数字电子时钟课程设计报告-2

  • 格式:doc
  • 大小:1.30 MB
  • 文档页数:12

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言

20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。所以,要制作一个定时系统。随时提醒这些容易忘记时间的人。

钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

论文的研究内容和结构安排

本系统采用石英晶体振荡器、分频器、计数器、显示器和校时电路组成。由LED 数码管来显示译码器所输出的信号。采用了74LS系列中小规模集成芯片。使用了RS触发器的校时电路。总体方案设计由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。论文安排如下:

1、绪论阐述研究电子钟所具有的现实意义。

2、设计内容及设计方案论述电子钟的具体设计方案及设计要求。

3、单元电路设计、原理及器件选择说明电子钟的设计原理以及器件的选择,主

要从石英晶体振荡器、分频器、计数器、显示器和校时电路五个方面进行说明。

4、绘制整机原理图该系统的设计、安装、调试工作全部完成。

(一)设计内容要求

1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功

能的电子钟。

2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试。

3、画出框图和逻辑电路图。

4 、功能扩展:

(1)闹钟系统

(2)整点报时。在59分51秒、53秒、55秒、57秒输出750Hz音频信号,在59

分59秒时,输出1000Hz信号,音像持续1秒,在1000Hz音像结束时刻为整点。

(3)日历系统。

(二)设计方案及工作原理

数字电子钟的逻辑框图如图1所示。它由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。

计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。

三、单元电路设计

1.秒脉冲产生电路

(1)1KHZ 振荡器

振荡器由 555 定时器组成。图 3‐1 中是由 555 定时器构成的 1KHZ 的自

激振荡器 ,其原理是

0.7(2R3+R4+R5)C4=1ms f=1/t=1KHZ。

2、计数器

秒脉冲信号经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位以及“时”个位、十位的计时。“秒”、“分”计数器为60进制,小时为24进制。

1、60进制计数器

(1) 计数器按触发方式分类

计数器是一种累计时钟脉冲数的逻辑部件。计数器不仅用于时钟脉冲计数,还用于定时、分频、产生节拍脉冲以及数字运算等。计数器是应用最广泛的逻辑部件之一。按触发方式,把计数器分成同步计数器和异步计数器两种。对于同步计数

器,输入时钟脉冲时触发器的翻转是同时进行的,而异步计数器中的触发器的翻转则不是同时。

(2)60进制计数器的工作原理

“秒”计数器电路与“分”计数器电路都是60进制,它由一级10进制计数器和一级6进制计数器连接构成,如图4所示,采用两片中规模集成电路74LS90串接起来构成的“秒”、分” 计数器。

IC1是十进制计数器,QD1作为十进制的进位信号,74LS90计数器是十进制异步计数器,用反馈归零方法实现十进制计数,IC2和与非门组成六进制计数。74LS90是在CP信号的下降沿翻转计数,Q A1和 Q C2相与0101的下降沿,作为“分”(“时”)计数器的输入信号,通过与非门和非门对下一级计数器送出一个高电平1(在此之前输出的一直是低电平0)。Q B2 和Q C2计数到0110,产生的高电平1分别送到计数器的清零R0(1), R0(2),74LS90内部的R0(1)和R0(2)与非后清零而使计数器归零,此时传给下一级计数器的输入信号又变为低电平0,从而给下一级计数器提供了一个下降沿,使下一级计数器翻转计数,在这里IC2完成了六进制计数。由此可见IC1和 IC2串联实现了六十进制计数。其中:74LS90——可二/五分频十进制计数器

74LS04——非门

74LS00——二输入与非门

2、24进制计数器

小时计数电路是由IC5和IC6组成的24进制计数电路,如图5所示。

当“时”个位IC5计数输入端CP5来到第10个触发信号时,IC5计数器自动清零,进位端QD5向IC6“时”十位计数器输出进位信号,当第24个“时”(来自

“分”计数器输出的进位信号)脉冲到达时,IC5计数器的状态为“0100”,IC6计数器的状态为“0010”,此时“时”个位计数器的QC5和“时”十位计数器的QB6输出为“1”。把它们分别送到IC5和IC6计数器的清零端R0(1)和R0(2),通过7490内部的R0(1)和R0(2)与非后清零,从而完成24进制计数。

3.组合的数字时钟

数字时钟系统的组成利用上面的六十进制和二十四进制递增计数器子电路构成的数字钟系统

4、校时电路的实现原理