关于高层建筑结构设计的特点
- 格式:doc
- 大小:26.00 KB
- 文档页数:6
高层建筑结构设计特点摘要:结构的科学合理性关系到结构的安全性及造价,况且目前的结构形式多元化,给结构设计提出了更高的要求。
本文主要对三种结构体系的设计特点进行论述。
关键词:高层建筑;结构体系;特点前言有些地区由于经济条件限制,小高层及高层建筑的结构设计比较偏向于该地区的特征,因此在进行结构设计时,应充分考虑该地区的特点,满足本地市场的需求。
现在普遍采用的结构形式有框架结构,剪力墙结构,框架-剪力墙结构,三种结构形式有利也有弊。
一、结构形式的特点(一)框架结构体系框架结构体系是由楼板、梁、柱及基础四种承重构件组成。
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构的优点在于建筑平面布置灵活,可以用隔断墙分隔空间,住户装修时更改室内空间也容易。
最重要的是计算理论相对成熟,施工工艺也成熟,工程质量得到保证。
框架结构的设计要点:柱网布置要规整,尽可能对称;梁柱中心线宜重合,以避免偏心对节点核心区和柱子产生的不利影响;填充墙宜选用轻质墙体,宜减轻结构自重。
框架结构的合理层数一般是 6~15层,最经济的层数是 10层左右。
其缺陷在于结构抗侧力能力差,本身柔性较大等,风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
层数多了还需要截面尺寸大的梁柱,减小了使用空间,造成材料浪费。
(二)剪力墙结构体系在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它空间整体性好,承载力和侧向刚度大。
合理设计的延性剪力墙具有良好的抗震性能。
在历次地震中,剪力墙结构震害较少发生,而且程度也较轻微。
在高层住宅中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观,但住户不能随便按照自己使用要求更改室内布局。
高层建筑结构设计特点简述0 前言随着我国经济的快速发展,高层建筑如雨后春笋,一栋栋拔地而起。
建筑的高层化和多样化发展,使得建筑结构设计方面的变化越来越多。
面对建筑类型、功能、数量的不断增加,高层建筑结构体系的多样化,高层建筑结构设计迎来了新新的机遇与挑战。
作者通过实践、总结,对高层建筑结构设计及结构体系,作出以下分析:1 高层建筑结构设计的特点1.1 决定因素是水平荷载对某一定高度楼房来说,其竖向荷载基本上是定值,但是其水平荷载随着结构动力特性的不同将有较大幅度变化,并不是定值。
由于楼房自重和建筑楼面的使用荷载在竖构件中所引起的弯矩和轴力的数值,与建筑高度成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,却与楼房高度的平方成正比[1]。
1.2 重要设计指标是结构延性在地震作用下,高层建筑相比于低层建筑的结构变形会更大一些。
因此,为了使高层建筑结构具有较强的变形能力,避免高层建筑倒塌,一定要在其结构设计时采取相应的措施,确保高层建筑的结构具有足夠的延性。
1.3 控制指标为侧移在高层建筑结构设计中,结构侧移是关键的控制指标,这与低层建筑有很大的不同。
由于在水平荷载作用下,高层建筑结构的侧移变形与建筑高度的四次方成正比。
建筑高度越高,其结构的侧移变形将大大增加。
因此,必须在水平荷载作用下,将高层建筑结构的侧移控制在允许的限度范围内。
1.4 不能忽视轴向变形高层建筑的竖向荷载很大,其将会在柱中引起比较大的轴向变形,从而减小连续梁中间支座处的负弯矩值,增大跨中正弯矩和端支座负弯矩值。
此外,竖向荷载还会对预测构件的下料长度、构件剪力和侧移等产生影响。
2 高层建筑的结构体系现阶段高层建筑常采用的结构体系主要有剪力墙结构体系、框架一剪力墙体系以及简体体系三种,其优缺点见表1[2]。
表1 结构体系优缺点比较结构体系优缺点剪力墙结构体系侧向刚度比较优良,平面布置也很规整,对侧向风力和地震的抵抗能力较强,釆用此种结构可以建造高度远大于框架结构的建筑。
综述高层建筑结构设计特点1 高层建筑的设计的基本特点高层建筑的设计特点大都集中的体现在侧移、结构延性、轴向变形和水平荷栽等方面。
而在一些竖零件中,因楼房的自重问题及楼面的使用荷栽,最终产生的弯矩数值还有轴力,它仅仅和楼房高度的成正比。
再说,竖向荷载较水平荷载具有的不确定性而具有确定性。
因此,水平荷载往往在高层建筑中起到决定性的作用。
由于在水平荷载的作用下的结构侧移变形会伴随着该高层建筑的楼层高度的增加会渐渐增大,所以结构侧移都是整个高层建筑设计的关键因素和控制指标。
此外,结构延性也可以作为高层建筑设计的重要指标。
为了保证整个高层建筑拥有足够的结构延性,就需要使其结构在进入塑性变形的阶段时仍然具有较强的变形能力而不会使自身出现倒塌的现象,因此需要在其结构的处理上采取相应的措施。
还有,在整个高层建筑的设计中,同样不能忽视高层建筑的轴向变形因素影响。
2 高层建筑的结构设计的基本原则1)基础设计方案。
在基础设计时,应该根据施工现场的工程地质条件,来对上层的结构类型、载荷分布、邻近建筑物影响和施工条件等诸多方面因素进行综合整理分析,以选择最合适的,且最经济的基础方案。
基础设计的时候还需要最大限度地发挥地基的作用,在有需要时甚至可以进行地基的变形验算。
除此之外,基础设计也必须要出具最为详尽的地质勘察报告,对那些缺少详尽地质报告的建筑,需要进行细致的现场查看,同时还要参考附近的建筑资料。
在一般的情况下,作为同一地区的结构单元都不会用两种各不相同的类型的基础方案。
2)结构设计方案。
对于一个切实可行的结构方案,实际上就是一个可以实际应用的结构形式和结构体系的总称。
结构体系的完备,就必须要做到受力明确、传力简单。
在简单的同一结构单元中,不适合选择用不同结构的体系混合,如果位于地震区单元附近就应该充分考虑平面及竖向规则。
而从工程的具体上来说,就必须对工程中所有的具体情况进行综合的整理分析,并且与建筑方、电、水、暖等各个方面的供应商进行充分协商,在此等基础上进行适当的结构方案的设计,以确定相应的结构方案。
高层建筑结构特点分析随着城市化进程的加快,高层建筑在城市中的地位日益重要。
高层建筑的结构特点对于建筑的安全性、稳定性和经济性都有着重要的影响。
本文将对高层建筑的结构特点进行分析。
一、垂直承载结构高层建筑的垂直承载结构是其最基本的结构特点。
由于高层建筑的高度较大,需要能够承受垂直荷载的结构设计。
常见的垂直承载结构包括框架结构、剪力墙结构和框架-剪力墙结构等。
框架结构是最常见的高层建筑结构形式,通过柱和梁的组合来承受垂直荷载。
剪力墙结构则是通过设置剪力墙来承受垂直荷载,剪力墙可以是混凝土墙或者钢板墙。
框架-剪力墙结构则是将框架结构和剪力墙结构相结合,以提高结构的稳定性和承载能力。
二、水平承载结构除了垂直承载结构外,高层建筑还需要具备良好的水平承载结构。
由于高层建筑容易受到风荷载和地震荷载的影响,水平承载结构的设计至关重要。
常见的水平承载结构包括框架结构、剪力墙结构和筒体结构等。
框架结构通过设置水平框架来承受水平荷载,剪力墙结构则通过设置剪力墙来承受水平荷载。
筒体结构是一种特殊的结构形式,通过设置圆柱形或者多边形的筒体来承受水平荷载,筒体结构具有较好的抗风性能。
三、抗震设计高层建筑的抗震设计是其结构特点之一。
由于高层建筑容易受到地震荷载的影响,抗震设计的重要性不可忽视。
抗震设计包括抗震设防烈度的确定、结构的抗震性能要求的确定以及结构的抗震设计方法的选择等。
常见的抗震设计方法包括增加结构的刚度、增加结构的阻尼、设置剪力墙和减震装置等。
抗震设计的目标是使高层建筑在地震发生时能够保持稳定,减少破坏和损失。
四、节能设计高层建筑的节能设计是其结构特点之一。
由于高层建筑的能耗较大,节能设计对于提高建筑的经济性和可持续性至关重要。
节能设计包括建筑外墙的保温隔热、采光和通风系统的设计以及能源利用的优化等。
常见的节能设计措施包括使用高效的保温材料、设置双层玻璃窗、采用自然通风和太阳能利用等。
节能设计的目标是减少高层建筑的能耗,提高建筑的能源利用效率。
高层建筑结构特点分析近年来,随着城市化进程的加速和人口增长的不断扩张,高层建筑作为现代城市的地标和标志性建筑物,日益受到人们的关注和青睐。
高层建筑是指高度在150米以上的建筑物,其独特的结构特点不仅体现了现代建筑工程技术的高超水平,也对建筑结构设计提出了更高的挑战。
本文将就高层建筑结构的特点进行深入分析,探讨其在建筑工程领域的重要性和创新性。
1. 纵向承载系统高层建筑的纵向承载系统是保证建筑物稳定性和安全性的关键之一。
一般来说,高层建筑采用的主要纵向承载系统包括框架结构、墙支撑结构、框架-墙组合结构等。
框架结构主要由柱、梁和核心筒组成,能够有效抵抗水平荷载,保证建筑物的整体稳定性;墙支撑结构则通过设置墙体来承担荷载,提高了建筑物的整体刚度和稳定性;框架-墙组合结构则将框架结构和墙支撑结构相结合,兼具两者的优点,是目前应用较为广泛的高层建筑结构形式之一。
2. 横向承载系统除了纵向承载系统外,高层建筑还需要考虑横向承载系统的设计。
横向承载系统是指建筑物在受到侧向风荷载或地震荷载时,通过设置承载墙、剪力墙、钢框架等结构形式来抵抗横向力的作用,防止建筑物产生倾斜或倒塌。
合理设计和布置横向承载系统对于提高高层建筑的整体稳定性和抗震性至关重要。
3. 地基基础高层建筑的地基基础设计直接关系到建筑物的安全稳定。
由于高层建筑的重量和高度较大,地基基础需要具备足够的承载能力和抗震性,以确保建筑物不会发生沉降或倾斜等异常现象。
常见的高层建筑地基基础形式包括承台基础、桩基础、复合地基等,设计时需根据实际地质条件和建筑物特点综合考虑,确保地基基础能够满足建筑物的要求。
4. 空间结构形式高层建筑的空间结构形式多样,不同形式的空间结构会影响建筑物的外观、使用功能和内部空间布局。
常见的高层建筑空间结构形式包括塔式结构、板柱结构、空心管结构等,每种结构形式都有其独特的特点和适用范围。
设计师在选择空间结构形式时需要根据建筑物的功能需求、美观要求和经济性等因素进行综合考虑,确保最终的建筑物能够达到预期的效果。
高层建筑的特点随着城市的不断发展和人口的增加,高层建筑在我们的生活中变得越来越普遍。
高层建筑作为城市的标志性建筑物,不仅具有独特的外观,还有许多独特的特点。
本文将探讨高层建筑的特点,包括其结构、功能和可持续性。
一、结构特点1.垂直发展:与传统低层建筑相比,高层建筑通常具有更多的楼层。
这要求高层建筑具备坚固的结构来承受垂直荷载。
常见的结构形式包括钢筋混凝土框架、钢结构和钢筋混凝土组合结构等。
2.抗风设计:由于高层建筑作为摩天大楼,会面临来自风力的巨大压力。
因此,在设计高层建筑时必须考虑其抗风能力。
多采用流线型和减阻设计,同时结构中的阻风设施如风筒、风荷载预警系统等也应得到充分考虑。
3.防火措施:高层建筑中的火灾风险较大,如不及时处理和控制,后果将十分严重。
因此,在高层建筑中应采取一系列的防火措施,包括灭火系统、防火门、疏散通道等,以确保人员的安全和楼体的完整性。
二、功能特点1.土地利用率高:随着城市用地的紧张和人口的增加,高层建筑能够更好地利用有限的土地资源。
相较于低层建筑,高层建筑在同等面积的情况下可以容纳更多的人员和设施。
2.城市空间的垂直发展:高层建筑的垂直发展带来了城市空间的扩展,可以提供更多的办公、居住和商业空间。
这不仅提高了城市的功能性,还改善了交通拥堵问题,提高了城市的整体效率。
3.促进社交交流:高层建筑内的共享设施和公共空间可以促进社交交流。
附带的咖啡厅、运动设施、休闲区域等为居民提供了更多的机会接触和交流,增强了社区的凝聚力。
三、可持续性特点1.节能环保:高层建筑的设计注重节能环保,包括建筑材料的选择、隔热性能的提高、太阳能发电系统的应用等。
这些举措旨在减少能源消耗和减少环境污染,提高建筑的可持续性。
2.绿色空间:高层建筑设计中加入了更多的绿化空间,如屋顶花园、垂直绿化等。
这些绿色空间不仅美化了建筑外观,还提供了更多的自然氧气和生态功能,改善了城市的生态环境。
3.水资源管理:高层建筑设计中考虑了水资源的合理利用,如雨水收集系统、节水设备等。
高层建筑结构设计特点及相关应用分析1、高层建筑结构设计特点(1)轴向变形不容忽视高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大。
(2)侧移成为控制指标与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,影响结构安全,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
(3)水平荷载成为决定因素一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的平方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
(4)结构延性是重要设计指标相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。
为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
2、高层建筑结构设计的主要原则2.1选择合适的基础方案基础设计应根据工程地质条件,上部结构类型与载荷分布,相邻建筑物影响及施工条件等多种因素进行综合分析,选择经济合理的基础方案,设计时宜最大限度地发挥地基的潜力,必要时应进行地基变形验算。
通常情况下,同一结构单元不宜用两种不同的类型。
2.2合理选择构方案一个合理的设计必须选择一个经济合理的结构方案,也就是要选择一个切实可行的结构形式和结构体系。
总之,工程的设计要求、材料供应、地理环境、施工条件等情况都要进行综合分析,并与建筑、电、水、暖等专业充分协商,在此基础上进行结构选型,确定结构方案。
2.3正确分析计算结果由于目前软件种类繁多,不同软件往往会导致不同的计算结果。
高层民用建筑剪力墙结构设计特点及其优化策略随着城市化进程的加快和人口的不断增长,高层民用建筑的建设已经成为了城市发展的重要组成部分。
而在高层建筑的结构设计中,剪力墙结构因其较好的抗震性能和结构稳定性而备受青睐。
本文将从剪力墙结构的设计特点以及优化策略两个方面进行探讨,以期为高层民用建筑的结构设计提供一些参考和指导。
一、剪力墙结构的设计特点1. 抗震性能好剪力墙结构的一个显著特点就是其较好的抗震性能。
剪力墙结构可以有效地抵抗地震引起的水平荷载,从而保障建筑在地震发生时的整体稳定性。
这是因为在地震发生时,建筑结构会受到水平方向的作用力,而剪力墙结构的设置可以在一定程度上减小结构的位移,从而减轻地震对结构的影响,提高建筑的抗震性能。
2. 结构稳定性高剪力墙结构还具有较高的结构稳定性。
在高层建筑中,结构的稳定性是非常重要的,剪力墙结构通过在建筑不同部位设置剪力墙,可以有效地提高建筑的整体结构稳定性,减小结构的变形和振动,保障建筑在使用过程中的安全性和稳定性。
3. 建筑空间利用率高剪力墙结构的设计可以有效地提高建筑的空间利用率。
在建筑结构设计中,通常会考虑到建筑的空间利用率,尤其是在高层建筑中。
而剪力墙结构可以通过在建筑的外围或内部设置剪力墙来实现结构的稳定,而不需要增加大量的柱子或梁,从而提高了建筑的空间利用率。
4. 施工便利剪力墙结构的施工也相对便利。
剪力墙结构相对于其他结构形式来说,其施工过程更加简单,施工难度也较低,从而可以有效地节约施工时间和成本,提高施工效率。
二、剪力墙结构的优化策略1. 合理确定剪力墙布置位置在设计剪力墙结构时,需要合理确定剪力墙的布置位置。
通常剪力墙应该布置在建筑结构的承重墙或外围墙等位置,以确保结构的整体稳定性。
还需要考虑剪力墙的数量和间距,以及结构的布置方式,从而在保证结构稳定性的前提下提高建筑的空间利用率。
2. 采用新型材料和技术在剪力墙结构的设计中,可以考虑采用一些新型材料和技术来进一步优化结构设计。
高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。
然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。
一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。
首先,高层建筑所承受的风荷载和地震作用明显增大。
随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。
地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。
其次,高层建筑的竖向荷载较大。
由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。
再者,高层建筑的结构体系更为复杂。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。
二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。
这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。
在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。
(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。
因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。
(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。
这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。
(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。
结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。
(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。
高层建筑结构设计的特点及注意事项
1.抗震设计:高层建筑的抗震设计是结构设计的重要内容,需要采用合理的结构体系和抗震构造设计,以确保建筑物在地震等自然灾害中的稳定性和安全性。
2. 稳定性设计:由于高层建筑的高度和结构复杂性,其结构稳定性设计需要考虑多种因素,如水平荷载、风荷载、自重等,以确保建筑物的整体稳定性。
3. 选材:高层建筑结构设计需要选用合适的材料,如钢材、混凝土等,以满足建筑物的强度和稳定性要求。
4. 细化设计:高层建筑结构设计需要进行细化的设计,包括材料的选用、构造的设计、节点的布置等,以确保建筑物在使用寿命内的稳定性和安全性。
5. 维护保养:高层建筑结构设计需要考虑维护保养的问题,以确保建筑物长期稳定和安全运行。
总之,高层建筑结构设计需要综合考虑多种因素,以确保建筑物的安全稳定和长期使用寿命。
- 1 -。
关于高层建筑结构设计的特点
摘要:本文探讨高层建筑结构的设计首先必须以其不同结构体系产生的影响为依据,选择最为合理的方案。
关键词:高层建筑;结构设计;原则;特点;体系
abstract: this paper discusses effects of tall building structure design must first produced by the different structure system as the basis, the reasonable scheme for selection.
key words: high-rise building; structure design; principle; characteristic; system
中图分类号:[tu208.3]文献标识码:a文章编号:
1高层建筑结构设计的原则
适用、安全、经济、美观、便于施工是进行高层建筑结构设计的原则。
一个优秀的建筑结构设计往往是这五个方面的最佳结合。
完美的建筑结构设计就是在努力追求这五个方面的最佳结合的过程
中产生的,适用、安全、经济、美观、便于施工是结构设计人员最
终努力的目标,是结构设计的最佳体现。
结构设计一般在建筑设计之后,“受制”于建筑设计,但又“反制”于建筑设计。
结构设计不能破坏建筑设计,应满足、实现各种建筑
要求;高层建筑设计不能超出结构设计的能力范围,不能超出安全、经济、合理的结构设计原则。
结构设计决定高层建筑设计能否实现,从这个意义上讲,结构设计显得更为重要,虽然一栋标志性建筑物
建成后,人们只知道建筑师的名字,但一个适用、安全、经济、美观、便于施工的结构设计也是工程师们的骄傲和成就。
2高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平
面的布置、立面体形、楼层高度、施工技术的要求、施工工期长短和投
资造价的高低等。
其主要特点有:
2.1 水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比(n=wh);而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比(水平均布荷载:m=1/2qh2,水平倒三角形荷载:m=1/3qh2),如图一示。
另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2.2 侧移成为设计的控制指标与低层或多层建筑不同,结构侧移成为高层结构设计中的关键因素。
随着建筑高度的增加,水平荷载
下结构的侧向变形迅速增大,与建筑高度h 的4 次方成正比:
此外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:①因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,因p- △效应而使结构产生的附加内力,甚至破坏;②使居住人员产生不安全感;③使填充墙或建筑装饰开裂或损坏,主体结构出现裂缝或损坏,影响正常使用。
2.3 抗震设计要求更高,延性成为结构设计的重要指标有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。
结构的抗震性能决于其“能量吸收与耗散”能力的大小,即决于结构延性的大小。
延性是表示构件和结构屈服后,具有承载能力不降低、具有足够塑性变形能力的一种性能,通长采用延性系数μ来衡量延性的大小,μ=△u/△y如图2。
3.3概念设计与理论计算同等重要
概念设计是指一些难以做出精确力学分析或在规范中难以具体
规定的问题,必须由工程师运用”概念”进行分析,做出判断,以便采取相应措施。
概念设计带有一定经验性。
高层建筑结构的抗震设计计算是在一定假定条件下进行的。
尽管分析的手段不断提高,分析的原理不断完善,但是由于地震作用的复杂性和不确定性,地
基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多。
尤其是当结构进入弹塑性阶段之后,会出现构件的局部开裂,甚至破坏,这时结构就很难用常规的计算原理去进行内力分析。
实践表明,在设计中把握好高层建筑的概念设计,从整体上提高建筑的抗震能力,消除结构中的抗震薄弱环节,再辅以必要的计算和结构措施,才能设计出具有良好抗震性能的高层建筑。
将注重概念设计作为高层建筑结构的最高原则提出其主要内容为:应特别重视建筑结构的规则性(包括平面规则性和竖向规则性);合理选择建筑结构体系包括:a.明确的计算简图和合理的地震作用传递途径;b.避免因部分结构构件的破坏而导致整个结构丧失承受重力、风载和地震作用的能力;c.结构体系应具备必要的承载能力和良好的变形能力,从而形成良好的耗能能力;采取必要的抗震措施提高结构构件的延性。
3高层建筑的结构体系
3.1框架结构体系
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由梁联系起来,形成空间结构体系。
框架结构的优点是建筑平面布置灵活,可以做成有较大空间的会议室、餐厅、车间、营业厅、教室等。
需要时,可用隔断分割成小房间,或拆除隔断改成大房间,因而使用灵活。
外墙采用非承重构件,可使立面设计灵活多变。
但是框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。
不高于15层宜采用框架
结构,可以达到比较好的经济平衡点。
3.2剪力墙结构体系
剪力墙结构体系是利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构体系。
墙体同时作为维护及房间分隔构件。
剪力墙间距一般为3~8m,现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求容易满足,适于建造较高的高层建筑。
而且其抗震性能良好,在历次的地震中,都表现了很好的抗震性能,震害较少发生,程度也很轻微。
但是剪力墙结构间距不能太大,平面布置不灵活,而且不宜开过大的洞口,自重往往也较大,不是很能满足公共建筑的使用要求,而且其成本也较大。
3.3框架-剪力墙结构体系
框架-剪力墙结构体系由框架和剪力墙组成。
剪力墙作为主要的水平荷载承受的构件,框架和剪力墙协同工作的体系。
在框架-剪力墙结构中,由于剪力墙刚度大,剪力墙承担大部分水平力(有时可以达到80%~90%),是抗侧力的主体,整个结构的侧向刚度大大提高。
框架则承受竖向荷载,提供较大的使用空间,同时承担少部分水平力。
由于有了剪力墙,其体系比框架结构体系的刚度和承载力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙和外墙)的损坏。
这样无论在非地震区还是地震区,都可以用来建造较高的高层建筑。
还可以把中间部分的剪力墙形成筒体结构,布置在内部,外部柱子的布置就可以十分灵活;内筒采用滑模施工,外围的框架柱断面小、开间大、跨度大,很适合现在
的建筑设计要求。
除了上述的几种结构体系外,还有其他一些结构体系,如薄壳、膜结构、网架等。
随着时代的进步,会涌现出越来越多更好的结构体系。
这就需要不断学习,从各方面考虑运用经济合理的手段到达目标。
4结语
总之,高层建筑的高度和数量,从一个侧面反映一个国家科学技术水平和经济发展程度但对于高层建筑亦应适当控制,即要与原有建筑相协调,还要与城市历史特点相协调。
参考文献
[1]吴晓琳。
浅析高层建筑结构设计与特点[j]。
中国高新技术企业,2009(11)
[2]何辉,吴祖跃。
浅谈高层建筑结构的设计与分析[j]。
科技创新导报,2009(13)。