥炭土及盐土,温度不应超过105℃,含有石膏的土壤只能加热到80℃,以免造成样品中结晶水的损失。
操作步骤:准备工作:在室内将铝盒编号并称重,重量记为W 1取样:在田间用土钻钻取有代表性的土样,取土钻中段土壤样品约20克,迅速装入以编号的铝盒内,称量铝盒与新鲜土壤样品的重量,记为W 2,带回室内。
烘干:打开铝盒盖子(盖子放在铝盒旁边),放在105℃的恒温烘箱内烘干6小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
恒重:打开铝盒盖子,放在105℃的恒温烘箱内再次烘干3-5小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
若前后两次称重相差不超过0.05克 即可认为已达到恒重。
重量记为W 3。
结果计算:以烘干土为基准的水分百分数:2330%100W W W W W -=⨯-以新鲜土为基准的水分百分水 2320%100W W W W W -=⨯- 式中W 指土壤含水量(%)W1指铝盒重量(克)W2指铝盒及新鲜土壤样品的重量(克)W3指铝盒及烘干土壤样品的重量(克)实验仪器:编有号码的有盖铝盒、托盘天平、土钻、小刀、恒温干燥箱、干燥器(二)酒精烘烤法实验原理:土壤加入酒精,在l05℃—110℃下烘箱内烘烤时可以加速水分蒸发,大大缩短烘烤时间,又不致于因有机质的烧失而造成误差。
实验步骤:准备工作:在室内将铝盒编号并称重,重量记为W1取样:在田间用土钻钻取有代表性的土样,取土钻中段土壤样品约20克,迅速装入以编号的铝盒内,称量铝盒与新鲜土壤样品的重量,记为W2,带回室内。
烘烤样品:用滴管滴加酒精数滴使得土样充分湿润,将铝盒开盖后放入烘箱中,在105℃—110℃条件下烘烤30分钟,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
重量记为W3。
结果计算:同上(三)酒精烧失速测法实验原理:酒精可与水分互溶,酒精在样品中燃烧使水分迅速蒸发干燥,燃烧前后损失的重量即为土壤含水量。
酒精燃烧时,火焰距土面2-3厘米,样品温度约为70-80℃,当火焰将熄灭前的几秒钟,火焰下降,土温迅速上升到180-200℃,然后很快下降到80-95℃,缓慢冷却。
由于高温阶段的时间短,所以样品中的有机质及盐类损失甚微(有机质含量高于5%的样品不适用于本法。
)用酒精燃烧法测定土壤含水量,全过程只需要20分钟,这种快速测定的方法适合与田间测定。
操作步骤:准备工作:在室内将铝盒编号并称重,重量记为W1取样:在田间用土钻钻取有代表性的土样,取土钻中段土壤样品约20克,迅速装入以编号的铝盒内,称量铝盒与新鲜土壤样品的重量,记为W2,带回室内。
烧失样品:加酒精于铝盒中,直到土面全部浸没即可,稍加振摇,使土样与酒精混合,点燃酒精,待燃烧将尽,用小玻棒来回拨动土样,助其燃烧(但过早拨动土样会造成土样毛孔闭塞,降低水分蒸发速度),熄火后再加酒精3毫升燃烧,如此进行2—3次,直至土样烧干为止。
将铝盒置于干燥器内冷却后称重为W3(克)。
计算结果:同上2、风干土样吸湿水的测定实验原理:在进行土壤理化分析时,需要在105℃下烘干,测定风干土壤样品的土壤吸湿水含量,并以烘干样品重为统一的计算基础。
这是因为土壤理化常规分析常按照烘干样品重计算分析结果,这样就可使整个分析结果有一个合理的相对性数值。
实验步骤:准备工作:在室内将铝盒编号并称重,重量记为W1称取样品:在分析天平上称取风干土壤样品放入已知重量的带盖铝盒内。
烘干样品:打开铝盒盖子(盖子放在铝盒旁边),放在105℃的恒温烘箱内烘干6小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
恒重:打开铝盒盖子,放在105℃的恒温烘箱内再次烘干3-5小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
若前后两次称重相差不超过0.003克即可认为已达到恒重。
重量级为W3。
13、土壤全氮存在的形态?(1)有机态N:占90%以上,大多数是腐殖物质态氮, 如蛋白质、氨基酸、氨基糖、腐殖质等。
(2)无机态N:占1-5%,主要有NH4-N、NO3-N、NO2-N(少量)(不包括固定态氮),一般小于100mg.kg-1。
14、土壤全N的测定原理?(16、凯氏定氮测定土壤全氮的方法原理?)含N有机物在催化剂作用下,与浓H2SO4高温共煮,使有机N转化成NH4-N((NH4)2SO4),然后在碱性溶液中蒸馏出NH3,用H3BO3吸收,再用标准酸溶液直接滴定H3BO3吸收的NH3,根据酸的用量来计算N含量。
15、土壤全氮的测定方法和步骤?(18、凯氏定氮测定土壤全氮的测定步骤?)(见实验报告)土壤全氮的测定方法:凯氏定氮法测定步骤:(P47)①样品的消煮催化剂+浓H2SO4有机N (NH4)2SO4(+无机N) ∆②消煮液中NH4+的定量(蒸馏)OH- H3BO3 H+(NH4)2SO4 NH3-NH4+ + H2BO3 H3BO3∆16、凯(开)氏反应的特点:①浓H2SO4是中强氧化剂,单靠它不能很快完成各类含N有机物的开氏反应,因此需要加入加速剂,以缩短消煮时间。
②开氏反应的氧化还原电位范围较窄,既须把有机C氧化成CO2,又须防止把NH4+氧化成NO3-,因此使用氧化剂要特别注意。
③高温消煮能促进有机质分解,但温度过高则会引起NH4+盐热分解,所以温度不能超过410C。
④有些有机N因抗性大则转化很慢,即使有加速剂,在消煮清亮后也必须再“后煮”一段时间。
17、土壤全氮测定中加热温度和时间的控制范围?加热温度与时间:加热温度在360-410C,才能使土壤有机N化合物分解完全,也不引起N的损失。
(1)对温度的控制:自动控温器或消煮管中H2SO4蒸汽冷凝回流的高度(在瓶颈上部1/3处冷凝回流为宜)。
用小火加热,待瓶内反应缓和时(10~15min),加强火力使消煮的土液保持微沸,并防止蒸干。
(2)加热时间:控制适当的加热时间可以保证土样中的有机N全部转化为NH4-N,又不致因时间过长而引起N素损失。
据全N标准化研究指出:(对半微量开氏法的要求)当消煮液和土粒全部变为灰白并略带绿色后,再消煮一小时,这1hr叫后煮,其作用是促使土壤中复杂的有机N化合物分解完全,全部转化为NH4-N。