高层建筑结构设计与特点
- 格式:doc
- 大小:28.00 KB
- 文档页数:8
高层建筑的常见结构形式及特点高层建筑的结构体系主要有:框架结构、框架―剪力墙结构、剪力墙结构、、框支剪力墙结构、筒体结构等。
框架结构,是由纵梁、横梁和柱组成的结构,这种结构是梁和柱刚性连接而成骨架的结构。
框架结构的优点:强度高,自重轻,整体性和抗震性好,柱网布置灵活,便于获得较大的使用空间;施工简便,较经济;框架结构的弱点:抗侧移刚度小,侧移大;对支座不均匀沉降较敏感等。
根据分析,框架房屋高度增加时,侧向力作用急剧地增长,当建筑物达到一定高度时,侧向位移将很大,水平荷载产生的内力远远超过竖向荷载产生的内力。
一般适用于10层以下、以及10层左右的房屋结构。
框架―剪力墙结构,又称框剪结构,框架-剪力墙结构体系是指由框架和剪力墙共同作为竖向承重结构的多(高)层房屋结构体系。
它是在框架纵、横方向的适当位置,在柱与柱之间设置几道钢筋混凝土墙体(剪力墙)。
在这种结构中,框架与剪力墙协同受力,剪力墙承担绝大部分水平荷载,框架则以承担竖向荷载为主,这样,可以减少柱子的截面。
剪力墙在一定程度上限制了建筑平面布置的灵活性。
框架-剪力墙结构体系则充分发挥框架和剪力墙各自的特点,既能获得大空间的灵活空间,又具有较强的侧向刚度。
所以这种结构形式在房屋设计中比较常用。
这种体系一般用于办公楼、旅馆、住宅以及某些工艺用房。
框架一剪力墙结构,一般用于25层以下房屋结构。
剪力墙结构,是由纵向、横向的钢筋混凝土墙所组成的结构,即结构采用剪力墙的结构体系。
墙体除抵抗水平荷载和竖向荷载外,还对房屋起围护和分割作用。
剪力墙结构优点是整体性好,侧向刚度大,适宜做较高的高层建筑,水平力作用下侧移小,并且由于没有梁、柱等外露构件,可以不影响房屋的使用功能。
缺点是由于剪力墙位置的约束,使得建筑内部空间的划分比较狭小,不能提供大空间房屋,结构延性较差。
因此较适宜用于宾馆与住宅。
全剪力墙结构常用于25~30层结构。
筒体结构,是用钢筋混凝土墙围成侧向刚度很大的筒体的结构形式。
高层建筑结构设计特点摘要:结构的科学合理性关系到结构的安全性及造价,况且目前的结构形式多元化,给结构设计提出了更高的要求。
本文主要对三种结构体系的设计特点进行论述。
关键词:高层建筑;结构体系;特点前言有些地区由于经济条件限制,小高层及高层建筑的结构设计比较偏向于该地区的特征,因此在进行结构设计时,应充分考虑该地区的特点,满足本地市场的需求。
现在普遍采用的结构形式有框架结构,剪力墙结构,框架-剪力墙结构,三种结构形式有利也有弊。
一、结构形式的特点(一)框架结构体系框架结构体系是由楼板、梁、柱及基础四种承重构件组成。
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构的优点在于建筑平面布置灵活,可以用隔断墙分隔空间,住户装修时更改室内空间也容易。
最重要的是计算理论相对成熟,施工工艺也成熟,工程质量得到保证。
框架结构的设计要点:柱网布置要规整,尽可能对称;梁柱中心线宜重合,以避免偏心对节点核心区和柱子产生的不利影响;填充墙宜选用轻质墙体,宜减轻结构自重。
框架结构的合理层数一般是 6~15层,最经济的层数是 10层左右。
其缺陷在于结构抗侧力能力差,本身柔性较大等,风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
层数多了还需要截面尺寸大的梁柱,减小了使用空间,造成材料浪费。
(二)剪力墙结构体系在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它空间整体性好,承载力和侧向刚度大。
合理设计的延性剪力墙具有良好的抗震性能。
在历次地震中,剪力墙结构震害较少发生,而且程度也较轻微。
在高层住宅中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观,但住户不能随便按照自己使用要求更改室内布局。
高层建筑结构设计特点及其体系
高层建筑结构设计特点包括:
1、建筑结构受限材料:高层建筑结构设计要求使用较轻质而且具有高强度的受限材料,如钢筋混凝土,钢结构等;
2、建筑结构受限条件:高层建筑要满足建筑本身的结构受限条件,特别是地震动力和受力状况;
3、建筑结构受限原则:为了满足建筑的高层结构,应当采用多层次的技术原则,它们分别是力学原理、结构几何原则、计算机技术等;
4、建筑结构体系:建筑结构体系包括主体结构、防火与抗震结构、外墙框架结构等,要充分考虑建筑结构的加固,使结构具有良好的复合性和可靠性,并考虑外部负荷和抗火性能;
5、结构设计思路:在设计高层建筑结构时,应充分考虑建筑物的重量,以及土木与气象等外部负荷,并结合结构的受力特性和性能,制定结构的合理规范。
高层建筑结构设计特点简述0 前言随着我国经济的快速发展,高层建筑如雨后春笋,一栋栋拔地而起。
建筑的高层化和多样化发展,使得建筑结构设计方面的变化越来越多。
面对建筑类型、功能、数量的不断增加,高层建筑结构体系的多样化,高层建筑结构设计迎来了新新的机遇与挑战。
作者通过实践、总结,对高层建筑结构设计及结构体系,作出以下分析:1 高层建筑结构设计的特点1.1 决定因素是水平荷载对某一定高度楼房来说,其竖向荷载基本上是定值,但是其水平荷载随着结构动力特性的不同将有较大幅度变化,并不是定值。
由于楼房自重和建筑楼面的使用荷载在竖构件中所引起的弯矩和轴力的数值,与建筑高度成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,却与楼房高度的平方成正比[1]。
1.2 重要设计指标是结构延性在地震作用下,高层建筑相比于低层建筑的结构变形会更大一些。
因此,为了使高层建筑结构具有较强的变形能力,避免高层建筑倒塌,一定要在其结构设计时采取相应的措施,确保高层建筑的结构具有足夠的延性。
1.3 控制指标为侧移在高层建筑结构设计中,结构侧移是关键的控制指标,这与低层建筑有很大的不同。
由于在水平荷载作用下,高层建筑结构的侧移变形与建筑高度的四次方成正比。
建筑高度越高,其结构的侧移变形将大大增加。
因此,必须在水平荷载作用下,将高层建筑结构的侧移控制在允许的限度范围内。
1.4 不能忽视轴向变形高层建筑的竖向荷载很大,其将会在柱中引起比较大的轴向变形,从而减小连续梁中间支座处的负弯矩值,增大跨中正弯矩和端支座负弯矩值。
此外,竖向荷载还会对预测构件的下料长度、构件剪力和侧移等产生影响。
2 高层建筑的结构体系现阶段高层建筑常采用的结构体系主要有剪力墙结构体系、框架一剪力墙体系以及简体体系三种,其优缺点见表1[2]。
表1 结构体系优缺点比较结构体系优缺点剪力墙结构体系侧向刚度比较优良,平面布置也很规整,对侧向风力和地震的抵抗能力较强,釆用此种结构可以建造高度远大于框架结构的建筑。
高层建筑结构特点分析随着城市化进程的加快,高层建筑在城市中的地位日益重要。
高层建筑的结构特点对于建筑的安全性、稳定性和经济性都有着重要的影响。
本文将对高层建筑的结构特点进行分析。
一、垂直承载结构高层建筑的垂直承载结构是其最基本的结构特点。
由于高层建筑的高度较大,需要能够承受垂直荷载的结构设计。
常见的垂直承载结构包括框架结构、剪力墙结构和框架-剪力墙结构等。
框架结构是最常见的高层建筑结构形式,通过柱和梁的组合来承受垂直荷载。
剪力墙结构则是通过设置剪力墙来承受垂直荷载,剪力墙可以是混凝土墙或者钢板墙。
框架-剪力墙结构则是将框架结构和剪力墙结构相结合,以提高结构的稳定性和承载能力。
二、水平承载结构除了垂直承载结构外,高层建筑还需要具备良好的水平承载结构。
由于高层建筑容易受到风荷载和地震荷载的影响,水平承载结构的设计至关重要。
常见的水平承载结构包括框架结构、剪力墙结构和筒体结构等。
框架结构通过设置水平框架来承受水平荷载,剪力墙结构则通过设置剪力墙来承受水平荷载。
筒体结构是一种特殊的结构形式,通过设置圆柱形或者多边形的筒体来承受水平荷载,筒体结构具有较好的抗风性能。
三、抗震设计高层建筑的抗震设计是其结构特点之一。
由于高层建筑容易受到地震荷载的影响,抗震设计的重要性不可忽视。
抗震设计包括抗震设防烈度的确定、结构的抗震性能要求的确定以及结构的抗震设计方法的选择等。
常见的抗震设计方法包括增加结构的刚度、增加结构的阻尼、设置剪力墙和减震装置等。
抗震设计的目标是使高层建筑在地震发生时能够保持稳定,减少破坏和损失。
四、节能设计高层建筑的节能设计是其结构特点之一。
由于高层建筑的能耗较大,节能设计对于提高建筑的经济性和可持续性至关重要。
节能设计包括建筑外墙的保温隔热、采光和通风系统的设计以及能源利用的优化等。
常见的节能设计措施包括使用高效的保温材料、设置双层玻璃窗、采用自然通风和太阳能利用等。
节能设计的目标是减少高层建筑的能耗,提高建筑的能源利用效率。
高层建筑结构特点分析近年来,随着城市化进程的加速和人口增长的不断扩张,高层建筑作为现代城市的地标和标志性建筑物,日益受到人们的关注和青睐。
高层建筑是指高度在150米以上的建筑物,其独特的结构特点不仅体现了现代建筑工程技术的高超水平,也对建筑结构设计提出了更高的挑战。
本文将就高层建筑结构的特点进行深入分析,探讨其在建筑工程领域的重要性和创新性。
1. 纵向承载系统高层建筑的纵向承载系统是保证建筑物稳定性和安全性的关键之一。
一般来说,高层建筑采用的主要纵向承载系统包括框架结构、墙支撑结构、框架-墙组合结构等。
框架结构主要由柱、梁和核心筒组成,能够有效抵抗水平荷载,保证建筑物的整体稳定性;墙支撑结构则通过设置墙体来承担荷载,提高了建筑物的整体刚度和稳定性;框架-墙组合结构则将框架结构和墙支撑结构相结合,兼具两者的优点,是目前应用较为广泛的高层建筑结构形式之一。
2. 横向承载系统除了纵向承载系统外,高层建筑还需要考虑横向承载系统的设计。
横向承载系统是指建筑物在受到侧向风荷载或地震荷载时,通过设置承载墙、剪力墙、钢框架等结构形式来抵抗横向力的作用,防止建筑物产生倾斜或倒塌。
合理设计和布置横向承载系统对于提高高层建筑的整体稳定性和抗震性至关重要。
3. 地基基础高层建筑的地基基础设计直接关系到建筑物的安全稳定。
由于高层建筑的重量和高度较大,地基基础需要具备足够的承载能力和抗震性,以确保建筑物不会发生沉降或倾斜等异常现象。
常见的高层建筑地基基础形式包括承台基础、桩基础、复合地基等,设计时需根据实际地质条件和建筑物特点综合考虑,确保地基基础能够满足建筑物的要求。
4. 空间结构形式高层建筑的空间结构形式多样,不同形式的空间结构会影响建筑物的外观、使用功能和内部空间布局。
常见的高层建筑空间结构形式包括塔式结构、板柱结构、空心管结构等,每种结构形式都有其独特的特点和适用范围。
设计师在选择空间结构形式时需要根据建筑物的功能需求、美观要求和经济性等因素进行综合考虑,确保最终的建筑物能够达到预期的效果。
高层建筑的结构设计特点及基础结构设计摘要:高层建筑的上部结构,基础及地基组成了一个共同作用的体系,在高层建筑基础设计中,要有效利用上部结构刚度,充分考虑地基条件对基础受力的影响,合理选择基础形式,运用共同作用的理论设计地基和基础,达到减少基础内力与沉降、降低基础造价的目的。
本文就高层结构设计的特点、设计原则以及基础的结构设计中存在的几个问题进行了探讨。
关键词:高层建筑;结构特点;基础结构设计0.引言高层建筑结构设计越来越成为高层建筑设计工作的难点与重点,给工程设计人员提出了更高的要求。
在高层建筑结构设计中,基础设计极其重要,扎实、适用的基础,是确保高层建筑质量的关键所在。
在进行高层建筑结构设计时,要结合当地情况,考虑好可能存在的一系列影响因素,把基础设计做好。
本文就高层结构设计的特点、设计原则以及基础的结构设计中存在的几个问题进行探讨。
1.高层建筑结构设计特点1.1水平荷载成为决定因素首先,数据显示楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值仅与楼房高度的一次方成正比,而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力与楼房高度的两次方成正比。
因此,水平荷载对高层建筑稳定性的影响作用是很大的。
1.2轴向变形不可忽视高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
1.3侧移成为控制指标与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。
随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:(1)因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。
然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。
一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。
首先,高层建筑所承受的风荷载和地震作用明显增大。
随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。
地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。
其次,高层建筑的竖向荷载较大。
由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。
再者,高层建筑的结构体系更为复杂。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。
二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。
这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。
在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。
(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。
因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。
(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。
这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。
(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。
结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。
(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。
高层建筑结构设计的特点及注意事项
1.抗震设计:高层建筑的抗震设计是结构设计的重要内容,需要采用合理的结构体系和抗震构造设计,以确保建筑物在地震等自然灾害中的稳定性和安全性。
2. 稳定性设计:由于高层建筑的高度和结构复杂性,其结构稳定性设计需要考虑多种因素,如水平荷载、风荷载、自重等,以确保建筑物的整体稳定性。
3. 选材:高层建筑结构设计需要选用合适的材料,如钢材、混凝土等,以满足建筑物的强度和稳定性要求。
4. 细化设计:高层建筑结构设计需要进行细化的设计,包括材料的选用、构造的设计、节点的布置等,以确保建筑物在使用寿命内的稳定性和安全性。
5. 维护保养:高层建筑结构设计需要考虑维护保养的问题,以确保建筑物长期稳定和安全运行。
总之,高层建筑结构设计需要综合考虑多种因素,以确保建筑物的安全稳定和长期使用寿命。
- 1 -。
论述高层建筑结构设计的特点我国的城市化进展让土地资源越来越紧张,如今城市人口不断增加更是加剧了土地资源的稀缺情况。
为了应对这种情况,就需要加大建筑的空间,增加建筑的楼层,更大程度开发建筑的居住率和使用率。
高层建筑与普通的中低层建筑相比,它的垂直高度大、楼层数多、结构更为复杂、设计需更加谨慎,高层建筑的设计特点需要与其设计结构和谐统一。
这就对设计人员的专业技能提出了更高的要求,设计人员应当将高层建筑的结构设计特点放在首位,在确保了高层建筑结构的稳定、安全、先进、适用后再考虑造型特点。
一、高层建筑的结构设计特点高层建筑和中低层建筑相比,最大的特点就是楼层高、楼层多,所以在设计高层建筑时必须将结构安全摆在首位。
结构设计的质量还会影响机电管道的设计、建筑的平面和三维立体的规划布置、房屋布线的设计、供水的方案、工程的时间和预算。
可以说是"牵一发而动全身",其影响面之广不用多言,下面详细说说高层建筑的结构设计特点:(一)水平结构特点:无论是高层建筑还是中低层建筑,水平力都是控制楼面和屋面纵向负载的力量,而水平结构还将承担起连接每个纵向结构的任务。
高层建筑的结构设计中,竖向轴力和弯矩数值都与建筑高度的一次方成正比,所以水平力随着楼层数目的增加,对纵向楼面和屋面的负载力量也要随之加大,水平结构所承载的任务也会加重。
要设计一个安全的高层建筑结构,水平结构的设计不能马虎。
(二)抗震性设计虽然我国处在地震带上的地区较少,不过天有不测风云,谁也不能预测自然的变化,所以现在的建筑设计中都会参杂着"避震设计",对于建筑高度较高,楼层数目较多的高层建筑来说,对避震设计提出了更高的要求。
在设计高层建筑结构时,需要在保证建筑结构安全良好的前提下,充分考虑纵向荷载和风荷载对抗震设计的影响。
(三)侧移数值高层建筑中的侧移数值会根据建筑高度的变化而变化,侧移的数值和建筑高层的四次方成正比,建筑高度不断增加会导致水平负载结构发生侧移变形的程度不断加大。
Building Technology88《华东科技》高层建筑的结构设计特点及基础结构设计孙夏兰(同圆设计集团有限公司安徽分公司,安徽 合肥 230000)摘要:我国建筑行业随着经济的不断发展快速成长,在高层建筑方面取得优异成绩,建筑规模正在逐渐扩大,高层建筑的结构设计受到设计人员的广泛关注。
高质量的结构设计,才能保障建筑的安全性及稳定性,本文从工程举例分析高层建筑结构设计特点及基础设计方面展开分析,以期帮助设计人员能够做出质量高的设计和规划,提出参考意见。
关键词:高层建筑;设计特点;基础结构设计近年来,高层建筑不断快速发展,越来越引起相关设计人员的高度重视。
高层建筑的结构设计是一项比较复杂的工程,且综合性较强。
而在高层建筑结构设计中,基础设计是核心部分,是保障建筑安全性及稳定性的基础,同时也具有一定难度,这对结构设计人员的专业要求也越来越高。
在高层建筑设计中需结合当地实际情况,做出相应设计方案,及时发现问题并解决,根据这些影响因素提出可行的设计方案,因此,了解高层建筑的特点、原则及基础的结构设计对结构设计人员十分重要。
1 工程概况 工程名称:某办公楼大厦。
建筑面积为25000m 2,层数为地上26层,地下2 层,层高为3.3m,结构高度为92.4 m,平面整体为井字型建筑,详见图1。
图1 工程平面图2 结构平面布置2.1 框架-核心筒结构体系根据建筑的平面布置要求,本工程为综合办公大楼,需要有较大的办公空间和会议室,整个工程呈现核心筒结构体系,其主要特点为降低偏心影响,可最大程度承受水平负荷力,对其抗侧刚度具有一定提升,保证高层建筑物的稳定性。
在计算各振型地震对其结构影响程度,应考虑非承重墙体的刚度影响予以折减,根据规范要求框架-核心筒结构可取0.8-0.9。
设计时核心筒宜贯通建筑物全高。
抗震设计时核心筒为框架-核心筒结构的主要抗侧力构件,因此比一般的剪力墙结构要求更高。
在这类结构中要特别注意其质心和刚心的偏心距,尽量使二者重合,才能控制结构的扭转效应。
高层建筑结构设计特点探析一.高层建筑结构设计特点(一)水平荷载的作用首先说明,因为楼面荷载以及建筑自身的重量在构件上的弯矩、轴力,与建筑物的高的一次方是成正比的,同时,因为水平荷载对竖构建的轴力以及水平荷载自身产生的力矩,与建筑物高的二次方是成正比;其次要说明的是,当建筑物高度达到一定程度,竖方向的荷载就会维持基本不变,对于水平荷载,地震作用和风荷载的值不是恒定不变的,会因为不同的结构而产生很大程度的变化。
(二)重视轴向变形高层建筑物的竖向的荷载会给支撑柱产生一定的压力,会引起轴向变形,而且也会改变连续梁的弯矩,从而制作的负弯矩也就会降低,也会对准备安置构建的长度产生影响;另外也会影响构建侧移和构建剪力,如果这种和竖方向的变形相比,结果显然是偏于不安全的。
(三)侧移和结构延性跟多层建筑相比,高层建筑对于设计结构中的结构侧移非常重视,楼的层数越多,高度越高,相应的水平荷载产生的构建侧移也就越大,所以,我们控制数值在一定的合格的范围。
如果产生地震,高层建筑的变形也就更大,所以,我们要做到保证建筑物在经过了塑性变形之后没有完全丧失变形能力,从而来防止发生倒塌,所以就应该尽量对结构的延性进行提升。
二.高层建筑的结构分析(一)弹性假定高层建筑物经常用到的方法其中就有弹性计算法。
因为建筑物本身收到了风力和垂直荷载的作用,就会使得结构处于一种弹性工作状态,实际情况基本与这种情况类似。
一旦出现大风或者出现大震就会导致高层建筑物位移量增大,有可能导致建筑物本身出现裂缝,处于一种弹塑性工作状态,这种情况计算位移就不能运用弹性计算法,不然误差很大,这种情况,计算就需要运用弹塑性动力法,这样的计算结果才更接近结构的真实状态。
(二)小变形假定一般的计算方法经常采用这种假定,不过在计算的时候要考虑一下几何非线性问题的研究。
很多人认为,当顶点水平为何与楼房本身的高度比例一旦大于1/500,就要重视两者之间产生的影响。
(三)刚性楼板假定在进行高层建筑物的分析计算中,一般不考虑平面外的刚度,一般情况都是对平面内的楼板刚度假设很大。
高层建筑设计的结构特点作为当今城市建设的主力军,高层建筑在人们的生活中占据着越来越重要的位置,其设计与建筑结构也成为了现代建筑设计中不可或缺的一部分。
在实际的建设中,高层建筑的设计与结构存在一些特点,以下将从多个角度展开讨论,带您深度了解高层建筑设计的结构。
一、提高使用空间利用率高层建筑的设计首要目的旨在提高使用空间的利用率,即尽可能多地节约资源、利用空间。
而当一栋建筑的层数增加,其房间数量越来越多,每层平均使用面积就相对较小。
因此,为了提高使用效率,必须在设计中注重结构的合理性。
结构布局应遵循合理和经济的原则,使使用空间得到充分利用。
例如,在高层建筑的设计上考虑增加地下室空间以达到更大的使用面积,又比如说,在高层建筑的建设过程中,通常会使用向上挑空的结构,以节省面积,从而适应城市的空间紧缺基础设施问题。
二、提高建筑的安全性能高层建筑设计的结构特点之一就是要保障建筑安全。
在高层建筑的设计中应考虑自然灾害(如地震、台风、暴雨等)、人为干扰、火灾等因素,提供安全保障。
因此,大厦设计的结构一定要强调抗震、抗侧向力和耐风等重要安全因素。
此外,设计人员还应注意降低建筑物自重和地基承载压力,避免出现设计负荷过大和地基未能承受其重量的情况。
这也是为什么近年来高层建筑地基岩层已经成为一个重要的咨询需求领域,以帮助预防类似塔坍、倾斜等问题的发生。
三、具备良好的经济效益高层建筑的设计除了考虑使用空间利用率和建筑安全因素外,还应考虑热工效应和管道布置等问题。
关于热工效应,高层建筑的热交换只能通过热发射,故将玻璃幕墙作为外墙使用便可以起到不错的保护作用,并节约能源;在管道布置方面,应尽量将建筑的基础设施布置合理地融入到建筑总体设计,减少对建筑整体形态的破坏,使整个高层建筑更加美观、稳定,以及更具有经济效益。
四、突出建筑技术与工程性能高层建筑设计的结构特点还在于突出了建筑技术与工程性能。
设计者必须重视技术参数问题,例如材料选用、施工过程控制以及建设质量等问题,以保证体系稳定性和建筑安全性。
厦门大学《高层结构设计》课程试卷建筑与土木工程学院土木工程系2005年级土木工程专业主考教师:石建光试卷类型:(A卷)一、高层建筑结构有哪些特点(10分)?答、所谓的高层:层数大于一定的规定,高度大于一定的高度的建筑.其特点:(2分)1、水平荷载是设计的主要因素。
(2分)2、不仅要求结构具有足够的承载力,而且必须使结构具有足够的抵抗侧向力和刚度,使结构在水平力作用下所产生的侧向位移限制在规范规定的范围内.因此,高层建筑结构所需的侧向刚度由位移控制.结构因P-Δ效应显著。
且轴向变形和剪切变形不可忽略。
(2分)3、重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,P-Δ效应造成附加弯矩更大.(2分)4、地基基础的承载力和刚度要与上部结构的承载力和刚度相适应。
(2分)二、高层建筑结构体系有哪些?各有哪些受力特点(10分)?1、结构体系有:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框架---支撑结构、筒体结构体系、框架核心筒(3分)2、框架结构:由梁柱组成的单元,全部竖向荷载和侧向荷载由框架承受。
为平面受力体系。
(1分)3、剪力墙结构:用钢筋混凝土墙承受竖向荷载和抵抗侧向力的结构。
一般采用现浇钢筋混凝土,整体性好,承载力及侧向刚度大。
单一的剪力墙是平面构件。
故一般双向布置。
(1分)4、框架剪力墙结构:由框架和剪力墙共同承受竖向荷载和侧向力。
其是一种双重抗侧力结构。
剪力墙刚度大,承担大部分层剪力,框架承担的侧向力相对较小。
存在变形不协调。
(1分)5、框架---支撑结构:在框架中设置支撑斜杆,即为支撑框架。
一般用于钢结构。
由框架和支撑框架共同承担竖向荷载和水平荷载。
支撑框架形成竖向桁架,在水平力作用下所以杆件承受轴力。
为双重抗侧力体系。
(1分)6、筒体结构:有框筒结构、桁架筒、筒中筒;束筒;其受力为空间结构,也存在受力不协调,即或多或少的剪力滞后。
(1分)7、框架核心筒:框架-核心筒的周边框架为平面框架,没有框筒的空间作用。
高层建筑结构的设计特点在现代城市的天际线中,高层建筑如同一颗颗璀璨的明珠,展现着人类建筑技术的伟大成就。
然而,这些高耸入云的建筑并非简单的堆砌,其背后蕴含着复杂而精妙的结构设计。
高层建筑结构的设计需要综合考虑众多因素,以确保其安全性、稳定性和功能性。
一、水平荷载成为控制因素与低层建筑相比,高层建筑所受到的水平荷载(如风荷载和地震作用)对结构的影响更为显著。
在低层建筑中,重力荷载(即建筑物自身的重量)通常是结构设计的主要控制因素。
但随着建筑高度的增加,水平荷载产生的倾覆力矩和剪切力急剧增大。
风荷载是高层建筑在正常使用状态下所面临的主要水平荷载。
强风作用在建筑物表面会产生压力和吸力,从而使结构产生水平位移和振动。
为了抵抗风荷载,高层建筑的结构设计需要采用合理的外形和结构体系,例如流线型的建筑外形可以有效减小风阻,而加强结构的抗侧刚度可以限制水平位移。
地震作用则是高层建筑在极端情况下所必须承受的水平荷载。
地震会引起地面的运动,从而使建筑物产生水平和竖向的振动。
高层建筑由于自振周期较长,在地震作用下更容易产生较大的位移和内力。
因此,在地震设防地区,高层建筑的结构设计需要满足严格的抗震要求,通过合理的结构布置和加强关键部位来提高结构的抗震性能。
二、轴向变形不容忽视在高层建筑中,由于竖向荷载较大,柱子等竖向构件会产生较大的轴向压缩变形。
这种轴向变形会对结构的内力分布和变形产生显著影响。
例如,对于连续梁来说,由于柱子的压缩变形,会导致梁端的负弯矩减小,跨中的正弯矩增大。
对于框架柱来说,轴向变形会使其抗弯能力降低,从而影响整个框架结构的稳定性。
为了考虑轴向变形的影响,在高层建筑结构设计中,需要采用更精确的计算方法和模型。
同时,在结构布置上也需要尽量均匀对称,以减小轴向变形对结构的不利影响。
三、侧移控制要求严格高层建筑的高度较大,在水平荷载作用下会产生较大的侧向位移。
过大的侧移不仅会影响建筑物的使用功能(如导致门窗开关困难、电梯运行不畅等),还会危及结构的安全性。
浅析高层建筑的结构设计与特点摘要:结构设计是一项集结构分析,数学优化方法以及计算机技术于一体的综合性技术工作,是一项对国家建设有重大意义的工作,同时,亦是一门实用性很强的工作。
本文就高层建筑的结构设计的各个方面进行分析,一起有助于提高结构工程师在建筑空间中的设计能力,特别是在处理高层建筑方面的问题上。
关键词:高层建筑;结构设计;选型;结构体系;对于一个城市而言,高层建筑往往具有一定的代表性和象征性,可以反映一个城市经济水平和发展程度,越来越多的具有特色的高层建筑成为了一个城市的坐标。
随着高层建筑技术的发展,高层建筑造型和表现形式趋于多样化,但随之所带来的弊端也越来越多的表现出来,高层建筑在成为城市风景的同时如何融入到整个城市建筑设计中成为高层建筑设计面临的一个重要任务。
一、高层建筑结构的布置原则与要求(一)结构平面布置。
平面形状简单、规则、对称尽量使质心和钢心重合。
偏心大的结构扭转效应大,会加大端部构件的位移,导致应力集中。
平面突出部分不宜过长。
扭转是否过大,可用概念设计方法近似计算钢心、质心及偏心距后进行判断,还可以比较结构最远边缘处的最大层间变形和质心处的层间变形,其比值超过1.1者,可以认为扭转太大而结构不规则。
高层建筑不应采用严重不规则的结构布置,当由于使用功能与建筑的要求,结构平面布置严重不规则时,应将其分割成若干比较简单、规则的独立结构单元。
对于地震区的抗震建筑,简单、规则、对称的原则尤为重要。
(二)结构立体布置。
结构竖向布置最基本的原则是规则、均匀。
规则主要是指体型规则,若有变化,亦应是有规则的渐变。
体型沿竖向的剧变,将使地震时某些变形特别集中,常常在该楼层因过大的变形而引起倒塌;均匀是指上下体型、刚度、承载力及质量分布均匀,以及它们的变化均匀。
结构宜设计成刚度下大上小,自下而上逐渐减小。
下层刚度小,将使变形集中在下部,形成薄弱层,严重的会引起建筑的全面倒塌。
如果体型尺寸有变化,也应下大上小逐渐变化,不应发生过大的突变。
上不楼层收进使得体型较小的情况经常发生,但是对于收进的尺寸应当限制。
收进的部位越高,收进后的平面尺寸越小,高振型的影响明显加大。
如果上部楼层外挑,造成“头重脚轻”的状况,将使扭转反映明显加大,竖向地震影响也明显变大。
二、结构分析与设计特点(一)水平载荷成为决定因素任何一个建筑结构都要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。
在较低楼房中,往往是以重力为代表的竖向荷载控制着结构设计,水平荷载产生的内力和位移很小,对结构的影响也就较小;但在较高楼房中尽管竖向荷载仍对结构设计产生着重要影响,水平荷载却起着决定性的作用。
随着楼房层数的增多,水平荷载愈益成为结构设计中的控制因素。
一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中所引起的轴力,是与楼房高度的两次方成正比;另一方面对某一高度楼房来说,竖向荷载的风荷载和地震作用,其数值随结构动力特性的不同而有较大幅度的变化。
(二)轴向变形不容忽视通常在低层建筑结构分析中,只考虑弯矩项,因为轴力项影响很小,而剪切项一般可不考虑。
但对于高层建筑结构,情况就不同了。
由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显着,轴向变形会使高层建筑结构的内力数值与分布产生显着的改变。
对连续梁弯矩的影响:采用框架体系和框剪墙体系的高楼中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。
当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩增大。
对构件剪力和侧移的影响,与考虑竖向杆件轴向变形的剪力相比较,不考虑竖杆件轴向变形时,各构件水平剪力的平均误差达30%以上,结构顶点侧移减小一半以上。
(三)侧移成为控制指标与低层建筑不同,结构侧移已成为高层建筑结构设计中的关键因素,随着楼层的增加,水平荷载作用下结构的侧向变形迅速增大。
设计高层结构时,不仅要求结构具有足够的强度,能够可靠地承受风荷载作用产生的内力;还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,保证良好的居住和工作条件。
(四)结构延性是重要设计指标相对低层结构而言,高层结构更柔一些,在地震作用下的变形更大一些。
为了使建筑在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采以恰当的措施,来保证结构具有足够的延性。
三、高层建筑结构体系结构当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架一剪力墙体系。
在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。
在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平荷载。
框架一剪力墙体系的位移曲线呈弯剪型。
当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。
在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。
剪力墙体系属刚性结构其位移曲线呈弯曲型。
剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架一剪力墙体系。
凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体—框架、筒中筒、多束筒等多种型式。
筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。
实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。
筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。
四、高层建筑结构分析与设计方法高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。
要完全精确地按照三维空间结构进行分析是十分困难的。
各种实用的分析方法都需要对计算模型引入不同程度的简化。
下面是常见的一些基本假定:弹性假定;小变形假定.刚性楼板假定;计算图形的假定。
对于框架一剪力墙体系来说,框架一剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。
由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。
由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。
框架一剪力墙的计算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。
剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。
单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。
不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。
剪力墙结构的计算方法是平面有限单元法。
筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。
等效连续化方法是将结构中的离散杆件作等效连续化处理;等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析;比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆一薄壁杆系矩阵位移法。
五、抗震分析与设计在高层建筑的应用在罕遇地震作用下,抗震结构都会部分进入塑性状态。
为了满足大震作用下结构的功能要求,有必要研究和计算结构的弹塑性变形能力。
当前国内外抗震设计的发展趋势,是根据对结构在不同超越概率水平的地震作用下的性能或变形要求进行设计,结构弹塑性分析成为抗震设计的必要的组成部分。
我国现行抗震规范(gb50011-2001)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用,用弹性方法计算内力及位移。
对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行罕遇地震作用下(大震)的变形验算。
在我国高层建筑的抗震分析与设计中常见的问题有以下几种:首先,是高度问题,对于超高限建筑物,应当采取科学谨慎的态度。
因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
其次,是材料选用和结构体系的问题,在高层建筑中,我国150m以上的建筑,采用的三种主要结构体系(框一筒、筒中筒和框架一支撑),这些也是其他国家高层建筑采用的主要体系。
但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。
如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。
根据现在我国建筑钢材的类型、品种和钢结构的加工制造能力,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。
第三,是轴压比与短柱问题,在钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。
柱的塑性变形能力小,则结构的延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。
第四,在某些烈度区采用了较低的抗震措施与构造措施,现在许多专家学者提出,现行的建筑结构设计安全度已不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。
有人主张在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。
六.高层建筑结构发展趋势随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。
在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。
高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。
参考文献[1]肖峻.高层建筑结构分析与设计 [j].中化建设,2008,(12).[2]范小平.高层建筑结构概念设计中相关的几个问题应用分析[j]福建建材,2008,(6).[3]李粤献.高层建筑结构及其设计理论[m].北京:科学出版社,2006.[4]朱镜清.结构抗震分析原理[m].地震出版社,2002.11.。