高层建筑结构设计特点
- 格式:docx
- 大小:17.51 KB
- 文档页数:2
1、地基基础塌陷专项稳控方案一、风险评估 1、高层建造结构特点与要求〔1〕强度地层、多层建造的结构受力主要考虑垂直的荷载,包括结构自重和活荷载、雪荷载等。
高层建造的结构受力,除了要考虑垂直荷载作用外,还要考虑由风力或者地震力引起的水平荷载。
垂直荷载使建造物受压,其压力的大小与建造物高度成正比,由墙体和柱子来共同承受。
受水平荷载作用的建造物,可以视为悬臂梁,水平力对建造物主要产生弯矩,弯矩与房屋高度的平方成正比,即垂直压力。
弯矩对结构产生拉力和压力,建造物超过肯定的高度,由水平荷载产生的拉力就会超过由垂直荷载或者地震力的作2、用而处于周期性的受啦和受压状态。
对于不对称及冗杂体型的高层建造还需要考虑结构的受扭。
因此,高层建造必需充分考虑结构的各种受力状况,保证结构有足够的强度。
〔2〕刚度高层建造要保证结构刚度和稳定性,掌握结构水平位移。
由于水平荷载产生的楼层水平位移,与建造物高度的四次方成正比。
随着高度的增加,高层建筑的水平位移增大较强度增大更快速。
过大的水平位移会使人产生不舒适感,影响生活、工作;会使电梯轨道变形;会使填充墙或者建造装修开裂、剥落;会使主体结构浮现裂缝;水平位移再进一步扩大,就会导致房屋的各个部件产生附加内力,引起整个3、房屋的严重破坏,甚至崩塌。
必需掌握水平位移,包括相邻两层的层间位移和全楼的顶点位移。
建造物层间相对位移与层高之比为 A/H,依据不同的结构类型和不同的水平荷载,应掌握在 1/400~1/1200。
〔3〕延性有抗震设防要求的高层建造还必需具有肯定的延性,使结构在强震作用下,当一部份进入屈服阶段后,还具有塑性变形的能力,通过结构的塑性吸收地震力所产生的能量,使结构可维持肯定的承载力。
〔4〕耐久性对高层建造的耐久性要求较高,从《民用建造设计通则〔JGJ37-87〕》第 1.0.4 条将建造耐久年限分为四级,一级耐久年限为 104、0 年以上,合用于重要的建造和高层建造。
高层建筑设计总结随着城市化进程的加速,高层建筑如雨后春笋般在城市中崛起。
高层建筑不仅是城市现代化的象征,也是解决城市人口密集、土地资源紧张等问题的有效途径。
然而,高层建筑的设计并非简单的堆砌,而是需要综合考虑众多因素,包括结构、功能、美学、环境、安全等。
在经历了一系列高层建筑设计项目后,我积累了一些宝贵的经验和教训,在此进行总结。
一、高层建筑的结构设计高层建筑的结构设计是整个设计过程中的关键环节。
由于其高度较高,受到的风力、地震力等水平荷载较大,因此需要选择合理的结构体系来保证建筑的稳定性和安全性。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
在选择结构体系时,需要考虑建筑的高度、使用功能、平面布局等因素。
例如,对于高度较高、使用空间较为灵活的建筑,可以选择框架核心筒结构;对于住宅类建筑,剪力墙结构可能更为合适。
同时,还需要对结构构件进行精心设计,确保其强度、刚度和稳定性满足要求。
此外,在结构设计中还需要考虑抗震设防要求。
根据建筑所在地区的地震烈度,确定合理的抗震等级,并采取相应的抗震构造措施,如设置抗震缝、加强节点连接等,以提高建筑在地震中的抗震能力。
二、高层建筑的功能布局高层建筑的功能布局需要充分考虑使用者的需求和流线组织。
一般来说,高层建筑可以分为底部裙房、中间标准层和顶部设备层或观景层等部分。
底部裙房通常用于商业、餐饮、娱乐等公共功能,需要有良好的交通可达性和开放性,吸引人流。
中间标准层则主要用于办公、居住等功能,其布局应尽量规整,提高空间利用率。
顶部设备层需要合理安排各种设备设施,保证其正常运行和维护。
在功能布局中,还需要考虑垂直交通的组织。
电梯是高层建筑中主要的垂直交通工具,其数量、速度和停靠楼层需要根据建筑的高度、使用人数等因素进行合理配置,以保证人员的快速疏散和高效通行。
同时,还要注意防火分区的划分。
根据建筑的使用功能和面积,合理划分防火分区,并设置相应的防火设施,如防火墙、防火门、自动喷水灭火系统等,确保在火灾发生时能够有效地控制火势蔓延。
超高层建筑工程特点难点及监理重点超高层建筑是指高度超过200米的建筑物,是现代城市建设中不可或缺的重要组成部分。
由于其高度、结构和安全等方面的特殊性质,超高层建筑的工程特点和难点比普通的建筑项目要多,监理重点也更加突出。
本文将分别从超高层建筑工程的特点和难点以及监理的重点进行介绍。
一、超高层建筑工程特点和难点1.高度特点:超高层建筑的高度常常达到数百米,其建造所需的材料和硬件设备也具备了很高的技术门槛和成本,同时在施工过程中对安全和质量都需高度关注。
2.结构特点:由于其高度特点,超高层建筑的结构设计和施工技术都需极高的技术水平,需要满足各种复杂结构、自重和风荷载等多重考虑。
3.地基特点:超高层建筑的地基深度通常都较浅,因为深基坑所需的成本较大,也对施工和工期等方面带来巨大的风险,需要进行严格的计算和措施管理。
4.材料特点:超高层建筑的主要组件常常是混凝土和钢结构,其质量和稳定性影响着整个建筑的安全性和可持续性,需要严格把控。
5.施工特点:超高层建筑施工常需采用吊装和高空作业等高风险行业,需要进行认真的施工和安全管控,同时需要注意人员的培训和素质提升等方面。
6.安全特点:超高层建筑的安全管理需尤为重视,通常要求采用行业内先进的技术和设备,同时还需不断进行风险评估和改进。
二、监理的重点1.质量监督:监理需加强对超高层建筑建设过程中各个环节的质量控制和监管,以确保建筑质量达到设计和标准要求。
2.材料监管:监理还需加强对超高层建筑的材料选用、加工和运输等过程的监控,以保证材料的质量和安全性。
3.施工管理:监理需加强对超高层建筑的施工管理和监管,以确保整个施工过程中的安全性和生产效率。
4.安全管理:监理需加强对超高层建筑的安全管理,不断研究和推广先进的安全技术和设备,以确保建筑施工和使用的安全性。
5.风险评估:监理需加强对超高层建筑施工风险的评估和管理,建立科学的管理机制,以确保建筑的可持续发展和安全性。
框架结构:高层建筑中常见且具有多种优点的建筑形式框架结构是一种常见的高层建筑结构形式,具有以下特点:1.由梁和柱组成框架。
框架是建筑空间的分隔和承载构件,可以承受竖向和水平方向的荷载。
框架结构通常由梁和柱等构件组成,通过节点连接,构成一个空间结构体系。
2.框架结构的整体性和刚度较好。
由于框架结构由梁和柱组成,因此具有较强的抗侧向力的能力和较小的侧移,可以提供更好的整体性和刚度。
这些特点使得框架结构成为许多高层建筑的优选结构形式。
3.框架结构的建筑空间灵活。
框架结构的梁和柱可以进行灵活的布置,可以根据建筑空间的需求进行任意拆改,因此具有较好的建筑空间灵活性。
4.框架结构的施工方便。
框架结构的构件可以进行预制和装配,因此具有较快的施工速度和较低的施工成本。
同时,由于构件标准化程度高,也可以提高施工质量。
5.框架结构的设计灵活多变。
框架结构的梁和柱可以灵活布置和设计,因此可以适应不同的建筑需求和设计要求。
同时,框架结构也可以采用多种材料和结构形式进行设计,如混凝土、钢等。
6.框架结构的抗震性能较好。
由于框架结构的整体性和刚度较好,因此具有较强的抗震能力。
在地震作用下,框架结构的位移较小,且不易发生脆性破坏。
7.框架结构的承载能力受限制。
由于梁和柱的承载能力受到一定限制,因此框架结构的承载能力相对较低,需要采用其他结构形式进行加强。
总之,框架结构是一种常见的建筑结构形式,具有整体性好、刚度大、建筑空间灵活、施工方便、设计灵活多变、抗震性能好等特点,但也存在承载能力受限制等不足之处。
在高层建筑设计和施工中,需要根据具体情况选择合适的结构形式,并对框架结构进行合理的设计和加强,以满足建筑要求和使用功能。
同时,也需要注意到框架结构的不同特点和优势以及其适用的范围,以使其发挥最佳的作用和效果。
复杂高层与超高层建筑结构设计要点1.综合考虑荷载:复杂高层与超高层建筑需要承受大量的自重、活载和风载等荷载。
在设计过程中,需要综合考虑不同荷载的作用,以确保建筑结构的稳定性和安全性。
2.强度和刚度:复杂高层与超高层建筑的结构需要具备足够的强度和刚度,以承受荷载和抵抗地震等外力作用。
在设计过程中,需要进行合理的结构计算和分析,确定合适的材料和截面尺寸,以满足强度和刚度的要求。
3.预应力设计:预应力设计是复杂高层与超高层建筑结构设计中的重要内容之一、通过在构件中引入预应力,可以提高结构的承载能力和抗震性能,减小结构的变形和裂缝。
预应力设计需要综合考虑不同构件的受力特点和荷载情况,以确定合适的预应力力度和施工方法。
4.地基处理:复杂高层与超高层建筑的地基处理需要特别关注。
在设计过程中,需要对地基进行充分的勘察和分析,确保地基的承载能力和稳定性。
可以采用加固地基、沉桩和排水等措施,以改善地基的性质和减小沉降变形。
5.抗震设计:抗震设计是复杂高层与超高层建筑结构设计中的重要环节。
在设计过程中,需要按照相关抗震规范的要求,进行全面的抗震计算和分析。
可以采用设置抗震墙、剪力墙和钢筋混凝土框架等抗震措施,以提高结构的抗震性能和安全性。
6.稳定性分析:复杂高层与超高层建筑的稳定性分析需要综合考虑结构的整体稳定和各个构件的局部稳定。
在设计过程中,需要进行稳定性计算和分析,以确定合适的稳定性措施和参数。
可以采用设置剪力墙、加固节点和增加支撑等措施,以提高结构的整体稳定性。
7.火灾安全设计:火灾安全设计是复杂高层与超高层建筑结构设计中的重要内容之一、在设计过程中,需要考虑火灾对结构的影响和热膨胀对构件的变形。
可以采用设置防火分区、防火墙和防火隔室等措施,以提高建筑的火灾安全性。
8.风洞实验:由于复杂高层与超高层建筑的高度较大,受风效应的影响较大。
在设计过程中,可以进行风洞实验,以模拟建筑在不同风速和风向下的响应。
通过风洞实验的结果,可以优化结构的形式和参数,提高建筑的抗风能力和稳定性。
论述建筑结构设计特点及原则的安全性在我国建筑事业已经进入蓬勃发展阶段,尤其是近几年房地产事业的火爆,更是为建筑事业的发展提供了契机。
新时代对建筑的要求在不断增加,只满足使用要求的建筑已经不能适应现在的社会,现代建筑要求实用性、美观性、安全性缺一不可。
这也是对建筑设计的提出的新挑战。
建筑设计不但关系着建筑的工程造价还对建筑安全性有着极大的影响。
建筑设计是一个涉及面广,技能较为专业的工作,本文先从建筑结构设计的特点进行论述。
一、建筑结构设计的特点1、结构设计的延性特点在建筑物使用的过程中,由于受到地震、风力以及沉降等因素的影响,建筑会发生一定的变形,尤其是一些高层建筑。
为了避免高层建筑由于变形而发生损坏甚至倒塌现象,我们在对建筑结构设计的时候,需要采取一些措施使建筑物具有一定的结构延性,从而确保建筑结构的安全性。
2、结构设计的水平荷载问题一般来说,在对一些低矮的建筑进行设计的时候,我们主要考虑的是竖向的荷载因素,而在一些高层建筑中,虽然竖向的荷载控制非常重要,但是,水平荷载则起着主要的决定性作用。
鉴于此,在对一些高层建筑结构进行设计的时候,我们不仅要考虑竖向的荷载控制,更要注重水平荷载的影响,通过提高建筑结构水平荷载能力,进而增强建筑结构的稳定性和安全性。
3、结构设计的抗震特点近年来,由于受到多种因素的影响,地震动发生频率增多,对建筑造成了严重伤害。
因此,现代建筑对抗震性能的要求也比较高。
在这种形势背景下,为了顺应时代发展潮流和满足现实发展需要,我们在对建筑结构进行设计的时候,还要考虑抗震要求,使建筑结构的质量达到小震不坏和大震不倒的标准,通过提高建筑结构的抗震性能,从而减少地震等自然灾害对建筑的毁坏。
4、结构设计的侧移变形问题目前,为了节约有限的土地资源,高层建筑已经成为现代建筑发展的一种趋势。
高层建筑的水平荷载比较大,并随着建筑高度的增加而增加,在一些因素的作用下,高层建筑就会发生一定的变形,使建筑的安全性大大降低。
高层建筑预应力混凝土超长结构的设计提纲:一、预应力混凝土超长结构的定义与特点二、超长结构设计中的工艺控制三、超长结构施工中的质量控制四、超长结构的应用前景和发展趋势五、超长结构设计与施工中的安全管理一、预应力混凝土超长结构的定义与特点预应力混凝土超长结构是指任何一种基于预应力混凝土技术的高层建筑、大型桥梁、水坝等。
预应力混凝土超长结构主要具有以下特点。
1、超大跨度。
与普通钢筋混凝土相比,预应力混凝土具有更高的强度和刚度,其抗弯、抗剪能力更强,能够设计出更大跨度、更高比例的结构。
2、排沙性能出色。
预应力混凝土预制构件材料的内聚力强,能够防止水泥浆液渗透,从而防止桥墩混凝土排沙浆产生。
3、抗震性能优良。
预应力混凝土超长结构在一定程度上具有弹性隔离作用,并具有减震、抗震能力强、耐候性好的优势。
4、整体性能稳定。
预应力混凝土预制构件设计与搭配超级精密,构件之间缝隙小,整体性能稳定,可预防寿命下降。
二、超长结构设计中的工艺控制超长预应力混凝土超长结构在设计中,需要进行一系列工艺控制,包括各种施工方案、组织架构、定位精度、拼装质量等方面。
1、施工方案。
工程总体界定的前提是拟定一份符合实际情况和建筑安全技术要求的施工方案,并进行风险评估和安全性评估。
2、组织架构。
超长预应力混凝土超长结构附加了初始化钢筋贯穿或预埋裂缝钢筋预应力后,更要在短期内形成预应力体系。
3、定位精度。
人工在软土地上进行桥墩定位,容易引起土体变形,影响桥墩的定位精度。
为了提高桥墩定位的精度,需要采用先进的精度测量设备。
4、拼装质量。
超长预应力混凝土超长结构拼装中,需要注意构件拼装的方位误差,及构件配套尺寸误差、平整度和平直度,保证结构整体规整性和尺寸精度等。
三、超长结构施工中的质量控制超长预应力混凝土超长结构施工中,须进行质量控制,包括材料质量、施工工艺、施工质量等方面。
1、材料质量。
施工中所使用的各种材料质量必须符合国家标准,并对材料进行质量检查和质量控制,避免使用不合格材料。
高层建筑结构设计特点
高层建筑结构设计特点
水平荷载为重要因素
在高层建筑中,与低层建筑结构通常以抵抗竖向荷载为主所不同,较
大的建筑高度造成了与底层结构完全不同的受力情况,所以高层结构
总是要同时承受竖向荷载和水平荷载作用。水平荷载对结构产生的倾
覆力矩以及由此在竖向构件中引起的轴力与楼房高度的两次方成正比。
高层建筑楼面使用荷载和楼房自重在竖向构件所引起的弯矩和轴力的
数值,仅与建筑高度的一次方成正比。对某一定高度的楼房来说,竖
向荷载大体是定值,但水平荷载不是定值,它随结构动力特性的不同
而有较大幅度的变化。所以对高层建筑来说水平荷载是重要因素。
结构延性为重要指标
现在地震的频繁爆发使抗震性能成为高层建筑中的重要考虑因素。为
了避免高层建筑的倒塌,使其具有高强的变形能力,特别需要在其构
造设计上采取一定措施,来保证结构的良好延性。能做到“小震不坏,
中震可修,大震不倒”。也就是说,在强烈地震下,当结构构件进入屈
服阶段后具有较强的 变形能力,能够吸收地震作用中产生的能量,并
维持一定的承载力。所以对高层建筑来说结构延性是重要的指标。
侧向位移为控制因素
随着楼房高度的增加,水平荷载作用下结构的侧向变形迅速增大,结
构顶点侧移与建筑高度的四次方成正比。设计高层结构时不仅要求结
构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载
下产生的侧移被控制在规定的范围内,否则会产生因侧移产生较大的
附加应力,尤其是竖向构件,当侧向位移增大时,偏心加剧,因P-△
效应而使结构产生附加应力,甚至破坏。严重时会使填充墙或建筑装
饰开裂或破坏,主体结构出现裂缝,影响正常使用,还会使居住人员
感到不安全。所以对高层建筑来说侧向位移要控制好。
轴向变形不容忽视
对于高层建筑来说,其竖向荷载很大,它能够在柱中引起较大的轴向
变形,使得连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座
负弯矩值增大,此外它还会对预测构件的下料长度、构件剪力和侧移
等产生影响。所以轴向变形问题也不容忽视。