当前位置:文档之家› 手机结构设计公差规范

手机结构设计公差规范

手机结构设计公差规范
手机结构设计公差规范

手机结构设计公差规范(设计篇)

目录:

1工程塑料部分

(1)工程塑料简要及常见物料

(2)设计尺寸公差规范

(3)位置公差注意点

(4)表面粗糙度要求

2板金件材料

(1)手机常用板金材料

(2)板金件公差要求表

3硅胶类公差要求(silicon)

4FOAM材质类尺寸要求

第一节:工程塑料

在塑料产品中,影响模塑制件精度的因素十分复杂.首先是模具制造精度及使用过程中磨损;其次是塑料的流动性,本身的收缩率,另外每批成型条件的不一致, 等等.均可造成塑件的尺寸不稳定性.

在我们的设计领域中,常见的工程塑料有:ABS,ABS+PC,PC,PMMA, SILICON,EVA,PVC 及 透明ABS,POM 等.透明ABS 使用概率不多.

综合我们以往的经历,将公差配合形成我们内部的一个设计规范.此规范来源实际,且高于国标 尺寸公差见下列表(单位:MM)

精 度 等 级

1 2

工程塑料 公称尺寸 重要尺寸 非重要尺寸

~3 0.04 0.06

3~6 0.05 0.07

6~10 0.06 0.08

10~14 0.07 0.09

14~18 0.08 0.10

18~24 0.09 0.11

24~30 0.10 0.12

30~40 0.11 0.13

40~50 0.12 0.14 50~65 0.13 0.15 65~80 0.14 0.16

80~100 0.15 0.17

ABS PC ABS+PC PMMA POM 等等 100~120 0.16 0.18

行位公差:

在我们的手机范畴内,牵涉面不是很多.但有些地方需在此提醒大家注意.

(1)FLIP_FRONT,HOUSING_FRONT 在转轴配合处,需要有同轴度的行位公差来约束.如同轴度偏差较大,就有可能导致FLIP 与HOUSING 之间的缝隙左右两侧不均匀

(2)所有的热压螺母和注塑螺母最好都注行位公差来约束,一旦不同轴或斜歪,强打螺钉后,造成壳体或天线扭曲.其次,BOSS 面需给出平面度,以保证良性吻合.

表面粗糙度:

在塑胶模件中,要求作表面处理的比较多.我们通常所说的亮面,是指表面粗糙度.一般在7级到12级之间(1.25U~0.04U).因其工业过程较简单,在此不再详细描述.但有两点请大家注意:

(1)表面并不是越光洁越好,因为分子的亲和力,会导致磨损更加厉害.

(2)模具在使用中由于型腔磨损而降低了表面光洁度,应随时给以抛光复原.

(3)通常状况下,模件的表面光洁度要比模具低一个级别.

(4)电镀件表面是个很光亮的面.但电镀之前,如表面有光洁缺陷,则电镀后缺陷更加明显.如器件滚边后,再电镀,则很明显的看到周边呈现锯齿状

第二节:板金件

我们通常采用的板金材为:一般为不锈钢才质,但考虑到我们手机特殊性及盐雾喷涂实验,才质要求具有抗腐蚀性,及一定刚度.集合我们以前的项目,一般采用的材料为:固熔热处理奥氏体 1Gr18Ni9

公差配合作简练介绍如下:板金材料在冲压过程:一般厂家可以精确到0.05MM,我们将公差规定为:

重要尺寸精度非重要尺寸精度

±0.05MM ±0.1MM

备注栏:

1)板金件与LCD或PCB或BOSS之间为面接触时,则必须加上平面度行位公差要

2)板金件如卯上铜柱,则需加以同轴度及垂直度来控制品质

第三节:硅胶类

硅胶类(SILICON)材质及弹性体(TPU) 材质,此两类都属软体,延展性较大,所以其尺寸精度较难控制.

SILICON类: 我们一般要求公差为±0.1MM

TPU类:此类为注塑模工艺, 重要尺寸公差要求为:±0.05MM,次要尺寸为±0.1MM

第四节:FOAM材质类

这类材质延展性大,质软,易变形.其变型量与其密度有关.密度为一般时,其收缩量为30%到80%. 密度大时也有30%的收缩量.所以在设计中,根据所产生的作用,而提出一个变形量.但厂家可以在原始尺寸上采取±0.2MM的公差

喇叭网、蜂鸣器网等材质的未注尺寸公差一般为±0.1MM

手机结构设计指南

Techfaith 技术资料 手机 结构设计指南 (Design Guide Line) --- Revision T3 --- 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。 本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 2004年 9月

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1.直板式 Candy bar 2.折叠式 Clamshell 3.滑盖式 Slide 4.折叠旋转式 Clamshell & Rotary 5.直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: ?显示屏镜片LCD LENS ?前壳Front housing ?显示屏支撑架LCD Frame ?键盘和侧键Keypad/Side key ?按键弹性片Metal dome ?键盘支架Keypad frame ?后壳Rear housing ?电池Battery package ?电池盖Battery cover ?螺丝/螺帽screw/nut ?电池盖按钮Button

手机外壳结构设计指引

结构设计注意事项 z PCBA-LAYOUT及ID评审是否OK z标准件/共用件 z内部空间、强度校核: z根据PCBA进行高度,宽度(比较PCBA单边增加2.5~~3.0,或按键/扣位处避空)与长度分析。 z装配方式,定位与固定; z材料,表面工艺,加工方式, z成本,周期,采购便利性; 塑料壳体设计 1.材料的选取 ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受到冲击,不承受可靠性测试中结构耐久性测试的部件),如手机内部的支撑架(Keypad frame,LCD frame)等。 还有就是普遍用在要电镀的部件上(如按钮,侧键,导航键,电镀装饰件等)。目前常用奇 美PA-727,PA757等。 PC+ABS:流动性好,强度不错,价格适中。适用于绝大多数的手机外壳,只要结构设计比较优化,强度是有保障的。较常用GE CYCOLOY C1200HF。 PC:高强度,贵,流动性不好。适用于对强度要求较高的外壳(如翻盖手机中与转轴配合的两个壳体,不带标准滑轨模块的滑盖机中有滑轨和滑道的两个壳体等,目前指定必须用 PC材料)。较常用GE LEXAN EXL1414和Samsung HF1023IM。 在对强度没有完全把握的情况下,模具评审Tooling Review时应该明确告诉模具供应商,可能会先用PC+ABS生产T1的产品,但不排除当强度不够时后续会改用PC料的可能性。 这样模具供应商会在模具的设计上考虑好收缩率及特殊部位的拔模角。 上、下壳断差的设计:即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受的面刮 <0.15mm,可接受底刮<0.1mm,尽量使产品的面壳大于底壳。一般来说,面壳因有较多的 按键孔,成型缩水较大,所以缩水率选择较大,一般选0.5%。底壳成型缩水较小,所以缩 水率选择较小,一般选0.4%,即面壳缩水率一般比底壳大0.1%。即便是两件壳体选用相 同的材料,也要提醒模具供应商在做模时,后壳取较小的收缩率。

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机整机结构设计规范

手机结构配合间隙 设计规范 (版本V1.0)

变更记录

目录 变更记录………………………………………………………………………………………………………………目录………………………………………………………………………………………………………………………前沿………………………………………………………………………………………………………………………第一章手机结构件外观面配合间隙设计………………………………………………………… 1.1镜片(lens) ………………………………………………………………………………………………. 1.2按键(keys) ………………………………………………………………………………………………. 1.3电池盖(batt-cover) ………………………………………………………………………………….. 1.4外观面接插件(USB.I/O等) …………………………………………………………………….. 1.5螺丝塞……………………………………………………………………………………………………… 1.6翻盖机相关…………………………………………………………………………….………………. 1.7滑盖机相关…………………………………………………………………………….………………. 第二章手机机电料配合间隙设计…………………………………………………………………… 2.1听筒(receiver)…………………………………………………………………….………………….. 2.2喇叭(speaker)…………………………………………………………………….…………………… 2.3马达(motor)…………………………………………………………………….……………………… 2.4显示屏(LCM)…………………………………………………………………….……………………. 2.5摄像头(camera)…………………………………………………………………….………………… 2.6送话器(mic)…………………………………………………………………….……………………… 2.7电池(battery)…………………………………………………………………….…………………… 2.8 USB/IO/Nokia充电器……………………………………………………….…………………….. 2.9 连接器……………………………………………………….……………………..…………………… 2.10卡座……………………………………………………….……………………………………………… 2.11灯(LED)…………………………………………………………………….…………………………… 2.12转轴…………………………………………………………………….………………………………… 2.13滑轨…………………………………………………………………….…………………………………

结构公差设计规范_V01.0

结构公差设计规范 _V01.0 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 (一)概述 1.机械制图选择公差范围 2.公差数值选择的基本原则 3.公差的设定需要满足的要求 (二)公差分析技术 1.极值法 2.方和根法 3.蒙特卡洛模拟法 (三)公差等级 1.等级划分 2.公差等级表 3.选择原则 4.自由公差的概念 1) 基本定义 2)适用范围 (四)GB-T 5847-2004尺寸链计算方法 (五)尺寸链设计计算表

(一)概述 1.机械制图选择公差范围:其实质是在机械设计过程中对公称尺寸的加工精度进行约 束和限制。公差是机械设计工作的核心内容之一,公差范围选择的不同直接会导致 机械设计的成与败。但是公差范围选择对于任何一个机械产品的设计都无现成的标 准可供参考,只有设计人员依据公差数值选择基本原则和经验,对照已有成功产品 的公差为参照,选择相应的公差进行设计,并通过不断的试验,使公差带的选择符 合设计要求和生产需要。 2.公差数值选择的基本原则是:应使机器零件制造成本和使用价值的综合经济效果最 好,一般配合尺寸用IT5~IT13,特别精密零件的配合用IT2~IT5,非配合尺寸用 IT12~IT18,原材料配合用IT8~IT14。 3.公差的设定需要满足以下要求: 1).满足产品的制造能力,如果产品的制造能力达不到公差设定的要求,公差设定得再高也没有意义; 2).通过公差分析,设定的公差应当满足产品的装配、功能、外观和质量等要求; 3).公差与产品的成本相关,公差越严格,产品成本就越大,在满足以上要求的前提下,公差越宽松越好; 4).合理设计产品特征,可以以较宽松的要求设定公差,从而降低产品成本。 公差分析是指在满足产品功能、性能、外观和可装配性等要求的前提下,合理地定义和分配零件和产品的公差,优化产品设计,从而以最小的成本和最高的质量制造产品。公差分析是面向制造和装配的产品设计中非常重要的一个环节,对于降低产品成本、提高产品质量具有重大影响。 (二)公差分析技术 公差分析也叫做公差的验证,就是指已知各零件的尺寸和公差,确定最终装配后需保证的封闭环的公差。在公差分析的过程中,如果最终计算结果达不到设计要求,需调整各零件公差或优化尺寸链环。现在被广泛运用的公差分析方法可以分为如下三种:极值法(Worst Case,WS)、方和根法(Root Sum Squared,RSS)以及蒙特卡洛模拟法(Monte Carlo Simulation)。有如下三种方法: 1.极值法 2.方和根法 3.蒙特卡洛模拟法 1.极值法 极值法:极值法极值分析方法是目前应用范围最广泛且最易于理解的方法,大多数的设计都基于这个概念。这种方法简便易行,假定加工出的零件尺寸都处于极值情况,零部件都设计为名义值,然后按照这样一种方法分配公差:公差完全向一个或另一个方向积累,装配仍能满足产品的功能要求,极值法建立在零件100%互换基础上,为保证装配尺寸上不干涉,必须根据技术要求确定最大、最小标准装配间隙(R 、Q).据此就可以定义最大、最小WC装配间隙. 极值法的计算方法:封闭环的最大极限尺寸为当所有增环均为最大极限尺寸且所有减环均为最小极限尺寸时获得;最小极限尺寸为当所有增环均为最小极限尺寸且所有减环均为最大极限尺寸时获得,即:假定各零件的尺寸同时处于极限值。但在实际生产中,如果组成环中涉及二维或三维几何特征装配或由于零件刚度不足导致的变形时,装配函数通常会表现为非线性,影响最终计算结果。 在目前的公差分析理论中,极值法计算量小,理论简单。 极值法公式: Twc=T1+T2+......+Tn Twc=T1+T2+......+Tn

手机结构设计手册(内部资料)

精品文档 第1章绪论 (4) 1.1 手机的分类 (4) 1.2 手机的主要结构件名称 (5) 1.3 手机结构件的几大种类 (5) 1.4 手机零件命名规则 (5) 1.5 手机结构设计流程 (11) 第2章手机壳体的设计和制造工艺 (12) 2.1 前言 (12) 2.2 手机常用材料 (12) 2.2.1 PC(学名聚碳酸酯) (12) 2.2.2 ABS(丙烯腈-丁二烯-苯乙烯共聚物) (13) 2.2.3 PC+ABS(PC与ABS的合成材料) (13) 2.2.4 选材要点 (13) 2.3 手机壳体的涂装工艺 (14) 2.3.1 涂料 (14) 2.3.2 喷涂方法 (15) 2.3.3 涂层厚度 (15) 2.3.4 颜色及光亮度 (15) 2.3.5 色板签样 (15) 2.3.6 耐磨及抗剥离检测 (16) 2.3.7 涂料生产厂家 (16) 2.4 手机壳体的模具加工 (16) 2.5 塑胶件加工要求 (16) 2.5.1 尺寸,精度及表面粗糙度的要求 (16) 2.5.2 脱模斜度的要求 (17) 2.5.3 壁厚的要求 (17) 2.5.4 加强筋 (17) 2.5.5 圆角 (18) 2.6 手机3D设计 (18) 2.6.1 手机3D建模思路 (18) 2.6.2 手机结构设计 (19) 第3章按键的设计及制造工艺 (26) 3.1 前言 (26) 可修改

精品文档 3.2 P+R按键设计与制造工艺 (26) 3.3 硅胶按键设计与制造工艺 (27) 3.4 PC(IMD)按键设计与制造工艺 (28) 3.5 Metal Dome的设计 (28) 3.5.1 概述 (28) 3.5.2 Metal Dome的设计 (29) 3.5.3 Metal Dome触点不同表面镀层性能对比 (29) 3.5.4 Metal Dome技术特性 (29) 3.6 手机按键设计要点 (30) 第4章标牌和镜片设计及其制造工艺 (33) 4.1 前言 (33) 4.2 金属标牌设计与制造工艺 (33) 4.2.1 电铸Ni标牌制造工艺 (33) 4.2.2 铝合金标牌制造工艺 (35) 4.3 塑料标牌及镜片设计与制造工艺 (36) 4.3.1 IMD工艺 (36) 4.3.2 IML工艺 (38) 4.3.3 IMD与IML工艺特点比较 (39) 4.3.4 注塑镜片工艺 (39) 4.3.5 IMD、IML、注塑工艺之比较 (42) 4.4 平板镜片设计与制造工艺 (42) 4.4.1 视窗玻璃镜片 (42) 4.4.2 塑料板材镜片 (42) 4.5 镀膜工艺介绍 (43) 4.5.1 真空镀 (43) 4.5.2 电镀俗称水镀 (44) 4.5.3 喷镀 (44) 第5章金属部件设计及制造工艺 (45) 5.1 前言 (45) 5.2 镁合金成型工艺 (45) 5.2.1 镁合金压铸工艺 (45) 5.3 金属屏蔽盖设计与制造工艺 (46) 5.3.1 屏蔽盖材料 (46) 可修改

结构公差设计规范_V01.

目录 (一)概述 1.机械制图选择公差范围 2.公差数值选择的基本原则 3.公差的设定需要满足的要求 (二)公差分析技术 1.极值法 2.方和根法 3.蒙特卡洛模拟法 (三)公差等级 1.等级划分 2.公差等级表 3.选择原则 4.自由公差的概念 1) 基本定义 2)适用范围 (四)GB-T 5847-2004尺寸链计算方法 (五)尺寸链设计计算表

(一)概述 1.机械制图选择公差范围:其实质是在机械设计过程中对公称尺寸的加工精度进行约 束和限制。公差是机械设计工作的核心内容之一,公差范围选择的不同直接会导致 机械设计的成与败。但是公差范围选择对于任何一个机械产品的设计都无现成的标 准可供参考,只有设计人员依据公差数值选择基本原则和经验,对照已有成功产品 的公差为参照,选择相应的公差进行设计,并通过不断的试验,使公差带的选择符 合设计要求和生产需要。 2.公差数值选择的基本原则是:应使机器零件制造成本和使用价值的综合经济效果最 好,一般配合尺寸用IT5~IT13,特别精密零件的配合用IT2~IT5,非配合尺寸用 IT12~IT18,原材料配合用IT8~IT14。 3.公差的设定需要满足以下要求: 1).满足产品的制造能力,如果产品的制造能力达不到公差设定的要求,公差设定得再高也没有意义; 2).通过公差分析,设定的公差应当满足产品的装配、功能、外观和质量等要求; 3).公差与产品的成本相关,公差越严格,产品成本就越大,在满足以上要求的前提下,公差越宽松越好; 4).合理设计产品特征,可以以较宽松的要求设定公差,从而降低产品成本。 公差分析是指在满足产品功能、性能、外观和可装配性等要求的前提下,合理地定义和分配零件和产品的公差,优化产品设计,从而以最小的成本和最高的质量制造产品。公差分析是面向制造和装配的产品设计中非常重要的一个环节,对于降低产品成本、提高产品质量具有重大影响。 (二)公差分析技术 公差分析也叫做公差的验证,就是指已知各零件的尺寸和公差,确定最终装配后需保证的封闭环的公差。在公差分析的过程中,如果最终计算结果达不到设计要求,需调整各零件公差或优化尺寸链环。现在被广泛运用的公差分析方法可以分为如下三种:极值法(Worst Case,WS)、方和根法(Root Sum Squared,RSS)以及蒙特卡洛模拟法(Monte Carlo Simulation)。有如下三种方法: 1.极值法 2.方和根法 3.蒙特卡洛模拟法 1.极值法 极值法:极值法极值分析方法是目前应用范围最广泛且最易于理解的方法,大多数的设计都基于这个概念。这种方法简便易行,假定加工出的零件尺寸都处于极值情况,零部件都设计为名义值,然后按照这样一种方法分配公差:公差完全向一个或另一个方向积累,装配仍能满足产品的功能要求,极值法建立在零件100%互换基础上,为保证装配尺寸上不干涉,必须根据技术要求确定最大、最小标准装配间隙(R 、Q).据此就可以定义最大、最小WC装配间隙. 极值法的计算方法:封闭环的最大极限尺寸为当所有增环均为最大极限尺寸且所有减环均为最小极限尺寸时获得;最小极限尺寸为当所有增环均为最小极限尺寸且所有减环均为最大极限尺寸时获得,即:假定各零件的尺寸同时处于极限值。但在实际生产中,如果组成环中涉及二维或三维几何特征装配或由于零件刚度不足导致的变形时,装配函数通常会表现为非线性,影响最终计算结果。 在目前的公差分析理论中,极值法计算量小,理论简单。 极值法公式: Twc=T1+T2+......+Tn Twc=T1+T2+......+Tn

手机结构评审注意事项

手机结构评审注意事项 1>.所有零件的外观面须有3°以上的拔模 2>.所有骨位厚度不能超过壁厚的60%,螺丝boss 建议做火山口的结 构,以防缩水 3>.TP AA 区大于LCD AA 区单边0.5 4>.壳体开口大于TP AA 区单边0.5 5>.整机的外观只允许顺段差,不能出现逆差 6>.零件避免有厚度0.5 以下的较大面积的区域 7>.有空间时,螺丝柱一般做3~4 个加强筋,加强强度,防止打爆裂 8>.电池仓四周需拔模1.5 度以上 9>.电池盖胶厚小于0.8mm 时背面需要加加强筋 10>.小装饰件热熔时,热熔柱与热熔孔需有3 个精确的定位,即单边 间隙0.05mm,便于热熔前不掉落 11>.产品热熔时胶厚需要0.9MM 以上,否则背面压花 12>热熔柱直径需要大于¢0.6mm,¢0.8mm 以上的热熔柱容易缩水, 建议做成中空状 13>.热熔柱和孔位间隙预留0.05~0.1MM 的间隙 14>.热熔孔周边2.0MM 范围以内最好不要有骨位 15>.热熔柱尽量靠近边角落和转角位置,需做溢胶槽 16>.装饰件喷涂时建议大水口,保证带水口喷涂时不容易掉落 17>.壳体的入水点不能靠近外观面,方便加点 18>.设计入水点时考虑表面气纹、夹线需在喷涂能遮盖范围内 19>.水口位不能太靠近螺母柱 20>.需要丝印的位置需要和骨位预留4.5mm 以上的位置 22>.采用均匀壁厚设计,利于注塑以保证高质量的外表面,若一定要 局部减胶,深度应小于该处壁厚的1/3 并辅以圆角过渡,以免出现 烘痕,影响表面质量 23>.LCD 框的胶位宽度不能小于0.8mm 24>.双面胶最小宽度≥1.0(LENS 位置最小1.2) 25>.Foam 最小宽度≥1.0mm PIFA 天线下面连接器等需要压,采用 EVA 白色材质,不可以采用黑色foam(里面含有炭粉,吸波) 26>.凡是形状对称,而装配时有方向要求的结构件,必须加防呆措施 27>. LENS 保护膜必须是静电保护模,要设计手柄,手柄不露出手机 外形,不能遮蔽出音孔 28>.电池连接器在整机未装电池的状态下可以用探针接触(不能被求housing 盖住) 29>.所有塞子要设计拆卸口(≥R0.5 半圆形) 30>.所有塞子(特别是IO 塞)不能有0.4 厚度的薄胶位 31>.电芯与电池壳体厚度方向单边留间隙0.2 32>.RF 塞和螺丝塞底部设计环形过盈单边0.1 ,较深需设计排气槽 33>.止口宽0.65mm,高度≥0.8mm(保证止口配合面足够,挡住ESD) 34>.转轴过10 万次的要求,根部加圆角≥R0.3(左右凸肩根部) 35>.Flip rear 与Housing front 之间的间隙建议留到0.4mm 以上 36>.翻盖底(大LENS)与主机面(键帽上表面)间隙≥0.4 37>.壳体装配转轴的孔周圈壁厚≥1.0 非转轴孔周圈壁厚≥1.2 38>主机、翻盖转轴孔开口处必须设计导向斜角≥C0.2 39>.壳体非转轴孔与另壳体凸圈圆周配合间隙设计单边0.05,不能喷 漆,深度方向间隙≥0.2

手机设计高级结构工程师结构心得

龙旗手机高级结构工程师结构心得 手机结构设计中主板stacking的堆叠我没怎么做过,所以我就不献丑了,我只谈谈整机结构设计吧,我个人把手机结构设计分为以下几个部分: 一、Stacking的理解: 结构工程师要准确理解一个stacking的含义,拿到一个新stacking,必须理解此stacking作结构哪里固定主板、哪里设计卡扣,按键的空间,ESD接地的防护等等,这些我们都要有个清楚的轮廓。当然好的堆叠工程师他一定是个好的整机结构工程师,但一个好的整机结构工程师去堆叠的话往往会顾此失彼。所以我们在评审stacking时整机结构工程师多从结构设计方面提出问题来改善stacking。 二、ID的评审和沟通: 结构工程师拿到ID包装好的ID3D图档前,首先要拿到ID的平面工艺图,分析各零件及拆件后的工艺可行性,或者用怎样的工艺才能达到ID的效果,这当中要跟ID沟通。 有的我们可以达到ID效果,但可能结构风险性很大,所以不要一味迁就ID,要知道一个产品质量的好坏最后来追究的是你结构工程师的责任,没人去说ID的不是的,所以是结构决定ID,而不是ID来左右我们结构,当然我们要尽量保存ID的意愿。然后、才是检查各部分作结构空间是否足够,这点我就不多讲了,这里我是要对ID工程师建模提出几个建议: 1.ID工程师建模首先把stacking缺省装配到总装图中; 2.ID工程师要作骨架图档,即我们通常说的主控文件;骨架图档不管是面还是实体形式,我建议要首先由线控制它的形状及位置,这样后期调控骨架图档的位置及形状只要调控相应的线就是了; 3.ID工程师必须把装饰件及贴片的形状、位置、各壳体分模线位置、必须用线先在骨架图档中画出; 4.所有的零件图档必须第一个特征是复制骨架图档过来,然后在相应剪切而成;坚决反对在总装图中直接参考一个零件生成另一个零件。 5.ID建模的图档禁止参考STACKING中的任何东东,防止stacking更新后ID图档重生失败; 这些是我对ID建模所提出的建议,只要遵从如上几点,我们结构就可以直接在ID建模特征的后面继续了,思路也很清晰明了;且ID 如果调整外形及位置也会很容易。 三、壳体结构设计; 1.手机的常用材料: 了解手机常用材料的性能与特性,有利于我们在设计过程中合理的选用材料,目前手机常用的材料有:PC、ABS、PC+ABS、POM、PMMA、TPU、RUBBER以及最新出现的材料PC+玻纤和尼龙+玻纤等。 PC聚碳酸脂 化学和物理特性: PC是高透明度(接近PMMA),非结晶体,耐热性优异;成型收缩率小(0.5-0.7%),高度的尺寸稳定性,胶件精度高;冲击强度高居热塑料之冠,蠕变小,刚硬而有韧性;耐疲劳强度差,耐磨性不好,对缺口敏感,而应力开裂性差。 注塑工艺要点:

一款完整的手机结构设计过程

手机结构设计 一,主板方案的确定 二,设计指引的制作 三,手机外形的确定 四,结构建模 1.资料的收集 2.构思拆件 3.外观面的绘制 4.初步拆件 5.建模资料的输出 五,外观手板的制作和外观调整 六,结构设计 1.止口线的制作 2.螺丝柱的结构 3.主扣的布局 4.上壳装饰五金片的固定结构 5.屏的固定结构 6.听筒的固定结构 7.前摄像头的固定结构 8.省电模式镜片的固定结构 9.MIC的固定结构 10.主按键的结构设计 11.侧按键的结构设计 https://www.doczj.com/doc/8113830845.html,B胶塞的结构设计 13.螺丝孔胶塞的结构设计 14.喇叭的固定结构 15.下壳摄像头的固定结构 16.下壳装饰件的结构设计 17.电池箱的结构设计 18.马达的结构设计 19.手写笔的结构设计 20.电池盖的结构设计 21.穿绳孔的结构设计 七.报价图的资料整理 八,结构设计优化 九,结构评审 十,结构手板的验证 十一,模具检讨 十二,投模期间的项目跟进 十三,试模及改模 十四,试产

十五、量产 一,主板方案的确定 在手机设计公司,通常分为市场部(以下简称MKT),外形设计部(以下简称ID),结构设计部(以下简称MD)。一个手机项目是从客户指定的一块主板开始的,客户根据市场的需求选择合适的主板,从方案公司哪里拿到主板的3 D图,再找设计公司设计某种风格的外形和结构。也有客户直接找到设计公司要求设计全新设计主板的,这就需要手机结构工程师与方案公司合作根据客户的要求做新主板的堆叠,然后再做后续工作,这里不做主要介绍。当设计公司的MK T和客户签下协议,拿到客户给的主板的3D图,项目正式启动,MD的工作就开始了。 二,设计指引的制作 拿到主板的3D图,ID并不能直接调用,还要MD把主板的3D图转成六视图,并且计算出整机的基本尺寸,这是MD的 基本功,我把它作为了公司招人面试的考题,有没有独立做过手机一考就知道了,如果答得不对即使简历说得再经验丰富也没用,其实答案很简单,以带触摸屏 的手机为例,例如主板长度99,整机的长度尺寸就是在主板的两端各加上2.5,整机长度可做到99+2.5+2.5=104,例如主板宽度37.6,整机的宽度尺寸就是在主板的两侧各加上2.5,整机宽度可做到37.6+2.5+2.5=42.6,例如主板厚度13.3,整机的厚度尺寸就是在主板的上面加上1.2(包含0.9的上壳厚度和0.3的泡棉厚度),在主板的下面加上1.1(包含1.0的电池盖厚度和0.1的电池装配间隙),整机厚度可做到13. 3+1.2+1.1=15.6,答案并不唯一,只要能说明计算的方法就行 还要特别指出ID设计外形时需要注意的问题,这才是一份完整的设计指引。

手机结构设计规范

手机结构设计规范初稿 目录 目录 0 范围 (2) 术语和定义 (2) 1.显示屏类手机结构设计规范 (3) 2.触摸屏类手机结构设计规范 (3)

3.电池类手机结构设计规范 (3) 4. USB类手机结构设计规范 (3) 5. 摄像头类手机结构设计规范 (3) 6. 按键类手机结构设计规范 (3) 7. 光感应器类手机结构设计规范 (3) 8. 耳机类手机结构设计规范 (4) 9. 电声类手机结构设计规范 (4) 10. BTB、ZIF连接器类手机结构设计规范 (4) 11. TF卡、SIM卡类手机结构设计规范 (4) 12. 马达类手机结构设计规范 (4) 13. 弹片类手机结构设计规范 (4) 14. 柔性电路板类手机结构设计规范 (4) 15. 主板堆叠类手机结构设计规范 (4) 16. 屏蔽件类手机结构设计规范 (5) 17. 基本结构类手机结构设计规范 (5) 18. 天线相关类手机结构设计规范(借用硬件规范) (5) 19. 工艺类手机结构设计规范(没升级) (5) 20. 塑胶壳一体机手机结构设计规范(没升级) (5) 21. 滑盖机手机结构设计规范(没升级) (5) 22. 翻盖机手机结构设计规范(没升级) (5) 附录 A (6) 1

手机结构设计规范 范围 本规范给出了手机结构设计的基本准则与手机结构设计的一些参考数据、注意事项和案例。 本规范适用于广东欧珀移动通信有限公司手机产品的结构设计,亦可作为手机产品结构设计的评审依据。 术语和定义 本规范中涉及到较多专业术语,其中部分术语仅为广东地区使用的结构设计和模具方面专用词汇,均为结构工程师之间的常用沟通术语,通俗易懂且数量较多,在此就不再赘述。 2

手机结构设计的一些基础知识

电铸类特性; 原材料; 镍颜色; 金色. 银色. 罴色 特点: 文字轮廓清晰,体现微细纹理,典雅.高贵,半永久性,可进行腐蚀,Mirror处理,砂面,镭射效果,镀罴珍珠. 超蒲金属: 原材料: 镍颜色: 银色,金色,罴色 特点: 产品厚度可以达到0.04-0.18MM,图案和文字处理灵活,金属感强,粘贴操作方便,打样周期短. 铝腐蚀类: 原材料; 铝颜色: 颜色多样. 特点: 半永久性,一般用在名牌商标和装饰件. 亚克利: 原材料: PMMA 颜色: 颜色多样. 特点: 有良好的透光性,屈伸性,耐磨性 电铸铭牌设计注意事项: 1. 浮雕或隆起部份边缘处应留有拔模度,最小为10度,并随产品的高度增加,拔模度也相应增大.字体的拔模度在15度以上. 2. 铭牌的理想高度在3MM以下,浮雕或凸起部份在0.4~~0.7MM之间. 轮廓尺寸以2D图为准;图案或字体用CDR格式或者AI格式的文件.另外应提供产品的效果图. 10. 结构简单的产品开发周期为18—20天;若有立体弧度的产品.开发周期需要25天量产准备时间为15天;电铸件这金色银色.其它色只能通过后期喷涂达到. 铝腐蚀铭牌设计注意事项 1. 产品厚度在0.3—0.8MM,常用0.4—0.6MM.高度应控制在5MM之内.

2. 产品表面字体可采用挤压成型.腐蚀或印刷的方式.由于在挤压成型时,字体边缘受力会产生细小的裂纹,字体表面会有轻微的变形,所以挤压成形后的字体要对表面进行高光切削和接丝处理. 3. 表面效果可采用拉丝或磨沙面.拉丝效果可采用带有拉丝效果的板材;若产品表面带有腐蚀的方式加工.但是腐蚀的方式加工,但是腐蚀的效果没有拉丝板材的效果好.磨沙面是采用喷沙的效果加工. 4. 板材可根据需要进行着色处理,客户应提供机壳的正确尺寸及实样. 5. 产品表状可以作成任意的曲面,也可进行弯边或对边缘处进行高光切削. 6. 铭牌装配时为嵌入的结构.请提供机壳的正确尺寸及实样.若铭牌的尺寸过大过高.应在机壳上相应的部位加上支撑结构. 7. 客户应提供完整的资料.包括2D和3D的图档.2D使用DWG格式的文件.3D使用PRT 格式的文件.产品外观以3D图档为准;但是外型 3. 字体的高度或深度不超过0.3MM.若采用镭射效果则高度或深度不超过0.15MM. 4. 板材的平均厚度为0.22正负0.05,若产品超过此高度则应做成中空结核,并允许产品高度有0.05的公差;由于板材厚度是均匀结构,产品的表面的凸起或凹陷部份背面也有相应变化. 5. 产品外型轮廓使用冲床加工,为防止冲偏伤到产品其外缘切边宽度平均为0.07MM为防止产品冲切变形,尽量保证冲切部份在同一平面或尽量小的弧度,避免用力集中而造成产品变形.冲切是只能在垂直产品的方向作业. 6. 铭牌表面效果,可采用磨沙面.拉丝面,光面,镭射面相结合的方式.光面多用于图案或者产品的边缘,产品表面应该避免大面积的光面,否则易造成划伤;磨砂面的产品要比拉丝面多用于铭牌底面,粗细可进行高速;在实际的生产中,磨砂面的产品要比拉丝面的产品不良率低,镭射面多用于字体和图案,也可用于产品底面,建议镭射面采用下凹设计,因长时间磨损镭射面极易退色.另带有镭射效果的产品不能用与带有弧度的产品. 7. 若产品表面需要喷漆处理,应该提供金属漆的色样.由于工艺的限制,应允许最终成品的颜色与色样有轻微的差异. 8. 若铭牌装配时为嵌入的结构,请提供机壳的正常尺寸过大过高,应在机壳上相应的部位加上支撑结构. 9. 客户应提供完整的资料.包括2D和3D的图档.2D使用DWG格式的文件.3D使用PRT 格式的文件.产品外观以3D图档为准;但是外型

密封圈结构设计技术规范方案

WORD格式可编辑

1适用范围 本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。2引用标准或文件 GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差 GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸 GB/T 6612-2008 静密封、填料密封术语 JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差 JBT 7757.2-2006 机械密封用O形橡胶圈 JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸 《静密封设计技术》(顾伯勤编著) 《橡胶类零部件(物料)设计规范》(在PLM中查阅) 3基本术语、定义 3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。 3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。 3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误 差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏的主要途径。 3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。 3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。 3.6填料密封:填料作密封件的密封。 3.7接触压力:填料密封摩擦面间受到的力。 3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫 片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。 3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。 注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。 3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。 3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使 用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。 3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5 条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。 3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。

结构设计评审规范

(一)ID 部分 1.外观面不能有倒拔模现象;所有外观曲面过度光顺; 2.美工线0.4~0.5*0.18(深度);外观局部突出不超过1mm; 3.主板机心装配空间检查;最小部分不超过0.6-0.8; (二)硬件确认 1.硬件版本应为最新; 2.硬件排布合理、紧凑、尽量减小整体尺寸; 3.主板须有4个螺钉锁柱位,并避免锁柱与按键冲突(一般情况下,键盘距外观面 4.2以上就不会跟螺钉干涉); 4.所需电子元气件规格书确认; 5.3D图尺寸是否与规格书吻合; 6.3D图元气件位置确认; 7.D ome排布迎合ID,中心尽量与按键中心重合,Dome采量直径:5mm/直径4mm 8.电芯容量按客户需求; 9.D OME 装配定位孔(至少3个); 10.邮票孔位置; 11.FPC 侧键部分有无留缺口; 12.声学器件与天线距离(不小于5mm); 13.确认电池为内置还是封装电池。 (三)结构部分 A.总装 1.3D图档装配关系条理清晰明了符合装配工艺(即PART LIST 的级别关系); 2.翻盖底面和主机面间隙0.3-0.5, (一般取0.4mm);翻盖支持垫高度=翻盖底面/主 机面间隙+0.05mm; 3.滑盖底面和主机面间隙0.3-0.5; 4.所有两两配合零件间隙检查; 5.整机干涉检验; 6.卡钩的让位空间是否足够; 7.对称零件防呆设计; 8.转轴与天线同侧,翻盖FPC反侧; 9.FPC模拟到位; 10.翻盖复位开关结构(一般HALL 器件+磁铁,或者压柱+RUBBER +导电胶) 11.电池前端与D件外观间隙0.1mm(锁扣端),尾部为0.05mm,并且电池翻转取 出顺畅无干扰(尾部卡钩做20-25度斜度) 12.电池锁扣与电池配合深度0.8mm,电池与D件卡扣配合深度1mm; 卡扣退位空 间1.3mm 以上; 13.D件电池仓侧壁必须给出拔模; 14.电池与锁扣配合结构必须做在电池面壳上; 15.电池背胶及膨胀空间按0.3mm高度,侧隙为0.2mm; 16.电池保护板面积20m m×6mm或28*4mm,元件高度1mm;电路板厚度0.4MM; 17.不要忘记电池标贴、产品标贴、入网标贴(12*30MM) 18.C、D件美工线尺寸0.2m m×0.2mm(宽×深),翻盖A、B件及电池与机身配合 无须美工线; 19.A、B、C、D壳基本壁厚=>1.2mm 20.EMC、ESD结构考量 21.机底防磨点及按键盲点

手机结构设计指南

手机结构设计指南 (Design Guide Line) Revision T3 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 烟波浪子整理制作 2005-12-31 无维网免 费技 术资 料 h t t p ://w w w.5 d c a d .c n

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1. 直板式 Candy bar 2. 折叠式 Clamshell 3. 滑盖式 Slide 4. 折叠旋转式 Clamshell & Rotary 5. 直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: 显示屏镜片 LCD LENS 前壳 Front housing 显示屏支撑架 LCD Frame 键盘和侧键 Keypad/Side key 按键弹性片 Metal dome 键盘支架 Keypad frame 后壳 Rear housing 电池 Battery package 电池盖 Battery cover 螺丝/螺帽 screw/nut 电池盖按钮 Button 缓冲垫 Cushion 双面胶 Double Adhesive Tape/sticker 以及所有对外插头的橡胶堵头 Rubber cover 等 如果有照相机,还会有照相机镜片Camera lens 和闪光灯Flash LED 镜片 无维网免费技术资料 h t t p ://w w w .5d c a d .c n

手机电池结构设计规范标准

手机电池设计规范

目录 一.概述 (1) 二.常用手机电池封装方式介绍 (3) 三.各类封装方案设计规范 (6) 1.框架工艺电池设计规范 (6) 2.点胶工艺电池设计规范 (12) 3.注塑工艺设计规范 (18) 4.MPACK电池设计规范 (25) 5.软包工艺电池设计规范 (28) 6.激光点焊工艺设计规范 (34) 7.软包电池自动化设计规范 (37) 8.部件尺寸公差设计规范 (40) 一.概述

全球通信行业飞速发展,一个崭新的移动互联时代正向我们走来,手机的需求量将更大。对手机电池而言,这将是一个充满机遇与挑战的大市场。近年来手机的功能和款式更新换代虽然频繁,但手机电池封装工艺却并没有明显的进步。作为手机电池企业,如何才能在技术上取得突破?如何才能在国际竞争中争取到更大的优势呢?封装专业化将是手机电池封装厂商的出路。 要成为专业的封装厂商,必先在自身设计和工艺上形成具有专业性、规范性、前瞻性的指导文件。我司在手机电池封装行业已经拼搏十数年,累计下了丰富的设计和生产经验,拥有目前封装行业所有的封装工艺,并推出了两项自主专利的封装方式。本规范旨在为飞毛腿电子有限公司累计多年封装检验,总结和规范封装设计及工艺要求,满足客户要求,市场要求,成本要求,进一步提升封装水平。

二.常用手机电池封装方式介绍 手机电池发展到今天,已经形成多种封装方式,其封装难度、工艺成本、外观尺寸各有优势,目前常用有七种封装方式,详见下文介绍: 一.框架类 方案优势: 该方案适用面广,过程工艺相对简单; 适用范围: 适用与电池长度方向尺寸极限,但宽度方向空间富余,可以将保护板放置在侧面的方案; 二.打胶类 方案优势: 电池空间利用率高,成品尺寸较小; 方案不足: 因该方案公差易产生一定累积;而国产电芯尺寸的公差远大于进口电芯,该方案不适用使用国产电芯方案. 三.注塑类

公差原则的合理选用

公差原则的合理选用 公差原则是对尺寸公差和形位公差相互可否转换的规定。尺寸公差和形位公差都反映在一个零件的同一个或几个要素上,一般情况下,它们彼此独立又相互依存,在一定的条件下还可以相互转换。尺寸公差和形位公差不允许相互转换时为独立原则;允许转换时为相关原则。相关原则又可分为:包容原则、最大实体原则及最小实体原则。下面就相关原则在工程实际中的应用进行分析。 (一)包容原则的应用分析 包容原则是指实际要素应遵守最大实体边界,即要素的体外作用尺寸不得超越其最大实体边界,且局部实际尺寸不得超越其最小实体尺寸。包容要求主要用于需严格保证配合性质的场合。如图1,基本尺寸为20的轴与孔装配后,要求最小间隙为0,则轴与孔的尺寸可采用包容原则。 图1 轴的直径尺寸采用包容原则时,其最终加工尺寸应满足: ①体外作用尺寸(d fe)≤最大实体边界(MMB)(即?20);

②局部实际尺寸(d al)≥最小实体边界(LMB)(即?19.998); 孔的直径尺寸采用包容原则时,其最终加工尺寸应满足: ①体外作用尺寸(d fe)≥最大实体边界(MMB)(即?20); ②局部实际尺寸(d al)≤最小实体边界(LMB)(即?20.012); 当轴和孔装配后,最小间隙为0,最大间隙决定于轴和孔的公差值,图1中为0.014。 检验时,轴的实际圆柱面只要能通过直径等于最大实体边界尺寸?20的全形量规,且用两点法测得的局部实际尺寸大于或等于?19.998时,则该零件可判为合格;孔的实际圆柱面只要能通过直径等于最大实体边界尺寸?20的塞规,且用两点法测得的局部实际尺寸小于或等于?20.012时,则该零件可判为合格。 从以上分析可知:包容原则是将实际尺寸和形位公差同时控制在尺寸公差范围内的一种公差原则。当零件的实际尺寸处处为最大实体尺寸时,其形位公差为零;当实际尺寸偏离最大实体尺寸时,则允许的形位公差可相应增大,其最大增大量为尺寸公差,从而在实现了尺寸公差和形位公差相互转化的同时,保证了配合的性质。 (二)最大实体原则的应用分析 最大实体原则是指当被测要素或基准要素偏离最大实体状态时,形位公差获得补偿的一种公差原则。最大实体原则主要应用于要求保证可装配性(无配合性质要求)的场合。如图2所示法兰盘上的普通螺栓联接,通孔位置只要求满足可装配性,即使基准A的位置稍有变化,零件的可装配性仍应满足,则在设计时基准及通孔的位置度公差

相关主题
文本预览
相关文档 最新文档