合成生物学及青蒿素合成
- 格式:ppt
- 大小:2.16 MB
- 文档页数:16
青蒿素类化合物的合成及其生物活性研究青蒿素,是一种来自植物青蒿中的天然产物,具有治疗疟疾的功效。
在20世纪70年代,中国科学家屠呦呦首次从中提取出青蒿素,为疟疾的治疗开辟了新的途径。
随着近年来药物研究的深入,青蒿素及其衍生物也引起了越来越多的关注,成为治疗多种疾病的前沿研究领域之一。
本文主要介绍青蒿素类化合物的合成及其生物活性研究。
青蒿素类化合物的合成研究青蒿素的药效作用是由其含有的内酯环、大环和过渡金属等多种结构单元共同作用所致。
由于青蒿素的天然来源极为有限,因此合成青蒿素类化合物成为了研究的焦点之一。
近年来,科学家们在合成青蒿素及其衍生物方面取得了重大进展。
1.1 外消旋青蒿素的不对称合成研究外消旋青蒿素是一种含有两个手性中心的化合物,如何实现其对映异构体的选择合成是一个难点。
研究表明,通过使用手性催化剂或手性辅助剂等手段,可以实现对青蒿素对映异构体的选择合成。
例如,有学者使用氨基醇作为手性辅助剂,在对应的氧化反应中合成了具有高对映选择性的青蒿素衍生物。
1.2 单端基的青蒿素类化合物的合成研究单端基的青蒿素衍生物通常指在中环上引入一个含有反式-亲核芳香取代反应活性的单端基基团。
其主要药理作用也是通过识别阴性药物靶标来发挥作用。
近年来,研究显示,使用磺酰胺基团或其他亲核基团可以有效引入单端基,实现对青蒿素类化合物的不对称合成。
青蒿素类化合物的生物活性研究青蒿素及其衍生物不仅具有治疗疟疾的功效,还可以用于治疗多种疾病,如艾滋病、癌症、系统性红斑狼疮等。
下面我们将介绍青蒿素类化合物在不同领域中的生物活性研究进展。
2.1 抗癌作用青蒿素类化合物在抗癌领域中的应用研究非常广泛。
研究表明,青蒿素类化合物具有广谱的抗肿瘤效应,可以抑制多种癌细胞的生长和增殖。
此外,青蒿素类化合物还可通过诱导癌细胞凋亡、调节基因表达和代谢等多种方式发挥作用。
2.2 免疫抗病毒作用青蒿素及其衍生物在治疗艾滋病等病毒感染方面也具有较好的疗效。
青蒿素的生物合成与药理研究青蒿素(Artemisinin)是一种世界公认的抗疟药物,它被认为是目前全球治疗疟疾的最有效药物之一。
青蒿素之所以备受瞩目,不光因为它是一种高效的抗疟药物,还因为它的生物合成过程具有很高的科学研究价值。
青蒿素最初由中国的中草药青花蒿(Artemisia annua)提取而得。
这种植物有着悠久的历史与文化背景,中国古代医书《神农本草经》中,就曾对青花蒿进行了详细介绍。
直到20世纪60年代,由于西方的研究者发现了青花蒿能治疗疟疾的特性,青花蒿的药用价值才得到了全世界的公认。
青蒿素的生物合成是一个复杂的过程。
在植物体内,青蒿素通过草酸途径生物合成,其中还涉及到一系列中间体的生成和转化。
不经意间一个短小的分子,就涉及到了许多化学环节,这也是这个分子非常重要的一个原因。
已有的研究显示,青蒿素的合成不仅受限于基因因素,还受到许多生态环境因素的影响,比如温度、光照、湿度等等。
为了更好地理解青蒿素的生物合成机理,以及挖掘这个分子的更多生物活性,许多研究者在青蒿素研究领域做出了不懈的努力。
他们通过外源基因的导入、转基因技术、化学合成等多种手段,对青蒿素的步步生物合成机制及其生物效应进行了深入研究。
其中,应用遗传学、生物化学和细胞生物学等多学科知识的方法,探究青蒿素与疟原虫之间的相互作用及机理,成为了当前研究的主要方向。
目前青蒿素的抗疟机理已被揭示,它在细胞内可以迅速被代谢成二氧化碳、水和一些亚硝酰阴离子等产物,同时还有大量的自由基产物,这些自由基具有极强的活性,可以直接杀死疟原虫。
有研究人员发现,青蒿素还具有重要的生物活化作用,可以促进免疫复杂与活性物质的释放,从而增强机体的免疫力,这也为今后应用青蒿素研究其他传染病的治疗提供了新思路。
除了用于治疗疟疾之外,青蒿素还显示出一些新颖的生物活性,比如其对癌细胞、病毒、细菌等的抑制作用。
这些活性的关键,在于青蒿素分子的独特结构。
据研究显示,青蒿素和其衍生物被认为是多种潜在的抗癌化合物,因为它们可以抑制癌症细胞的生长和扩散。
青蒿素的合成途径研究(毕业论文doc)青蒿素是一种来源于青蒿植物的天然药物,因其对疟疾的治疗效果而闻名于世然而,在制备青蒿素的过程中,需要大量使用青蒿植物,并且良好的品质和产量等方面的限制也制约若青葛系的生产。
因此,许多科学家开始探索人工合成青蒿素的方法,并逐渐取得了较好的进展.一、青蒿素的化学结构和生物合成途径青蒿素(Artemisinin)是一种含氧的类化合物,其化学式为C15H2205。
它的分子中含有两个氧原子,其中一个来自蒿素(Arteannuin)的结构部分,另一个则来自异氰酸烯酷(Isocyanateester)的反应。
青蒿素的化学结构非常特殊,具有类似过氧化物的活性,因此它有着非常强大的抗疟作用。
青蒿素的原生合成途径非常复杂,需要包括类合成酶和脱氧基替换酶等多个酶催化的反应。
在合成过程中,爆发性的活性氧化物质也会被产生出来,这些物质也被认为是青蒿素具有抗菌效果的重要组成部分。
二、青蒿素合成途径的研究进展随着生物技术的发展,科学家们已经采用不同的方法尝试人工合成青蒿素的新途径。
1.化学合成法化学合成法是目前带用的一种人工合成市高素的方法。
其基本思路是在现有的化学合成技术框架下,找到尽可能多的可能性,从而建立一种可行的青高素合成方买近年来,许多学者在化学合成方面取得了不俗的进展。
他们推崇生成青蒿素目标分子的方法,无论是底物催化还是金属催化物,都有了显著的提高。
目前,化学合成法已经可以获得高质量的合成青蒿素,并有望实现工业化生产。
2.光合成法光合成法是一种将人工化学合成技术与光催化技术相结合来合成青蒿素的新方法。
光合成法相对于化学合成法更加环保,而且还可以削减合成青蒿素的产生成本目前,光合成法的研究还处于起步阶段,需要进一步的研究和发展来提高其效率和稳定性。
3.生物合成法生物合成法是指通过生物过程来实现合成青蒿素。
这种方法与化学合成法不同,不需要大量的有机化学试剂,更加环保;与光合成法不同,不需要复杂的光催化反应条件,更加稳定。
【最新】青蒿素生物合成
青蒿素存在于中草药青蒿的花叶中,茎中不含有,是一种含量非常低的萜类化合物,生物合成途径非常复杂。
现已知可通过三种方式进行青蒿素的生物合成:
一是通过对控制青蒿素合成的关键酶进行调控,添加生物合成的前体来增加青蒿素的含量;
二是激活关键酶控制的基因,大幅度增加青蒿素的含量;
三是利用基因工程手段改变关键基因,以增强它们所控制酶的作用效率。
生物合成过程中,青蒿素的含量受光照、外源激素、芽分化等生理生态因子的影响很大,温度对于生物合成也有极大影响,通过试验研究发现,青蒿幼苗在40℃条件下,处理36h后,青蒿素的质量分数提高到最大为68%。
除青蒿之外,其它植物也可以合成青蒿素,2011年研究人员从烟草中合成青蒿素。
此方法与传统化学方法相比,所用的化学试剂大大减少,有利于环境的保护,且该生物合成方法的受体为烟草,在中国较为广泛,因此原料来源较为丰富,但不足的是用烟草合成青蒿素过程中的某些反应基质并不清楚,还有待开发,但该合成方法仍有较好的工业应用前景。
将一个青蒿基因植入大肠杆菌,改造后的大肠杆菌制造出一种中间化合物,这种化合物经过数步处理就能成为青蒿素的原料——青蒿酸。
把一种特殊的酶植入酵母后,酵母把前面提到的中间化合
物改造成了青蒿酸。
通过微生物工业生产青蒿素的技术链条已经基本成形。
这意味着青蒿素的价格将下降90%。
青蒿素生物化学-概述说明以及解释1.引言1.1 概述概述青蒿素是一种来自于青蒿属植物(Artemisia)的天然化合物,被广泛应用于抗疟疾领域。
自从20世纪70年代青蒿素的抗疟活性被发现以来,青蒿素已经成为了目前治疗疟疾的重要药物之一。
青蒿素的独特结构和药理作用使其具有优秀的抗疟效果,特别是对于多药耐药性疟疾的治疗效果显著。
本文将介绍青蒿素的生物化学特性和药理作用,探讨其在抗疟疾领域的重要性,同时对青蒿素近年来的研究进展和未来展望进行分析和归纳。
文章的目的是为读者提供关于青蒿素的全面了解,并展望其在医药领域的应用前景。
在本文的正文部分,我们将先介绍青蒿素的发现与历史背景,包括植物来源的发现和早期研究成果。
然后我们将详细探讨青蒿素的生物化学特性,包括其化学结构和生物合成途径。
接下来,我们将阐述青蒿素的药理作用,包括其抗疟机制和其他可能的药理活性。
通过对这些方面的描述,读者将能够更好地理解青蒿素在抗疟疾领域的重要性。
在结论部分,我们将总结青蒿素在抗疟疾领域的重要性,并展望其未来的研究进展和应用前景。
我们将讨论青蒿素的局限性以及可能的改进途径,以期为疟疾治疗提供更有效的方法。
通过本文的阐述,我们希望能够为读者提供有关青蒿素的全面了解,同时为未来的研究和应用提供指导和启示。
青蒿素作为一种重要的抗疟疾药物,其在临床治疗中的应用前景仍然值得期待。
1.2文章结构文章结构本文主要分为引言、正文和结论三个部分。
引言部分主要对文章进行概述,介绍青蒿素这一主题的背景和意义。
首先,青蒿素作为一种重要的抗疟疾药物,在全球范围内应用广泛,具有极高的疗效和安全性。
其发现和研究不仅对抗击疟疾具有重要意义,也为天然产物药物研究提供了范例。
然后,本文将介绍青蒿素的生物化学特性和药理作用,深入探讨其在抗疟疾领域中的重要性和研究进展。
最后,文章将对青蒿素的未来展望和应用前景进行展望,以期为相关领域的研究和应用提供参考。
正文部分将着重介绍青蒿素的发现与历史背景、生物化学特性和药理作用。
青蒿素的生物合成途径研究与利用青蒿素作为一种有效的抗疟疾化合物,受到了国际社会的广泛关注。
在过去的几十年间,青蒿素的制造方式一直是通过从中草药青蒿中提取得到,这种方式存在着提取过程繁琐、污染严重以及生产不稳定等问题。
近年来,随着对青蒿素生物合成途径的深入研究,利用基因工程等技术开发新型青蒿素生产工艺已成为一个热门研究课题。
青蒿素的生物合成途径青蒿素的主要生物合成途径可以分为两个主要步骤:色氨酸代谢和单萜生物合成。
在色氨酸代谢途径中,色氨酸首先被转化成柿酮酸,然后通过多个酸碱催化步骤被合成成前体化合物——艾蒿酮。
接着,在单萜类合成途径中,艾蒿酮通过多个较为复杂的转化步骤被合成成青蒿素。
其中,青蒿素是由一种名为环氧化青蒿烯(EPO)的化合物在酶的作用下合成得到的。
整个过程需要涉及大量的酶催化和多个转化步骤,每个步骤都通过不同的基因控制。
青蒿素生物合成途径的优势相比于传统的青蒿提取法,青蒿素生物合成途径具有多个显著的优势。
首先,基于生物合成的技术可以极大的改善青蒿素的纯度,从而提高其药效,减少其与其他药品的相互作用。
其次,生物合成法可以提供更广泛和稳定的青蒿素来源,在抗击疟疾这个全球性社会问题时具有重要意义。
此外,生物合成技术可以使得制药过程更加自动化,提高生产效率,降低制药成本。
青蒿素生物合成途径的挑战然而,在实际的开发和应用中,青蒿素生物合成途径的发展仍面临一些挑战。
最大的难点莫过于如何实现此复杂的合成途径中各步骤相关酶的表达、调控和优化。
此外,由于存在多个酶所参与,每个酶的表达和稳定性都需要令人担忧。
青蒿素生物合成途径的应用前景尽管存在很多挑战,但面对疟疾这个极其严重的公共卫生问题,对青蒿素生物合成途径的研究与应用仍具有广阔的发展前景。
通过对青蒿素生物合成途径的深入研究和探索,可以为其优化提供新的思路和方法,以更高效、低成本的方式生产青蒿素制剂,为控制和治疗疟疾做出更大的贡献。
结语综上,青蒿素的生物合成途径研究与利用是一项重要而复杂的任务。
青蒿素的生物合成与代谢途径青蒿素作为一种重要的抗疟药物,经过几十年的不断研究和应用已经取得了许多突破性的成果。
然而,许多人对于青蒿素的生物合成和代谢途径并不熟悉。
下面就让我们来一起探究一下青蒿素的生物合成和代谢过程。
一、青蒿素的生物合成青蒿素是一种大环内酯类化合物,由多种化学物质经过多步酶催化转化而来。
在青蒿素的合成中,最重要的当属艾滋病疗法药物的前体物质艾洛菲莫的生物合成。
艾洛菲莫最初是由邻苯二甲酸和丙二酸合成,经过一系列酶的催化反应后转化为青蒿酸。
青蒿酸在自身广泛存在的CYP家族酶的帮助下,转化为青蒿素,并被细胞返回到青蒿素的细胞数中储存起来。
在体内,青蒿素的生物合成受到许多因素的影响,如光照、日夜节律以及病原体的侵袭等。
二、青蒿素的代谢途径青蒿素代谢途径主要包括肝脏代谢和肠道代谢两个过程。
青蒿素在进入人体后,会在肝脏中被CYP450酶家族代谢。
这些酶通过氧化、还原和水解等反应将青蒿素代谢成更易于排泄的代谢产物。
另外,肠道微生物群中的某些细菌也可以通过羟化和磺酸化等反应来代谢青蒿素。
这些代谢产物通过肝脏和肾脏进入血液循环并排出体外。
值得注意的是,在青蒿素的代谢过程中,还涉及到一些代谢酶的物种差异。
例如,在人体中,青蒿素主要被CYP450酶家族代谢,而在老鼠和犬中,则主要依赖于UDP-葡糖醛酸转移酶代谢。
这些差异可能与物种的代谢酶谱有关,需要进一步研究。
三、青蒿素的作用机制青蒿素最初用于治疗疟疾,后经发现还具有许多其他的生物活性。
青蒿素的作用机制主要涉及到靶向线粒体、膜和蛋白质等多个生物过程。
青蒿素可以通过与铁离子结合并进入细胞内,与线粒体蛋白质作用从而杀死寄生生物。
同时,青蒿素还可以通过改变细胞膜的物理和化学性质,影响细胞的功能状态。
此外,青蒿素还可以阻断DNA复制、RNA转录以及蛋白质合成等生物过程,从而发挥药物的效果。
总之,青蒿素的生物合成和代谢途径是一项非常复杂的研究课题。
通过深入的研究,我们可以更好地了解青蒿素的化学特性和药理学作用,从而更加有效地应用这种药物来治疗疟疾和其他疾病。
合成生物学在生物医药中的应用在当今科技飞速发展的时代,合成生物学作为一门新兴的交叉学科,正以前所未有的速度改变着生物医药领域。
它融合了生物学、物理学、化学、工程学等多个学科的知识和技术,为解决人类健康问题带来了全新的思路和方法。
合成生物学的核心在于设计和构建新的生物体系,或者对现有的生物体系进行重新设计和改造,以实现特定的功能。
在生物医药领域,这一理念和技术的应用已经取得了许多令人瞩目的成果。
首先,合成生物学在药物研发方面发挥着重要作用。
传统的药物研发往往依赖于从天然产物中筛选活性成分,或者通过化学合成的方法来制备药物。
然而,这些方法存在着效率低下、成本高昂、环境不友好等诸多问题。
合成生物学的出现为药物研发提供了新的途径。
例如,通过合成生物学技术,可以对微生物的代谢途径进行改造,使其能够高效地合成具有药用价值的化合物。
青蒿素的合成就是一个典型的例子。
青蒿素是治疗疟疾的有效药物,但其在天然植物中的含量极低,提取成本高昂。
利用合成生物学技术,科学家成功地在微生物中构建了青蒿素的合成途径,大大提高了青蒿素的产量,降低了成本。
此外,合成生物学还可以用于开发新型药物。
通过对生物大分子(如蛋白质、核酸等)进行设计和改造,可以获得具有特定功能的药物分子。
例如,抗体药物是目前生物医药领域的研究热点之一。
利用合成生物学技术,可以对抗体的结构进行优化,提高其亲和力和特异性,从而增强其治疗效果。
同时,还可以通过合成生物学技术构建全新的蛋白质药物,如人工设计的酶类药物,用于治疗各种疾病。
其次,合成生物学在疾病诊断方面也具有广阔的应用前景。
疾病的早期诊断对于提高治疗效果、降低死亡率至关重要。
合成生物学为疾病诊断提供了更加灵敏、准确、便捷的方法。
例如,基于合成生物学原理开发的基因诊断技术,可以快速检测出患者体内的基因突变,从而为疾病的诊断提供依据。
此外,利用合成生物学技术构建的生物传感器,可以实时监测人体内的生理指标和代谢产物,实现疾病的早期预警。
合成生物学与生物合成材料的研究与应用合成生物学是一门将工程化方法应用于生物体系的学科,它旨在利用基因工程和细胞工程技术来构建具有新功能的生物系统,从而解决环境、能源、医药等领域的问题。
而生物合成材料则是利用合成生物学的方法来生产新型的材料,这些材料具有优异的性能和可控的结构。
合成生物学的研究与应用已经在许多领域取得了重要的突破。
在环境方面,合成生物学可以用于开发具有高效降解能力的微生物来处理污水和有机废弃物,实现对环境的可持续治理。
此外,合成生物学还可以通过优化微生物的代谢途径和酶的催化活性来生产可再生能源,如生物柴油和生物氢等。
这些可再生能源不仅可以减少对化石燃料的需求,还可以减少温室气体的排放,为应对气候变化做出贡献。
在医药领域,合成生物学的研究和应用也有着重要的作用。
合成生物学可以用于合成更安全、更有效的药物,提高药物的产量和纯度。
此外,合成生物学还可以用于生产生物蛋白,如胰岛素和抗体等,用于治疗各种疾病。
合成生物学的方法还可以用于基因治疗,通过修复患者体内缺失或异常的基因,达到治疗疾病的目的。
生物合成材料是合成生物学的一个重要应用领域。
通过合成生物学的方法,研究人员可以设计并合成具有特定性能的新型材料。
例如,利用生物合成材料的方法,可以合成出具有自愈性能的聚合物材料。
这种材料在遭受损伤后,可以自动修复,从而延长材料的使用寿命。
此外,生物合成材料还可以用于制备具有特殊形态和结构的纳米材料,这种材料具有较高的表面积和特殊的光学、电学性能,被广泛应用于传感器、光电器件等领域。
另外,生物合成材料还可以利用生物体的天然功能来生产特殊的材料。
例如,许多生物体具有产丝的能力,科学家们可以通过合成生物学的方法将这些产丝基因导入到其他生物体中,从而实现对产丝的大规模生产。
这些产丝具有优异的力学性能和可控的结构,可以用于制备高强度的材料。
总之,合成生物学与生物合成材料的研究与应用在环境、能源、医药等领域具有重要的意义。
青蒿素的合成与应用研究综述1.引言青蒿素(Artemisinin)是一种从青蒿(Artemisia annua)中提取的天然化合物,具有广泛的抗疟疾活性。
它以其独特的化学结构和优异的药理特性在医药领域引起了广泛的关注。
本文旨在综述青蒿素的合成方法及其在药物学和生物学领域的应用研究进展。
2.青蒿素的合成2.1 生物合成青蒿素作为一种自然产物,其生物合成机制备受关注。
在青蒿植物中,青蒿素的合成主要通过青蒿素合成酶(Artemisinin Biosynthesis Enzyme)催化一系列反应而完成。
近年来,通过对青蒿素合成途径的研究,人们对青蒿素的生物合成机制有了更深入的了解。
2.2 化学合成除了生物合成外,人工合成也是青蒿素的重要合成途径。
在化学合成领域,不断有新的工艺和方法被开发出来,使得青蒿素的合成更加高效和可持续。
其中,以鲁特维(Lourteig)法和威廉森(Williamson)合成法为代表的合成方法成为了青蒿素的主要制备途径。
3.青蒿素的应用3.1 抗疟疾活性作为一种天然的抗疟疾药物,青蒿素和其衍生物展现出了广谱和强效的抗疟疾活性。
青蒿素通过与疟原虫的铁离子相互作用,抑制其生命周期,进而消除感染。
该药物对于疟疾的治疗和预防具有重要的意义。
3.2 抗癌活性除了抗疟疾作用外,青蒿素也显示出潜在的抗癌活性。
研究表明,青蒿素及其衍生物在肿瘤细胞中可以诱导细胞凋亡,抑制肿瘤细胞的生长和扩散。
这些发现为青蒿素在肿瘤治疗中的应用提供了新的思路和可能性。
3.3 其他应用除了抗疟疾和抗癌活性外,青蒿素还具有抗病毒、抗寄生虫、抗菌和抗炎等作用。
它在临床医学中也被应用于治疗其他疾病,例如肝炎、天花等,为相关领域的研究和药物开发提供了方向。
4.青蒿素的局限性和未来发展青蒿素作为一种天然药物,具有许多优势,但同时也存在一些局限性。
首先,其化学结构复杂,合成难度较高。
其次,由于广泛的使用,青蒿素抗药性的出现令人担忧。
青蒿素的合成与研究进展摘要:青蒿素是目前世界上最有效的治疗疟疾的药物之一,存在活性好、毒副作用小、市场需求大、来源窄等特点。
目前,青蒿素的获取途径主要有直接从青蒿中提取、化学合成和生物合成。
本综述将针对近年来青蒿素的发展特点及合成方法进行论述。
关键词:青蒿素;合成方法;研究进展青蒿素是中国学者在20世纪70年代初从中药黄花蒿(Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效,可用于凶险型疟疾的抢救和抗氯喹病例的治疗.青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用1;具有影响人体白血病U937细胞的凋亡及分化的作用2;还具有部分逆转MCF-7/ARD细胞耐药性作用3;还具有抑制人胃癌裸鼠移植瘤的生长的作用4;还具有一定的抗肿瘤作用5等.除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。
世界卫生组织确定为治疗疟疾的首选药物,具有快速、高效、和低毒副作用的特征.6。
因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床医学研究奖和2015年诺贝尔医学奖.1 青蒿素的理化性质及来源青蒿素的分子式为C15H22O5, 相对分子质量为282。
33.是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三烷结构单元,它的分子中还包括7个手性中心,合成难度很大.中国科学院有机所经过研究,解决了架设过氧桥难题,在1983年完成了青蒿素的全合成.青蒿素也有一些缺点,如在水和油中的溶解度比较小,不能制成针剂使用等。
2青蒿中提取青蒿素青蒿素是从菊科植物黄花蒿中提取出来的含有过氧桥的倍半萜内酯类化合物,在治疗疟疾方面具有起效快、疗效好、使用安全等特点。
目前主要的提取方法有溶剂提取法、超临界提取法、超声波萃取法、微波萃取法、其他萃取法等。
青蒿素生物合成10生物技术(2)班曾庆辉201024112211青蒿素是我国科研人员从传统中医药黄花蒿中提取出来并自主研发的一种抗疟疾特效药[1]。
20世纪70年代,我国科技工作者从黄花蒿中分离提纯出一种抗疟活性单体——青蒿素,以后又确定了它的分子结构和构型。
1986年我国自主研发的蒿甲醚油针剂、青蒿琥酯钠盐的水针剂以及青蒿素栓剂等抗疟疾药作为一类新药在我国批准生产。
1995年蒿甲醚率先被收入国际药典,这是我国首次得到国际认可的自主研发新药。
目前,青蒿素系列抗疟药已有5种新药(青蒿素、青蒿琥酯、蒿甲醚、双氢青蒿素、复方蒿甲醚)共9种剂型上市并在世界各国销售,每年挽救了数百万重症疟疾患者的生命。
除了独特的抗疟作用外,青蒿素系列药物还具有抗血吸虫、肺吸虫、红斑狼疮、皮炎以及免疫调节,抗流感等多种疗效[2]。
但是,目前国际抗疟药市场上青蒿素类药物只占有很少的份额,其原因主要在于青蒿素原料缺乏。
由此,有研究者另辟蹊径,设想通过生物合成青蒿素。
时至今日,青蒿素的生物合成已经取得一定进展,介绍如下:早在20世纪80年代,中国科学院上海有机化学研究所汪猷院士领导的研究小组就利用放射性同位素标记的2-14C-青蒿酸与青蒿匀浆(无细胞系统)保温法证明,青蒿酸和青蒿 B 是青蒿素的共同前体[3]。
青蒿素生物合成途径仅见于青蒿,但其“上游”途径为真核生物所共有,可望通过“下游”途径重建,在真核微生物(如酵母)中全合成青蒿素。
过去10年来,青蒿素合成基因被国内外研究团队陆续克隆并导入酿酒酵母细胞,已成功合成青蒿酸及双氢青蒿酸等青蒿素前体。
由于酵母缺乏适宜的细胞环境,尚不能将青蒿素前体转变成青蒿素。
因此,青蒿依然是青蒿素的唯一来源,凸显出继续开展青蒿种质遗传改良的必要性。
同时,青蒿素生物合成的限速步骤尤其是终端反应机制已基本得到阐明,有助于开展青蒿素形成与积累的环境模拟及仿生,从而为彻底缓解青蒿素的供求矛盾创造先机[4]。