交流等值法交直流电力系统潮流计算
- 格式:pdf
- 大小:2.29 MB
- 文档页数:6
国⽹考试真题Z(1)1.⼀台容量为20MVA的115kV/10.5kV降压变压器⾼压侧⼀次额定电流为()A.110.4AB.171.8AC.1.004AD.1.719A2. 取基准容量为100MVA,110kV线路⼀次阻抗为40Ω,如采⽤近似计算法,其标⼳值为()A.0.302B.0.330C.5290D.48403. 取基准容量为100MVA,容量为20MVA的110kV、10KV降压变压器,其短路电压百分数为10.5%,如果采⽤近似计算法,其标⼳值为()。
A.0.525B.0.021C.1.004D.1.7194. 取基准容量为100MVA,⼀台600MW发电机功率因数为0.85,额定电压为11kV,次暂态电抗值为0.112.如果采⽤近似计算法,其标⼳值为()。
A.0.01587B.0.672C.1.004D.1.7195. 取基准容量100MVA,⼀台600MW发电机功率因数为0.85,额定电压为11kV,次暂态电抗值为0.112.如果⽤近似计算法,其标⼳值为()A.0.01587B.0.672C.0.01877D.0.79066.如A相电流为3∠00A,B相电流为3∠00A,C相电流为3∠00,,则A相电流中的零序分量为()A.0∠00AB.3∠00AC.6∠00AD.9∠00A7.中性点直接接地系统中发⽣不对称短路时,故障处电流中()A.⼀定存在零序分量B.⼀定不存在零序分量C.是否存在零序分量,应根据不对称短路类型确定D.只有正序分量8.在中性点直接接地的电⼒系统中某点发⽣短路,如果正序电抗等于负序电抗且为零序电抗的⼀半,那么该点发⽣单相接地短路、两相短路、两相短路接地和三相短路时,按故障处正序电压从⼤到⼩的故障顺序排列是()A.两相短路接地、单相接地短路、两相短路、三相短路B.单相接地短路、两相短路接地、两相短路、三相短路C.单相接地短路、两相短路、两相短路接地、三相短路D.两相短路、三相短路、两相短路接地、单相接地短路。
电力系统静态安全分析的基本概念电力系统静态安全分析是电力系统规划和调度的常用手段,用以判断在发生预想事故(输变电设备强迫退出运行)后系统是否会过负荷或电压越限的功能。
电力系统动态安全分析用于判断在发生预想事故后系统是否会失稳的功能。
静态安全分析的基本方法:补偿法,直流潮流法,灵敏度分析法。
直流输电的基本原理及稳态数学模型1、直流输电线路输送的电流和功率由线路两端的直流电压所决定,与两端的交流系统的频率和电压相位无关。
直流电压的调节是通过调节换流器的触发角和交流系统的电压来实现的,换流器输出直流电压的改变,将决定直流电流的大小。
(直流潮流的控制)2、由于交流变压器等值电感的存在,相电流不能突变,因而换流器的供电电源从一相换到另一相时不能瞬时完成,需要经过一个换相期,换相期所对应的电角度称为换相角。
(换相角定义,范围)3、由于换相角的存在,直流电压的平均值将随直流电流的增大而减小;换流器正常工作的触发角的变化范围减小。
(换相角对直流系统的影响)4、换相电流中包含两个分量,分别为常数分量和正弦分量。
其中,常数分量随着触发角的增大而减小,正弦分量滞后于换相电压90°。
常数分量是短路电流中的自有分量,其产生机理是电感回路中的电流不能发生突变;正弦分量是短路电流中的强迫分量,由于短路回路是纯电感回路,所以正弦分量的相位滞后于电源电压90度。
因此,换流器的稳态工况是在换相期使交流系统两相短路,在非换相期使交流系统单相断线。
(换相电流的理解)5、直流潮流的基本方程:整流器、逆变器、交流基波电流和直流电流、直流电压和交流电压的关系。
6、直流稳态运行方程中引入了等值换相电阻,等值换相电阻并不具有真实电阻的全部意义,它不吸收有功功率,其大小体现了直流电压平均值随直流电流增大而减小的斜率。
等值换相电阻是一个网络参数,不随系统运行状态的改变而改变。
由于等值电阻的引入,换相角不显含在直流潮流公式中,换相效应完全由换相电阻与直流电流的乘积表征。
国家电网公司2014年高校毕业生招聘考试(第一批)电工类本科生(A卷)(总分:100分,考试时间:180分钟)一、专业单选题(共50小题,每题0.5分,合计25分)1、某-110kv线路的接地距离保护的,零序补偿系数由0.667被误整为2,将使保护范围()(本题分数:0.5分)A、增大B、减小C不变D、不一定2、定时限过电流保护采用两相三组电器式接线,电流互感器变比为1200/5,动作电流二次额定值为10A,如线路上发生CA相短路,流过保护安装处的A相一次电流,C相一次电流均为1500A,如A相电流互感器极性反接时,则该保护将出现()?(本题分数:0.5分)A、拒动B、误动C、返回D、保持原状3、一台容量为20MVA的115kv/10kv降压变压器高压侧一次额定电流为()(本题分数:0.5分)A、100.4AB、171.9 AC、1.004AD、1.719A4、取基准容量为100MVA,110KV线路一次阻抗为40欧姆,如果采取近似计算法,其标幺值为()(本题分数:0.5分)A、0.302 B0.330 C 5290 D 48405、取基准容量为100MVA,容量为20MVA的110kv/10kv降压变压器,其短路电压百分数为10.5%,如果采用近似计算法,其标幺值为()(本题分数:0.5分)A 0.525B 0.021C 1.004 D1.7196、取基准容量为100MVA,一台600MW的发电机的功率因数为0.85,额定电压为11kv,次暂态电抗值为0.112,,如果采用近似计算法,其标幺值为()(本题分数:0.5分)A 0.01587 B0.672 C0.01877 D0.79067、对于AB两相金属性短路边界条件与序量关系描述正确的是()(本题分数:0.5分)A、A相电流与B相电流大小相等且方向相反,C相正序电流与C相负序电流大小相等且方向相反B、A相电流与B相电流大小相等且方向相反,A相正序电流与A相负序电流大小相等且方向相反C、A相电流与B相电流大小相等且方向相同,A相正序电流与A相负序电流大小相等且方向相同D、A相电流与A相电流大小相等且方向相同,C相正序电流与C相负序电流大小相等且方向相同8、三段式电流保护中()(本题分数:0.5分)A、III段灵明性最好B、II段灵明性最好CI段灵明性最好D11段速动性最好9、以下不属于主保护的有()(本题分数:0.5分)A、复合电压闭锁过电流保护B、纵联电流差动保护C、方向比较式纵联保护D、110kv距离保护I、II段10、以下不属于一台容量为20MVA的110KV降压变压器应配置的保护使()(本题分数:0.5分)A、电流速段保护B、过负荷保护C、瓦斯保护D、纵差动保护11、距离保护的CA相阻抗继电器采用接线,其输入电压为CA相线电压(?),则其输入电流应为()(本题分数:0.5分)A、A、C相电流之差ia-icB、A、相电流iaC、C相电流icD、C、A相电流之差i c-ia12、对于BC两相金属性短路边界条件与序量关系描述正确的是()(本题分数:0.5分)A、B相电流与C相电流大小相等且方向相反,A相正序电流与A相负序电流大小相等且方向相反B、B相电流与C相电流大小相等且方向相反,B相正序电流与B相负序电流大小相等且方向相反C、B相电流与C相电流大小相等且方向相反,C相正序电流与C相负序电流大小相等且方向相反D、B相电流与C相电流大小相等且方向相同,C相正序电流与C相负序电流大小相等且方向相同13、如A相电流为3<0.A,B相电流为3<0.A,C相电流I B为3<0.A,则A相电流中的零序分量为()(本题分数:0.5分)A、0<0.AB、3<0.AC、6<0.AD、6<0.A14、中性点直接接地系统中发生不对称短路时,故障处短路电流中()(本题分数:0.5分)A 一定存在零序分量 B.一定不存在零序分量C、是否存在零序分量,应该根据不对称短路类型确定D、只有正序分量15、在中性点直接接地的电力系统中某点发生短路,如果正序电抗等于负序电抗且为零序电抗的一半,那么该点发生单相接地短路、两相短路、两相短路接地和三相短路时,按故障处正序电压从大到小的故障排除顺序是()(本题分数:0.5分)A、两相短路接地、单相接地短路、两相短路、三相短路B、单相接地短路、两相短路接地、两相短路、三相短路C、单相接地短路、两相短路、两相短路接地、三相短路D、两相短路、三相短路、两相短路接地、单相接地短路、16、中性点不接地系统中,同一点发生两相短路和两相短路接地两种故障情况下,故障相电流的大小关系为()(本题分数:0.5分)A、相等B、两相短路时的电流大于两相短路接地时的电流C、两相短路接地时的电流大于两相短路时的电流D、不确定17、以下不属于电力系统无备用结线方式的有()(本题分数:0.5分)A、双回路放射式、干线式、链式以及环式和两端供电网络B、双回路放射式、干线式及单回路链式网络C、两端供电网络和单回路链式网络D、单回放射式、干线式和链式网络18、关于变压器,下述说法中错误的是()(本题分数:0.5分)A、对电压进行变化,升高电压满足大容量远距离输电的需要,降低电压满足用电的需要B、变压器不仅可以对电压大小进行变化,也可以对功率大小进行变化C、当变压器原边绕组与发电机直接相连时(发电厂升压变压器的低压绕组),变压器原边绕组的额定电压应与发电机额定电压相D、对降压变压器来讲,其副边绕组额定电压一般应为用电设备额定电压的1.1倍19、架空输电线路全换位可()(本题分数:0.5分)A、使三相线路的电阻参数相等B、使三相线路的电抗和电纳参数相等C、减小线路电抗D、减小线路电阻20、电力系统计算机潮流计算中,关于节点类型正确的说法是()(本题分数:0.5分)A、发电机节点一定是PV节点或平衡节点,负荷节点一定是PQ节点B、PV节点即已知节点无功率和电压相角求有功功率和电压幅值C、发电机节点一般是PV节点或平衡节点,但特殊情况下也可转换为PQ节点,不管是否有无功电源,负荷节点任何情况下不能选为PV节点。
第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。
其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗.潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。
要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。
节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。
简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的.本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等.介绍单电源辐射型网络和双端电源环形网络的潮流估算方法。
4—1 潮流计算方程—-节点功率方程1. 支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗。
由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布。
假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和l V ,如图4-1所示。
图4—1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S -== (4—1) 从节点l 流向节点k 的复功率为:)]([kl kl l lk l lk V V y V I V S -== (4-2) 功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S ∆=--=+=∆ (4—3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。
电力分析模拟习题+参考答案一、单选题(共50题,每题1分,共50分)1、系统运行时的频率是通过系统的()来控制。
A、功角B、频率C、有功D、无功正确答案:C2、中性点不接地系统发生两相接地故障时,中性点对地电压为(A、负的故障相电压B、负1/2的非故障相电压C、正1/2的非故障相电压D、正的故障相电压正确答案:C3、三绕组变压器的分接头,一般装在(A、中压和低压绕组B、高压和低压絖组C、三个绕组都裝D、高压和中压绕组正确答案:D4、高压线路,当传输的功率大于自然功率时,则有()A、线路始端电压低于等于末端电压B、线路始端电压低于末端电压C、线路始端电压等于末端电压D、线路始端电压高于末端电压正确答案:D5、单电源辐射形电网的潮流取决于()A、线路阻抗B、各负荷点负荷C、变压器分接头可调D、电源正确答案:B6、环网潮流的自然分布取决于线路的()A、电纳B、阻抗C、电阻D、电抗正确答案:B7、与静止无功补偿器(SVC)相比,静止无功发生器 (SVG)响应速度更快,谐波电流更少,在系统电压较低时()向系统注入较大的无功。
A、无法B、可以C、不确定是否可以D、其他三个选项都不是正确答案:B8、三相导线相间距离分别为3、4、4.5m,线路的几何均距为()A、3mB、4.5mC、3.78mD、4m正确答案:C9、目前,我国电力系统中大部分电厂为(A、风力电厂B、核电厂C、火力发电厂D、水力发电厂正确答案:C10、两个阻抗电压不相等变压器并列运行时,在负荷分配上()。
A、阻抗电压小的变压器负荷小B、负荷分配不受阻抗电压影响C、一样大D、阻抗电压大的变压器负荷小正确答案:D11、负荷的峰谷差是指日负荷曲线的A、最大负荷值B、最大负荷与平均负荷之差C、最大负荷与最小负荷之差D、平均负荷与最小负荷之差正确答案:C12、串联电容补偿是一种行之有效的提高输电经济性和可靠性的手段,但串补电容在运行中可能引起()A、低电压B、铁磁谐振C、高电压D、次同步谐振正确答案:D13、下面哪个是视在功率 S 的单位()A、kWB、MWC、kvarD、MVA正确答案:D14、由发电机调速系统的频率静态特性而引起的调频作用称为()A、一次调频B、二次调频C、三次调频D、AGC正确答案:A15、中性点不接地系统中发生单相接地时,流过故障点的电流为(A、容性电流B、感性电流C、直流电流D、电阻性电流正确答案:A16、交流湖流方程组可用选代法求解,常用的选代计算方法中,高斯法具有()收致遠度,牛顺-拉夫逊法具有()收敛速度。
第三章 电力系统的潮流计算3-1 电力系统潮流计算就是对给定的系统运行条件确定系统的运行状态。
系统运行条件是指发电机组发出的有功功率和无功功率(或极端电压),负荷的有 功功率和无功功率等。
运行状态是指系统中所有母线(或称节点)电压的幅值和 相位,所有线路的功率分布和功率损耗等。
3-2 电压降落是指元件首末端两点电压的相量差。
电压损耗是两点间电压绝对值之差。
当两点电压之间的相角差不大时, 可以近似地认为电压损耗等于电压降落的纵分量。
电压偏移是指网络中某点的实际电压同网络该处的额定电压之差。
电压 偏移可以用kV 表示,也可以用额定电压的百分数表示。
电压偏移=%100⨯-NNV V V 功率损耗包括电流通过元件的电阻和等值电抗时产生的功率损耗和电压 施加于元件的对地等值导纳时产生的损耗。
输电效率是是线路末端输出的有功功率2P 与线路首端输入的有功功率1P 之比。
输电效率=%10012⨯P P 3-3 网络元件的电压降落可以表示为()•••••+=+=-2221V V I jX R V V δ∆式中,•2V ∆和•2V δ分别称为电压降落的纵分量和横分量。
从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要有电压降落的纵分量决定,电压的相角差则由横分量决定。
在高压输电线路中,电抗要远远大于电阻,即R X 〉〉,作为极端的情况,令0=R ,便得V QX V /=∆,V PX V /=δ上式说明,在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生的,而电压降落的横分量则是因为传送有功功率产生的。
换句话说,元件两端存在电压幅值差是传送无功功率的条件,存在电压相角差则是传送有功功率的条件。
3-4 求解已知首端电压和末端功率潮流计算问题的思路是,将该问题转化成已知同侧电压和功率的潮流计算问题。
首先假设所有未知点的节点电压均为额定电压,从线路末端开始,按照已知末端电压和末端潮流计算的方法,逐段向前计算功率损耗和功率分布,直至线路首端。
电力系统潮流计算问答题潮流计算数学模型与数值方法1. 什么是潮流计算?潮流计算的主要作用有哪些?潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。
对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。
对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。
潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。
2. 潮流计算有哪些待求量、已知量?(已知量:1、电力系统网络结构、参数2、决定系统运行状态的边界条件待求量:系统稳态运行状态例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。
3. 潮流计算节点分成哪几类?分类根据是什么?(分成三类:PQ 节点、PV 节点和平衡节点,分类依据是给定变量的不同)PU 节点(电压控制母线)有功功率Pi 和电压幅值Ui 为给定。
这种类型节点相当于发电机母线节点,或者相当于一个装有调相机或静止补偿器的变电所母线。
PQ 节点注入有功功率Pi 和无功功率Qi 是给定的。
相当于实际电力系统中的一个负荷节点,或有功和无功功率给定的发电机母线。
平衡节点用来平衡全电网的功率。
平衡节点的电压幅值Ui 和相角δi 是给定的,通常以它的相角为参考点,即取其电压相角为零。
一个独立的电力网中只设一个平衡节点。
4. 教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程?基于节点电压方程,还可以采用回路电流方程和割集电压方程等。
但是后两者不常用。
5. 教材牛顿-拉夫逊法是基于节点阻抗方程、还是基于节点导纳方程进行迭代计算的?试阐述这两种方程的优点与缺点。
电力系统潮流计算与分析在当今社会,电力如同血液一般在现代工业和生活的脉络中流淌,支撑着一切的运转。
而电力系统潮流计算,则是理解和掌控这一庞大能源网络运行状态的关键工具。
电力系统潮流计算,简单来说,就是在给定电力网络结构、参数和运行条件的情况下,确定电力系统中各处的电压、电流、功率等电气量的分布。
这就好比我们要知道一条复杂管道中各个节点的水流压力、流量等信息一样。
想象一下,一个电力系统包含了众多的发电厂、变电站、输电线路和各类用电设备,它们相互连接,构成了一个极其复杂的网络。
在这个网络中,电能从发电厂出发,经过输电线路,到达变电站,再分配到各个用户。
而潮流计算的任务,就是要弄清楚在这个过程中,电能是如何流动的,各个节点的电压和功率是多少,线路上的电流有多大,以及整个系统是否能够稳定、安全地运行。
为什么要进行潮流计算呢?这主要是因为它对于电力系统的规划、设计、运行和控制都具有极其重要的意义。
在电力系统的规划和设计阶段,通过潮流计算,可以评估不同的网络结构和参数对系统性能的影响,从而选择最优的方案。
比如说,在规划新的输电线路时,我们需要知道在不同的线路布局和容量下,系统的潮流分布情况,以确保新线路能够有效地传输电能,同时不会导致某些节点电压过低或线路过载。
在电力系统的运行阶段,潮流计算可以帮助调度人员实时掌握系统的运行状态。
如果发现某些节点电压偏离了正常范围,或者某些线路的功率超过了允许值,调度人员就可以及时采取措施进行调整,比如调整发电机的出力、改变变压器的分接头、投切无功补偿设备等,以保证系统的安全稳定运行。
此外,潮流计算还可以用于电力系统的故障分析。
当系统发生故障时,比如线路短路或变压器故障,通过潮流计算可以预测故障对系统潮流分布的影响,从而为制定相应的故障处理措施提供依据。
那么,潮流计算是如何实现的呢?这涉及到一系列的数学模型和计算方法。
最常见的潮流计算方法包括牛顿拉夫逊法、PQ 分解法等。
牛顿拉夫逊法是一种基于非线性方程组求解的方法,具有较高的计算精度,但计算量较大。
潮流计算的意义1在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求;2在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议;3正常检修及下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求;4预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案;总结为在和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性;同时,为了电力系统的运行状态,也需要进行大量而快速的潮流计算;因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算;在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在的实时监控中,则采用在线潮流计算;潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始;此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的;对潮流计算的要求可以归纳为下面几点:1算法的可靠性或收敛性2计算速度和内存占用量3计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程;因此其数学模型不包含微分方程,是一组高阶非线性方程;非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案;随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的;这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法;在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳为基础的高斯-赛德尔迭代法一下简称导纳法;这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法以下简称阻抗法;20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件;阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵;这就需要较大的内存量;而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大;阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献;但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大;当系统不断扩大时,这些缺点就更加突出;为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法;这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了节省速度;克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法以下简称;牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性;解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式的稀疏性,就可以大大提高牛顿潮流程序的计算效率;自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法;在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法;P-Q分解法在计算速度方面有显着的提高,迅速得到了推广;牛顿法的特点是将非线性方程线性化;20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法;另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法;近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的;此外,随着人工智能理论的发展,遗传算法、、模糊算法也逐渐被引入潮流计算;但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位;由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域;潮流计算的发展趋势通过几十年的发展,潮流算法日趋成熟;近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法;牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法;后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法;对于保留非线性算法典型论文有:1.文献保留非线性的电力系统概率潮流计算提出了它在电力系统概率潮流计算中的应用;该文献提出了一种新的概率潮流计算方法,它保留了潮流方程的非线性,又利用了P-Q解耦方法,因而数学模型精度较高,且保留了P-Q解耦的优点,有利于大电网的随机潮流计算,用提出的方法对一个典型的系统进行了计算,其数值用MonteCarlo随机模拟作了验证,得到了满意的结果;2.文献基于系统分割的保留非线性的快速P-Q解耦潮流计算法分析研究了保留非线性的P-Q解耦快速潮流计算法;该文献提出了一种新的状态估计算法,既保留了量测方程非线性又利用了快速P-Q分解方法,因此数学模型精度高且保留了快速P-Q分解的优点,提高了状态估计的计算精度和速度.采用系统分割方法将大系统分割为多个小系统,分别对每个小系统进行状态估计,然后对各小系统的状态估计结果进行协调,得到整个系统具有同一参考节点的状态估计结果,这样可大大提高状态估计的计算速度,有利于进行大电网的状态估计.在18节点系统上进行的数字仿真实验验证了该方法的有效性;岩本伸一等提出了一种保留非线性的快速潮流计算法,但用的是,因而没法利用P-Q解耦;为了更有利于大电网的潮流计算,将此原理推广用于P-Q解耦;这样,既利用了保留非线性的快速算法,在迭代中使用常数,又保留了P-Q解耦的优点;对于一些病态系统,应用非线性潮流计算方法往往会造成计算过程的振荡或者不收敛,从数学上讲,非线性的潮流计算方程组本来就是无解的;这样,人们提出来了将潮流方程构造成一个函数,求此函数的最小值问题,称之为非线性规划潮流的计算方法;优点是原理上保证了计算过程永远不会发散;如果将数学规划原理和牛顿潮流算法有机结合一起就是最优乘子法;另外,为了优化系统的运行,从所有以上的可行潮流解中挑选出满足一定指标要求的一个最佳方案就是最优潮流问题;最优潮流是一种同时考虑经济性和安全性的分析优化问题;OPF 在电力系统的安全运行、经济调度、可靠性分析、能量管理以及电力定价等方面得到了广泛的应用;最优潮流方面的典型论文有:1.文献电力系统最优潮流新算法的研究以NCP 方法为基础,提出了一种新的求解最优潮流算法——投影渐近半光滑牛顿型算法;该文献以NCP方法为基础,提出了一种新的求解OPF算法——投影渐近半光滑牛顿型算法;针对电力系统的特点,本文的研究工作如下: 1.建立了与OPF问题的KKT系统等价的带界约束的半光滑方程系统;与已有的NCP方法相比,新的模型由于无需考虑界约束对应的对偶变量乘子变量,降低了问题的维数,从而适用于解大规模的电力系统问题;2.基于建立的新模型,本文提出了一类新的Newton型算法,该算法一方面保持界约束的相容性,另一方面有较好的全局与局部超线性收敛性,同时,算法结构简单,易于实现; 3.考虑到电力系统固有的弱耦合特性,受传统解耦最优潮流方法的启示,在所提出的新Newton型方法的基础上,本文又设计了一类分解方法;新方法基于解耦——校正的策略实现算法,不仅充分利用了系统的弱耦合特性,同时保证分解算法在理论上的收敛性; 4.根据所提出的两种算法,用标准的IEEE电力测试系统进行数值实验,并与已有的其他方法进行比较;结果显示新算法具有良好的收敛性和计算效果,在电力系统的规划与运行方面将有广阔的应用前景;2.文献基于可信域内点法的最优潮流问题研究介绍了OPF内点法具有收敛性强、多项式时间复杂性等优点,是极具潜力的优秀算法之一;电力系统不断发展,使得OPF算法跻身于极其困难、非凸的大规模非线性规划行列;可信域和线性搜索方法是保证最优化算法全局收敛性能的两类技术,将内点法和可信域、线性搜索方法有机结合,构造新的优化算法,是数学规划领域的研究热点;此方面的典型文献有:1.文献电力市场环境下基于最优潮流的输电容量充裕度研究首先以最优潮流为工具,选取系统中的关键线路作为系统输电容量充裕度的研究对象,从电网运行的安全性、可靠性的角度系统地研究了稳定限额对输电容量充裕度的影响,指出稳定限额因子与影子价格的乘积可直接反应出稳定限额水平的经济价值,同时也可以较好的指示出系统运行相对安全、经济的稳定限额水平区间;2.文献电力市场环境下基于最优潮流的节点实时电价和购电份额研究为了为配电公司最优购电模型提供价格参考依据,以发电成本最小为目标函数,考虑电力的影响,建立了实时电价模型;模型利用预测校正原对偶内点法求解,以IEEE30节点系统为算例验证了模型的可行性;3.文献电力系统动态最优潮流的模型与算法研究指出电力系统动态最优潮流是对调度周期内的系统状态进行统一优化的有效工具,对保证电力系统安全经济运行具有重要的理论意义和现实意义;文献结合内点法和免疫遗传算法,对经典动态最优潮流问题和动态无功优化问题的算法进行了深入的研究,提出了新的算法;并建立了含电压稳定约束、含无功型离散变量,以及含机组启停变量的动态最优潮流模型,将新算法推广应用于各种新模型,拓展了动态最优潮流的研究领域;对于一些特殊性质的潮流计算问题有直流潮流计算方法、随机潮流计算方法和三相潮流计算方法;直流潮流计算方法,文献基于改进布登法的交直流潮流计算主要介绍在分析求解非线性方程组的布罗伊登法和一种改进的布罗伊登法的基础上,针对交直流混联系统,运用改进的布罗伊登法,提出了一种潮流计算的统一迭代法,设计了算法的具体实现步骤,并以一个IEEE9节点修改系统进行仿真计算,结果表明本文采用的改进布罗伊登法交直流潮流计算方法有效可行;文献基于直流潮流和分布因子三脆性源辨识技术提出了基于直流潮流和分布因子法相结合,提出了快速找到系统脆性源的方法和步骤;通过对3节点电力系统脆性源的辨识,证明了此方法的有效性;文献计及双馈风力发电机内部等值电路的电力系统随机潮流计算研究了含变速恒频双馈式发电机的风电场接入系统后对电压质量的影响,在双馈式发电机简化等值电路的基础上建立了风电场的确定性潮流模型,建立了风力发电机的随机分析模型,并在这二者的基础上运用基于半不变量法的随机潮流进行计算;文献计及分布式发电的随机潮流计算提出了计及分布式发电的配电系统随机潮流计算;。