带钢电液伺服纠偏系统
- 格式:doc
- 大小:25.00 KB
- 文档页数:5
带钢纠偏控制系统设计作者:王佳佳高晓丁聂兆明李远朝来源:《电子世界》2012年第24期【摘要】本设计是针对钢带在卷取机上绕卷运行时发生的左右偏移而提出控制方案及具体处理方法。
采用智能PID控制算法,对钢带的偏移量进行实时的控制,使之在左右偏移时偏移量控制在安全的范围内。
主要是对系统数学模型的建立和数据处理的算法分析。
【关键词】钢带;纠偏控制;智能PID控制;卷取机1.引言钢带纠偏控制是指钢性卷材在喷涂、印刷、冲切、层合、分切或其它绕卷过程中始终要保持钢性卷材侧面整齐一致而采取的技术操作。
卷材边缘一旦没有对齐就会引起后续的工步出错,导致材料浪费或停工调整。
所以在加工处理钢性卷材时需要对偏移的钢性卷材进行及时的纠偏操作。
2.控制系统的组成系统的组成如图1所示,由基于AT89C52处理器、光电传感器、数模及模数转换模块、伺服放大器及配套的伺服阀、位置传感器、液压缸及其配套的液压设备等组成。
3.控制系统的数学模型与算法实现3.2 算法实现该控制系统实现的是对钢带位置偏差信号的实时控制,而PID控制算法是被工程实际有力地证明了的先进控制算法,其算法简单、鲁棒性好、可靠性高。
在工程实际中,微分环节D很难控制,因为它对噪声比较敏感,抗噪声干扰性差。
所以本设计采用PI调节器,采用参数自调整规则以适应不同的工况,参数自调整PI调节器结构如图3所示。
4.MATLAB仿真分析控制系统设计完成后,对控制算法进行了MATLAB/SIMULINK仿真实验,并对仿真结果进行分析,参数自调整PI控制时的阶跃输入仿真曲线如图4所示。
仿真实验结果表明,控制器从不到2ms的时间开始响应,满足系统的要求,而且控制变化量平稳过渡超调量较小具有很好的鲁棒性和总体快速性。
仿真实验结果显示了该系统的控制效果良好。
5.结束语本设计主要研究的是对带钢在运行过程中出现的偏差进行实时的控制,以保证偏差在安全生产的范围内。
系统采用现在较流行的PID算法,使得系统的控制精度大大提高、系统的稳定性更好。
EMG带钢纠偏系统在冷轧的应用与及维护I. 绪论A. 研究背景及意义B. 现有问题分析C. 研究目的II. EMG带钢纠偏系统的原理介绍A. 系统构成B. 工作原理C. 优点分析III. EMG带钢纠偏系统在冷轧中的应用A. 系统使用流程B. 应用场景分析C. 应用效果评估IV. EMG带钢纠偏系统维护及故障排除A. 系统维护方法B. 故障排除流程C. 维护经验总结V. 未来研究方向A. 研究现状分析B. 发展趋势预测C. 优化设计建议VI. 结论A. 研究成果总结B. 研究意义再探讨C. 后续发展策略建议I. 绪论A. 研究背景及意义随着冷轧带钢的需求不断增加,带钢纠偏系统在钢铁工业中的应用也逐渐扩大。
然而,传统的带钢纠偏系统存在一些缺陷,如操作不便,维护困难,精度不高等问题。
针对这些问题,人们提出了一种新型的带钢纠偏系统-- EMG带钢纠偏系统,该系统采用电磁力平衡技术和精密传感技术,可以实现高精度的纠偏效果。
B. 现有问题分析传统的带钢纠偏系统采用机械力平衡技术,由于机械部件易于磨损,且常常受到环境温度变化等因素的影响,其纠偏精度较低。
此外,传统的带钢纠偏系统操作复杂,维修困难,而且在长期使用过程中,会逐渐失去灵活性和纠偏精度,从而导致带钢加工出现误差。
C. 研究目的本论文旨在探讨 EMG带钢纠偏系统的原理、应用及维护。
通过对该系统的研究分析,我们可以深入了解其原理和应用特点,为该系统的普及和推广提供理论支持。
此外,本论文还会探讨EMG带钢纠偏系统的维护方法和故障排除流程,为用户提供了可靠的维护保障。
最后,我们将在总结中展望该系统的未来发展方向,以期为相关领域的研究和实践提供一定的借鉴和指导。
II. EMG带钢纠偏系统的原理介绍A. 系统构成EMG带钢纠偏系统主要由电磁力平衡装置、带钢传感器、控制系统和供电系统等组成。
其中,电磁力平衡装置是核心部件,采用电磁力平衡技术,可生成与带钢误差方向相反的力矩,从而实现带钢纠偏。
IMH2测量精确 耐温高达1100 o C 免维护高温型电感式带钢对中测量根据电磁场感应的原理,在被测量带钢的两侧边部上下水平放置两套对中传感器并与带钢中心对称布置;带钢上方的对中传感器内有两个发射传感器,带钢下方的对中传感器内有两个接收传感器,发射传感器所发射的磁场方向垂直与带钢边部到接收传感器。
信号处理装置提供一个频率和频幅可调节的正弦波交流电压给电感发射传感器,电感发射线圈所产生的交变磁场感应到接收传感器;接收传感器被感应到的磁通量的大小取决于带钢的位置。
频幅的大小变化所产生的交流电压经过计算转换为模拟输出信号,最终得到带钢的边部位置。
对于带钢对中纠偏来说,来自两个相同的干扰分别作用于两个接收传感器,这种干扰可以抵消。
70年代早期电感原理传感器首次在酸洗线酸槽中应用1980-1993年 用带有IR-CUT 滤网的摄像头检测带钢与炉内背景光之间的明暗对比测量带钢边缘位置1992-1994年 开发研制炉内高温型电感式传感器1993年 第一套高温型电感式传感器在炉内应用1998年对高温型电感式传感器 进行改进,取消陶瓷保护套管2004-2005年 重新设计新一代传感器至今300多套高温型电感式带钢对中系统在炉内运行成功的应用历史为保证产品质量,EMG 工厂有特殊设计的加热炉,用于炉内电感式传感器的出厂测试。
E M G 高温型电感式带钢对中测量的应用炉内纠偏辊架ESZ 电动伺服推杆水冷/空冷电控柜IMH2高温型电感式传感器• contactless• cost-effective• maintenance-freeTwo double flanges are welded to the furnace walls so that they are gas-tight. They are used tosupport and seal the cross beams.Two temperature resistant rectangular metal cross beams with special, heat-resistant sensor coils which are installed from one side of the fur-nace by the customer.To protect the sensor system, particularly in case of strip breakage, mechanical deflectors are recom-mended.On request we will be glad to give our customers information about how to design and where to mount the mechanical defl ectors.Shock protection• 对改造或新建炉子设计容易• 高温条件工作稳定、高精度保证• 测量不受炉内蒸汽和金属粉尘的影响• 减少带钢的炉内断带• 安装简便、操作容易• 安全防护设计• 无易损更换件• 使用寿命长客户利益高温型传感器IMM2IMH2IMU2适用最高炉内温度650 °C950 °C1100 °C适用带钢宽度范围500...2850 mm (取决于传感器安装位置)系统保证精度± 5 mm 传感器距金属保护梁最小距离200 mm 端子盒适应环境温度0...+80 °C 端子盒保护等级IP54信号处理箱BMI 04.19供电电压110 / 120 / 220 / 230 / 240 V; 50 - 60 Hz 功率60 V A 适应环境温度0...50 °C信号输出CAN-bus总线EB S T P r o M a r k T e c h n o l o g i e s , I n c .U .S .A .E M H -E l e c t r o m e c ân i c a e H i d r áu l i c a L t d a .B r a z i lB S T I n t e r n a t i o n a l G m b HG e r m a n yE M G ,F a c t o r y E L T M AG e r m a n yB S T S a y o n a A u t o m a t i o n s P r i v a t e L t d .I n d i a E M G A u t o m a t i o n G m b HG e r m a n yE M G A u t o m a t i o n (B e i j i n g ) L t d .C h i n a。
带钢电液伺服纠偏系统研究
摘要:电液伺服纠偏系统在带钢卷取控制中具有重要的意义。
本文建立了电液伺服纠偏系统的传递函数模型,推导了控制器参数,最终设计了基于plc的电液伺服纠偏控制系统,实际应用表明该系统具有较高的控制精度与较高的可靠性。
关键词:电液伺服纠偏带钢 plc
中图分类号:tb 文献标识码:a 文章编号:1007-0745(2013)05-0364-02
0 引言
纠偏控制以电液技术为基础,带钢跑偏的检测方式多样,按其跑偏量检测原理可分为光电检测、电感检测、电容检测三类。
纠偏控制一般采用如下三种方式:第一种为单辊纠偏,其作用为保证带钢进入活套前位置适中,具体为在一段较长的自由运行后,带钢以90度夹角卷绕纠偏辊,利用卷绕效应的物理作用,带钢偏差会被校正到一定范围之内。
当自由的钢带进带距离和出带距离较长时,一般让带钢绕180度经过纠偏辊。
纠偏作用机理为:驱动两根倾斜的连杆转动,带动纠偏辊机架旋转,带钢与纠偏辊中心形成一定的夹角(积分作用),另一个作用为强制带钢横向移动(比例作用)。
因此,纠偏机架旋转产生的比例积分的控制作用。
该类纠偏一方面对出带位置进行纠正,另一方面对近带也起到一定的纠偏作用,测量信号获取部分一般放置在出带侧。
第二种为双辊纠偏,其应用场合为有改变两个带钢运行高度的需求时(如活套的出入口),必须使
用双辊纠偏机架过渡作用,起到比例调节的效果。
该类型的纠偏机架突出优点为仅需较短的自由进出带距离即完成纠偏,因此,可应用在机组设备较密集的位置。
工作原理为纠偏辊在进带平面上以一个固定转轴为中心而转动,使带钢的出带部分横向移动。
此时纠偏辊并不能纠正进带的跑偏,但对纠正出带位置具有重要作用,作用为使带钢回到设定的中心位置。
带钢运行时的纠偏量与纠偏机架的调节距离为近似比例关系,进带和出带与转动平面的夹角为90度,纠偏性能取决于进带与出带之间的相对距离,该类测量装置信号获取也在出带侧。
第三种为三辊对中:在带钢张力较大或带钢较厚的特殊工况下,一般可应用三辊纠偏,其技术有点为带钢不必在辊上绕向即能实现带钢的纠正。
为增强纠偏效果,带钢和纠偏辊之间需具有一定的摩擦力,摩擦力的大小可通过辊子本身的直径或上辊的下压力来共同确定。
其结构特征为在转动的机架上装三个辊子,依靠两根连杆支撑移动运动,带钢与辊面之间的夹角产生积分作用,带钢横向移动产生比例作用,除对出带位置与进带均有纠偏效果。
许多研究人员对带钢纠偏做了详细的研究,如文献[1]设计了基于比例阀控制的电液伺服纠偏系统,并进行数学建模与matlab仿真研究。
文献[2]采用ccd作为信号采集元件,设计了基于换向阀的伺服纠偏系统。
文献[3]提出了一种基于图像处理技术采集跑偏信息的电液位置伺服纠偏系统。
文献[4]设计一种基于光电纠偏技术的电液伺服系统,并在带材清洗机列卷取机自动对中系统中成功应用。
本研究提出一种采用差动光电原理的带钢跑偏检测方法,设计了纠偏伺服机架,对系统进行数学建模,最终设计了电液伺服系统,实现带钢的纠偏控制。
1 系统主要组成
1.1 光电检测原理
光电检测工作原理如图1所示,荧光灯光源s提供高频光源,频率为1000hz,功率为50w。
带材t遮挡光路,光电检测器透镜组l获得经带材遮挡后的光,并经光敏元件d感知,位置信号电压先经色度补偿选频并放大,再经带通滤波器滤波与电压整形变换,最后输出与位置信号成线性的稳定、高可靠信号。
光电检测系统经实验室调试,输出跑偏信号电压与钢带遮光位置在较大范围内成接近比例。
跑偏信号电压经标准化处理为4-20ma电流,可被单片机或plc采集。
为保证系统工作可靠性,在光电检测系统中设计断光保护输出电路,当光敏三极管无法获得足够强度的光源时,输出断光信号,保证系统可靠运行。
1.2 纠偏机架设计
由于带钢纵向或横向浪形、边缘浪形、中部浪瓢、歪扭、镰刀弯、厚度变化、表面粗糙度及张力变化等原因,造成带钢在运行过程中的侧向滑移与螺旋漂移,其中螺旋漂移作用为主导因素。
本研究主要分析其对中纠偏作用的水平单辊,纠偏机架如图2所示。
整套纠偏机架固定在水泥浇注的基础地基上,纠偏位于上部为纠偏辊,其转动方向由底部油缸推动机架可动部分旋转来确定。
1.3电液伺服阀控缸原理
电液伺服阀控缸原理如图3所示。
式中,ql为系统流量;kq为流量增益;kc为流量-压力系数;xv为阀芯位移;pl为负载压差; ap为缸活塞面积;xp为活塞位移;ctp为总泄漏系数;vt为液压缸总压缩容积;βe为有效体积弹性模量;mt为活塞及负载折算到活塞上的总质量;bp为活塞及负载的粘性阻尼系数;k为负载弹簧刚度;fl为任意外负载力。
当k=0时,指令输入的传递函数可表示为:
2 系统总体结构
本文采用siemens s7-200 plc cpu224 xp型号,扩展a/d及d/a 模块,采集系统跑偏信息,并输出控制伺服阀进行纠偏。
联网选用工业以太网模块cp243-1。
如图4所示。
液压系统的伺服阀具有非线性、参数不确定性及外部的扰动等不利于性能提高因素,且扰动参数随工作状态与温度变化,因此纠偏电液控制系统的各主要参数在系统运行中有可能是时变的,其固定值可由标称值参数推导求得,设计系统目标为:当系统参数变化时,使系统输出量跟踪期望输入信号。
通过设定值与实际位置的比较,产生偏差信号,经过pid运算后,到 d/a口输出标准电流信号调节伺服阀控制电流,构成一个闭环恒值控制系统。
pid控制器具有的结构简单,易于控制,参数可调、高精度的优点,随着微机技术的迅速发展,数字pid控制器代替了原有的模拟pid控制器,使pid控制易于微机实现。
数字pid控制器一般采用位置式pid控制
算法或增量式pid控制算法,各有其应用场合。
pid控制器是一种线性控制器,通常控制量是给定量r(t)和输出量y(t)的偏差,即依靠偏差来纠正偏差:
由于计算机控制是一种采样控制,因此连续的pid控制算法不能直接运用,只能进行离散化进行控制,离散化由微机编程来实现。
3 结束语
本文根据电液伺服系统的工作原理以及物理构成建立了纠偏系统结构,结合的电液伺服系统模型参数,确定出系统的传递函数。
在阐述pid控制理论基础上,给出了出了针对电液伺服系统的pid 控制器算法,并最终设计了基于plc的电液伺服纠偏系统硬件结构,为工程应用奠定了坚实的基础。
参考文献:
[1]郑淑娟,贾建涛,段现银. 比例阀控电液纠偏系统的设计与分析 [j].机床与液压,2010,38(16):57~59.
[2]程丽华,杨晓明,毕友明. 一种通用的电液伺服带钢纠偏和对中控制系统[j]. 机床与液压,2004,(6):126~127.
[3]李锐,岑豫皖. 基于图像处理技术的带钢电液纠偏系统研究[j]. 液压与气动,2002,(11):11~13.
[4]李志宏.电液伺服系统在带材纠偏控制中的应用[j].有色金属加工,2003,32(6):36~38.。