基于ADAMS人体动力学的建模与仿真研究
- 格式:pdf
- 大小:1.43 MB
- 文档页数:58
adams动力学仿真原理
Adams是一种基于动力学原理进行仿真的软件,它使用多体
动力学理论和计算力学算法,对系统中的物体进行建模和仿真,以模拟真实的物体运动和相互作用。
Adams的仿真原理主要基于以下几个方面:
1. 多体动力学:Adams使用多体动力学理论来描述系统中的
物体运动。
多体动力学是物体受力和受力作用导致的加速度之间的关系。
通过建立质点、刚体或弹性体等物体的动力学模型,并考虑物体之间的相互作用,可以求解物体的运动轨迹、速度和加速度等。
2. 约束条件:Adams支持对系统中物体之间的各种约束条件
进行建模和仿真。
约束条件可以是几何约束,如固定连接、旋转关节、滑动关节等,也可以是物理约束,如弹簧、阻尼器等。
Adams利用这些约束条件来限制物体的运动范围,并求解约
束条件下的系统运动。
3. 接触和碰撞:Adams还考虑了系统中物体之间的接触和碰撞。
通过建立接触模型和碰撞模型,Adams可以模拟物体之
间的接触力和碰撞力,并根据物体的质量、形状和速度等参数计算物体的反应。
4. 动力学求解:Adams使用高效的动力学求解算法,通过求
解物体运动的微分方程组,得到物体的运动轨迹、速度和加速度等。
求解过程中,Adams考虑了物体之间的相互作用和约
束条件,并根据物体的质量、惯性、摩擦力等参数计算物体的运动状态。
总的来说,Adams的仿真原理基于多体动力学理论和计算力学算法,并考虑了物体之间的约束、接触和碰撞等相互作用,以模拟系统中物体的真实运动和行为。
基于ADAMS及ANSYS的柔性机器人动力学仿真系统一、本文概述随着科技的快速发展,机器人在工业、医疗、军事等领域的应用越来越广泛。
其中,柔性机器人以其独特的柔性和适应性,在众多应用场景中表现出显著的优势。
然而,柔性机器人的动力学特性复杂,传统的建模与仿真方法往往难以准确描述其运动行为。
因此,开发一套基于ADAMS及ANSYS的柔性机器人动力学仿真系统,对于提高柔性机器人的设计效率、优化运动性能、预测运动行为具有重要意义。
本文旨在介绍一种基于ADAMS及ANSYS的柔性机器人动力学仿真系统的设计与实现方法。
文章将对柔性机器人的动力学特性进行分析,明确仿真系统的需求和目标。
详细介绍仿真系统的总体架构和各个模块的功能,包括柔性机器人的建模、动力学方程的建立、仿真求解以及结果后处理等。
在此基础上,文章将重点探讨ADAMS和ANSYS在仿真系统中的应用,以及它们之间的数据交互和协同工作机制。
通过实际案例验证仿真系统的有效性,并对未来研究方向进行展望。
通过本文的阐述,读者可以深入了解柔性机器人动力学仿真系统的基本原理和实现方法,为相关领域的研究人员提供有益的参考和借鉴。
本文的研究成果也将为柔性机器人的设计、优化和控制提供有力的技术支持。
二、柔性机器人动力学建模柔性机器人的动力学建模是理解其运动行为并进行精确控制的关键。
建模过程中,需要同时考虑机器人的刚性部分和柔性部分的动力学特性。
在这个过程中,我们采用了ADAMS和ANSYS这两个强大的工程仿真软件。
我们利用ADAMS进行多体系统动力学建模。
ADAMS以其强大的刚体动力学仿真能力,可以精确模拟机器人的刚性部分运动。
我们根据机器人的实际结构,在ADAMS中建立了详细的多体系统模型,包括连杆、关节、驱动器等各个部分。
然后,通过定义各个部件之间的约束关系,如转动副、移动副等,以及设定驱动器的运动规律,我们能够在ADAMS中模拟出机器人的各种运动状态。
然而,对于柔性机器人来说,仅仅考虑刚性部分的动力学是不够的。
基于ADAMS的巡线机器人运动学、动力学仿真一、本文概述Overview of this article随着科技的不断发展,巡线机器人在电力、通信、物流等领域的应用越来越广泛。
巡线机器人的设计和控制涉及到复杂的运动学和动力学问题,因此,对其进行精确的仿真分析具有重要的理论和实践意义。
本文旨在利用ADAMS(Automated Dynamic Analysis of Mechanical Systems)这一先进的机械系统动力学仿真软件,对巡线机器人的运动学和动力学特性进行深入的研究。
With the continuous development of technology, the application of patrol robots in fields such as power, communication, and logistics is becoming increasingly widespread. The design and control of patrol robots involve complex kinematic and dynamic problems, therefore, accurate simulation analysis of them has important theoretical and practical significance. This article aims to use ADAMS (Automated Dynamic Analysis of Mechanical Systems), an advanced mechanical system dynamics simulation software, toconduct in-depth research on the kinematic and dynamic characteristics of line patrol robots.本文首先介绍了巡线机器人的基本结构和功能,阐述了其运动学和动力学仿真的必要性。
基于ADAMS的机器人动力学仿真研究的开题报告1.选题背景及意义随着各种工业机器人的越来越广泛使用,人们对机器人动力学仿真研究的需求也越来越高。
机器人的动力学仿真研究可以为机器人的设计、控制和运行提供参考和支持,对提高机器人的工作效率、精度和安全性有着非常重要的意义。
ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种机械动力学仿真软件,广泛应用于产品设计、运动仿真、虚拟原型设计等领域。
通过ADAMS软件可以对机器人进行二维、三维动力学仿真,可根据不同的情况进行仿真,从而得出适用于不同机器人系统下的控制方法和运行规律。
本文旨在使用ADAMS平台,对机器人动力学进行仿真研究,从而更好地解决机器人工作中所遇到的问题,为机器人研究和应用提供技术支持和帮助。
2.研究内容和方法本研究主要内容是对机器人动力学进行仿真研究。
具体包括:1)机器人系统建模:根据机器人不同的机构和工作方式,建立机器人的三维模型,包括机器人关节、传动机构、末端执行器等。
2)动力学参数计算:基于机器人的三维模型,计算机器人的动力学参数,包括质量、重心、惯量、运动学链、级联惯量等。
3)动力学仿真:使用ADAMS软件对机器人进行动力学仿真,模拟机器人在不同工作条件下的运动状态,并对机器人的动力学性能进行分析和研究。
4)结果分析:通过分析仿真结果,评价机器人模型和控制算法的有效性,检验机器人的设计和控制方案的合理性,并对机器人的性能进行优化和提升。
3.研究计划1)文献调研和分析:通过系统地调研前人研究,分析机器人动力学仿真的发展现状和存在的问题,确定研究方向和目标。
2)机器人系统建模:根据机器人的不同应用场景,建立机器人的三维模型,包括机器人关节、传动机构等组成部分。
3)动力学参数计算:根据机器人的三维模型,计算机器人的动力学参数,建立机器人的动力学模型。
4)动力学仿真:运用ADAMS 软件对机器人进行动力学仿真,模拟机器人不同工作情况下的运动状态,包括复杂工作状态和非理想工作情况。
基于ADAMS的工业机器人建模与动力学仿真作者:刘佩森靳杏子郑翔鹏朱迪来源:《成都工业学院学报》2018年第04期摘要:为了提升工业机器人工作效率和运动性能,以6自由度工业机器人为研究对象,选用拉格朗日力学分析法进行动力学仿真。
使用三维设计软件SolidWorks对其进行结构建模,并通过接口导入ADMAS仿真软件中,运用动力学方程,并添加驱动,最终获得重要组件的特性曲线图,完成动力学仿真过程。
关键词:工业机器人;动力学仿真;虚拟样机建模;拉格朗日力学分析法中图分类号:TH1132文献标志码:A文章编号:2095-5383(2018)04-0010-04根據美国国家标准局(NBS)和国际标准化组织(ISO)的定义,工业机器人是指面向工业领域的多关节和多自由度的拟人操作臂,是具有编程能力并在自动控制下实现预期功能的机械装置[1]。
其典型应用包括抓取、焊接、搬运、配送、涂胶、喷涂、打磨、装配、检测和感知等[2]。
工业机器人是国家的高科技水平、制造业先进能力和综合国力的标志之一[3]。
工业机器人操作臂的主要类型包括笛卡尔型、关节型、SCARA(Selective Compliance Assembly Robot Arm,平面关节型)、球面坐标型、圆柱面坐标型和并联结构型等。
其中关节型操作臂的所有关节全部可以旋转,具有结构紧凑,空间施展范围大等优点,应用最为广泛。
但是关节型操作臂是复杂的动力学系统,其多个输入与输出之间的耦合关系存在复杂的动力学求解问题[4]。
工业机器人的结构设计较为成熟,而技术难点集中在动力学研究。
动力学研究是为了优化结构设计,修正运动控制过程,提高实时控制能力,进而达到运动学的最优化控制,改善系统运动性能[5]。
动力学分析方法主要有拉格朗日法[6]、凯恩法、牛顿欧拉法[7]、高斯方法、旋量法等。
动力学研究主要借助计算机软件进行动力学仿真,常用的动力学仿真软件包括ADAMS、DADS、RecurDyn和Simpack等。
基于ADAMS人体上肢动力学的建模与仿真研究
罗小美;袁清珂
【期刊名称】《机电工程技术》
【年(卷),期】2006(035)010
【摘要】本文以人体解剖学为基础,根据多体动力学原理,运用多体系统动力学分析软什ADAMS结合CAD软件UG,建立了人体上肢列刚体四自由度动力学模型,对上肢动力学和运动学特性作了分析计算,进行了人体上肢收臂翻掌过程的运动仿真,并将计算结果与实测数据进行了对比.
【总页数】4页(P44-46,82)
【作者】罗小美;袁清珂
【作者单位】广东工业大学机电工程学院,广东,广州,510090;广东工业大学机电工程学院,广东,广州,510090
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.基于ADAMS自动机动力学仿真快速建模技术研究 [J], 黄书伟;曹红松;苑大威;刘伊华;李瑞静
2.人体上肢运动学动力学建模与仿真技术的研究 [J], 袁清珂;骆少明;唐文艳;罗小美
3.基于UG与ADAMS的人体下肢骨骼肌建模及仿真 [J], 刘韵婷;郭辉;黄将诚
4.基于UG与ADAMS的人体下肢骨骼肌建模及仿真 [J], 刘韵婷;郭辉;黄将诚;;;
5.人体上肢的ADAMS建模及仿真 [J], 宋红芳;张绪树;史俊芬;陈维毅
因版权原因,仅展示原文概要,查看原文内容请购买。
1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。
2、检查并修改系统的设置,主要检查单位制和重力加速度。
3、修改零件名称(能极大地方便后续操作)、材料和颜色.首先在模型界面,使用线框图来修改零件名称和材料。
然后,使用view part only来修改零件的颜色。
4、添加运动副和驱动.注意:1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。
2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。
若视图定向错了,运动方向就错了,驱动函数要取负。
3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。
4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。
5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。
对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错.6)添加完运动副和驱动后,应对其进行检查。
使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。
7)进行初步仿真,再次对之前的工作进行验证。
因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。
若没问题,则进行保存。
5、添加载荷.6、修改驱动函数.一般使用速度进行定义,旋转驱动记得加d。
7、仿真。
先进行静平衡计算,再进行动力学计算。
8、后处理。
具体步骤如下:1)新建图纸,选择data,添加曲线,修改legend。
一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。
2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。
3)截图保存,得出仿真分析结论.。
2019年8月图 学 学 报August 2019第40卷 第4期JOURNAL OF GRAPHICSV ol.40No.4收稿日期:2019-02-28;定稿日期:2019-05-14第一作者:王 坤(1986-),男,河北邢台人,硕士研究生。
主要研究方向为机械设计及理论等。
E-mail :kunan0526@通信作者:邢海军(1967-),男,河北深泽人,教授,博士,博士生导师。
主要研究方向为振动控制、结构分析等。
E-mail :412261035@基于ADAMS 的多刚体动力学简化建模与仿真王 坤, 邢海军, 徐梦超, 张林浩(石家庄铁道大学机械工程学院,河北 石家庄 050043)摘要:应用多刚体动力学理论在ADAMS 软件中对复杂模型进行简化建模与仿真,解决复杂模型在ADAMS 中建模过程繁琐、仿真过程计算效率低等问题。
首先对简化建模方法的多刚体动力学理论进行了分析;然后提出了基于ADAMS 简化建模的具体方法,着重研究了使原模型和简化模型中心主转动惯量、中心惯量主轴连体基方向相同的数学方法;最后,将该简化建模方法应用到过山车单车模型上,并对仿真结果进行对比分析。
结果显示基于ADAMS 的多刚体动力学简化过山车模型与原模型的仿真效果基本相同。
该简化建模方法能有效提高复杂模型在ADAMS 中的建模效率和仿真的计算效率。
关键词:ADAMS ;多刚体动力学;简化建模;运动仿真;过山车中图分类号:TP 391 DOI :10.11996/JG .j.2095-302X.2019040733 文献标识码:A文 章 编 号:2095-302X(2019)04-0733-06Simplified Modeling and Simulation of Multi Rigid Body DynamicsBased on ADAMSWANG Kun, XING Hai-jun, XU Meng-chao, ZHANG Lin-hao(School of Mechanical Engineering, Shijiazhuang Tie Dao University, Shijiazhuang Hebei 050043, China)Abstract: In ADAMS software, multi-rigid-body dynamics theory is applied to simplify the modeling and simulation of complex models, which is used to solve the complicated modeling process in ADAMS and the low computational efficiency of the simulation process. Firstly, the multi-rigid body dynamics of the simplified modeling method is analyzed. Then the specific procedure of simplified modeling based on ADAMS is put forward. The present study attaches great importance to a mathematical method that enables the central principal moment of inertia and the principal axis of central inertia of the original model and the simplified model to be of the same orientation. Finally, the simplified modeling method is applied to the roller coaster bicycle model, and the simulation results are compared and analyzed. The simulation results show that the simplified dynamic roller coaster model based on ADAMS is basically the same as the original model. This simplified modeling method can effectively improve the modeling efficiency of complex models in ADAMS and the computational efficiency of simulation.Keywords: ADAMS; multi-rigid body dynamics; simplified modeling; motion simulation; a roller coasterADAMS 是使用广泛的虚拟样机软件,用于机械系统的运动学及动力学分析,例如大小型机械设备、机械传动装置、机器人、游乐设施等的虚拟仿真。