土壤酶测定方法
- 格式:doc
- 大小:26.50 KB
- 文档页数:5
土壤蛋白酶活性测定(茚三酮比色法)实验试剂:1、pH7.6的0.05mol/L的tris—HCL缓冲液(三羟甲基氨基甲烷—盐酸缓冲液):50ml0.2mol/L的三羟甲基氨基甲烷与27.5ml0.2mol/L的盐酸混合,稀释成200ml。
2、2%酪酸钠溶液:称取2g 酪酸钠,加入10ml0.1mol/L的NaOH溶液,沸水浴处理5min,待膨化后加入pH7.6的tris—HCl缓冲液约80ml,继续沸水浴处理,直至完全溶解,用同样的缓冲液定容至100ml。
3、Tris—HCl—CaCl2混合溶液:用pH7.6的0.05mol/Ltris—HCl缓冲液配制的0.01mol/L的CaCl2溶液。
4、0.6mol/L乙酸铅溶液。
5、草酸钠—乙酸混合溶液:每1000ml0.26mol/L的草酸钠溶液含有240.7ml0.2mol/L的乙酸。
6、茚三酮—乙醇—抗坏血酸混合试剂:称取2g茚三酮,0.02g 抗坏血酸,溶于100ml无水乙醇。
7、0.2%KIO3溶液。
8、pH5.8乙酸—乙酸钠缓冲液:94 ml0.2mol/L乙酸钠与6ml0.2mol/L乙酸混合。
9、0.01%甘氨酸标准溶液:1g甘氨酸溶于1000ml水,再稀释10倍。
10、甲苯。
以上试剂均为分析纯。
实验仪器:基本仪器如试管、烧杯等、离心机、分光光度计、刻度试管、水浴锅、电子天平、移液管实验步骤1、标准曲线的绘制①分别吸取50 、100、150、200、250、300μl0.01%甘氨酸标准溶液,置于10 ml刻度试管中(浓度分别相当于NH2 0.107、0.213、0.320、0.426、0.533、0.639μg/ml),加入2mlpH5.8的乙酸—乙酸钠缓冲溶液②加入1.5ml 茚三酮—乙醇—抗坏血酸混合试剂,混合均匀,沸水浴加热16min③取出立即用自来水冷却15min,加入1ml0.2%KIO3并混合均匀,用蒸馏水定容至10ml,1h内在570nm处比色测定吸光值;以氨基氮(NH2)的浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
土壤酶活性的测定方法土壤酶活性的测定方法主要包括测定土壤中的蔗糖酶、脲酶、过氧化氢酶和过氧化物酶等多种酶活性,这些酶活性的测定可以反映土壤的微生物代谢能力和土壤质量。
本文将详细介绍几种常用的土壤酶活性测定方法。
一、酶活性测定方法的准备工作1. 样品处理:收集土壤样本后,将其放在4C冷藏保存,保持样品活性,避免酶的降解。
2. 取样:根据需要,从土壤样品中取出一定量的湿重或干重样品。
3. 土壤处理:依据实验要求,对土壤样品进行处理,如水分调整、添加营养物质等。
二、蔗糖酶活性测定方法蔗糖酶是一种常见的土壤酶,可反映土壤中的碳循环能力。
蔗糖酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤,去除杂质。
2. 准备培养基:其中包括蔗糖作为底物、缓冲液、指示剂等。
3. 加入适量的土壤样品和培养基到离心管中,混匀后,放置在恒温摇床上培养一定时间。
4. 培养结束后,通过离心将土壤颗粒沉淀到底部。
5. 取沉淀后的上清液,用酚酞指示剂进行比色检测,根据比色结果计算蔗糖酶活性。
三、脲酶活性测定方法脲酶是一种重要的土壤酶,参与土壤中尿素的分解过程。
脲酶活性的测定方法如下:1. 取一定量的土壤样品,在10C恒温条件下接种脲酶底物,使底物完全被土壤降解。
2. 在一定时间后,通过添加草酸溶液阻止进一步反应,停止脲酶的活性。
3. 取样品,加入酚硫酸溶液,进行比色测定。
4. 根据比色结果计算脲酶活性。
四、过氧化氢酶活性测定方法过氧化氢酶是一种催化过氧化氢分解的酶,可反映土壤的抗氧化能力。
过氧化氢酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤去除杂质。
2. 准备含过氧化氢底物和其他试剂的反应体系。
3. 将土壤样品加入反应体系中,充分混匀后,在一定时间内反应。
4. 在反应结束后,通过添加硫酸钠溶液停止反应,阻止进一步的化学反应。
5. 使用紫外分光光度计测定样品的吸光度,根据结果计算过氧化氢酶活性。
五、过氧化物酶活性测定方法过氧化物酶是一类重要的土壤酶,在土壤中参与有机物降解和氧化还原反应。
土壤酶活性测定方法1、土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚—次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)柠檬酸盐缓冲液(PH6.7):184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg 氮的标准液;再将此液稀释10倍(吸取10ml标准液定容至100ml)制成氮的工作液(0.01mg/ml)。
三、操作步骤称取5g土样于50ml三角瓶中,加1ml甲苯,振荡均匀,15min后加10ml10%尿素溶液和20ml PH 6.7柠檬酸盐缓冲溶液,摇匀后在37℃恒温箱培养24小时。
培养结束后过滤,过滤后取1ml滤液加入50ml容量瓶中,再加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
参考关松萌等编制的土壤酶及其研究法一、土壤蔗糖酶3,5- 二硝基水杨酸比色法:1、试剂的配制①3,5- 二硝基水杨酸溶液:称0.5g二硝基水杨酸,溶于20ml2N氢氧化钠和50ml水中,加30g的酒石酸钾钠,用水稀释至100ml.(不超过七天)②pH5.5磷酸缓冲溶液:1/15M磷酸氢二钠(11.867gNa2HPO4.2H2O溶于1L蒸馏水中)0.5ml加1/15M磷酸二氢钾(9.078g KH2PO4溶于1L蒸馏水中)9.5ml即成。
③8%蔗糖溶液。
④甲苯。
⑤标准葡萄糖溶液:将葡萄糖先在50—58℃条件下,真空干燥至恒重。
然后取500mg溶于100ml苯甲酸溶液中(5ml还原糖/ml),即成标准葡萄糖溶液。
再用标准溶液制成1ml含0.01—0.05mg葡萄糖工作溶液。
标准曲线绘制:取1ml不同浓度的工作液,并按与测定蔗糖酶活性同样的方法进行显色,比色后以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。
2、操作步骤称5g风干土,置于50ml的三角瓶中,注入15ml8%蔗糖溶液,5ml pH5.5磷酸缓冲溶液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养24h。
到时取出,迅速过滤。
从中吸取滤液1ml,注入50ml容量瓶中,加3ml3,5- 二硝基水杨酸溶液,并在沸腾的水浴锅中加热5min,随即将容量瓶移至自来水流下冷却3min。
溶液因生成3-氨基-5-硝基水杨酸而呈橙黄色,最后用蒸馏水稀释至50ml,并在分光光度计上于波长508nm处进行比色。
为了消除土壤中原有的蔗糖、葡萄糖引起的误差,每一土样需做无基质对照,整个实验需做无土对照。
无土对照:不加土样,其他操作与样品实验相同。
无基质对照:以等体积的水代替基质,其他操作与样品实验相同。
3、结果计算蔗糖酶活性以24小时后1g土壤葡萄糖的毫克数表示。
葡萄糖(毫克)=a×4式中:a——从标准曲线查得的葡萄糖毫克数4——换算成1g土的系数二、土壤淀粉酶3,5- 二硝基水杨酸比色法:1、试剂配制①1%淀粉。
土壤酶活性测定方法1、土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚—次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)柠檬酸盐缓冲液(PH6.7):184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg 氮的标准液;再将此液稀释10倍(吸取10ml标准液定容至100ml)制成氮的工作液(0.01mg/ml)。
三、操作步骤称取5g土样于50ml三角瓶中,加1ml甲苯,振荡均匀,15min后加10ml10%尿素溶液和20ml PH 6.7柠檬酸盐缓冲溶液,摇匀后在37℃恒温箱培养24小时。
培养结束后过滤,过滤后取1ml滤液加入50ml容量瓶中,再加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
土壤酶活性及微生物测定土壤酶活性测定取样工具及取样方法在选好适当地点后,用小铲子除去表土,取离地面5-15cm处的土约10g,盛入清洁的牛皮纸袋或塑料袋中,扎好,标记,记录采样时间、地点、环境条件等,以备查考。
土样在自然条件下烘干装入袋中备用。
所需试剂:酒石酸钠、NaCl、阿拉伯胶、纳氏试剂、硫酸铵[(NH4)2SO4]、甲苯、苯磷酸二钠、NaAc.3H2O、HAc、酚、铁氰化钾、4-氨基安替吡啉、碘化钾、氯化汞、氢氧化钾、、配置方法:铵态氮标准溶液:称取0.4717g(精确至0.0001g)干燥的硫酸铵[(NH4)2SO4]溶于水中,再加水稀释至1000mL,此溶液1mL含100µg N。
往500ml容量瓶中注入10、25、40、60、75、90ml标准溶液并用蒸馏水稀释至刻度,制备成的溶液在490nm下比色,并绘制标准曲线。
醋酸缓冲液:PH5.0,NaAc.3H2O50g,溶于适量水中,加6mol/LHAc34ml,稀释至500ml。
硼酸缓冲液:PH9.0,80毫升0.05mol/l硼砂(Na2B4O7.10H2O)和0.2mol/l的硼酸混合。
纳氏试剂:将碘化钾10g溶于10ml水中,边搅拌边慢慢地加入氯化汞饱和水溶液,直至生成的红色沉淀不再溶解为止。
加入氢氧化钾30g并溶解之,再加入氯化汞饱和溶液1ml,加水至200ml。
静置,取上层清液,贮于棕色瓶中酚的标准溶液:(1)原液—1克酚溶于蒸馏水中定容至1升,溶液在暗色中稳定,(2)工作液—取50ml原液稀释至1升(1ml含0.05mg酚);分别向100ml容量瓶中注入1、2、3、4、5、6、7ml工作液并显色定容(分别相当于0.05、0.10、0.15、0.20、0.25、0.30、0.35毫克酚),待颜色稳定后,570nm比色绘制标准曲线。
测定方法磷酸酶活性测定一、试验原理土壤中的磷,很大部分以有机磷化合物的形式存在。
磷酸酶能促进有机磷化合物的水解。
土壤酶活性测定的实验步骤土壤酶的测定1.三角瓶用稀HNO3(3-5%)或用洗衣粉浸泡24h,后刷洗,然后再用蒸馏水润洗,晾干。
2.土样研磨精细后分袋装好。
土量需2g+2.5g+5g+5g=14.5g,重复一次,14.5某2=29g。
一、过氧化氢酶(容量法)(关松荫P323)1.试剂配制:(1)0.3%过氧化氢溶液:①(1:10030%的H2O2和水)②(0.5molH2O2+49.5ml蒸馏水)③(1ml30%H2O2+99ml蒸馏水)(2)3N硫酸:(10ml硫酸+50ml水)(3)0.1N 高锰酸钾溶液:(1.58gKMnO4+100ml蒸馏水)2.操作步骤:2g风干土置100三角烧瓶→注入40ml蒸馏水和5ml0.3%过氧化氢(现配)→在往复式振荡机上振荡20min→加入5ml3N硫酸(以稳定未分解的H2O2)→用慢速型滤纸过滤,→吸取25ml滤液,用0.1N高锰酸钾的滴定至淡粉红色3.结果计算过氧化氢酶的活性(M),以20min后1g土壤的0.1NKMnO4的毫升数表示:M=(A-B)某T式中:A:空白消耗的0.1NKMnO4毫升数B:滤液消耗的0.1NKMnO4毫升数T:KMnO4滴定度的校正值备注:以容量法测H2O2的酶活:Kappen(1913)首先介绍硫酸存在下用高锰酸钾滴定剩余的过氧化氢测定酶活。
此法根据H2O2与土壤相互作用时,未分解的H2O2的数量用容量法(常用高锰酸钾滴定未分解的H2O2)测定H2O2的酶活2KMnO4+5H2O2+3H2SO4→2MnSO4+K2SO4+8H2O+5O2土壤H2O2酶促过氧化氢的分解有利于防止它对生物体的毒害作用二、蔗糖酶(P278)滴定法1.试剂配制:(1)20%蔗糖:(20g蔗糖+80ml水或12.5g蔗糖+50ml水)(2)甲苯(分析纯)(3)PH5.5醋酸盐-磷酸盐缓冲液0.5ml磷酸氢二钠·12H2O(1/15M)+9.5ml磷酸二氢钾(1/15M)磷酸氢二钠·12H2O(1/15M):23.88gNa2HPO4,,加H2O溶解,定容至100ml。
测土壤酶活方法酶活性是评价土壤质量和生物活性的重要指标之一。
测定土壤酶活性可以帮助我们了解土壤中微生物的活动水平和土壤中有机物的分解能力,从而判断土壤的肥力和健康状况。
本文将介绍几种常用的测土壤酶活性的方法。
一、脲酶法测定土壤酶活性脲酶法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中脲酶的活性来间接反映土壤中的酶活性。
脲酶是一种催化尿素分解的酶,可以将尿素分解为氨和二氧化碳。
测定土壤中脲酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
脲酶法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有尿素和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的尿素,计算出脲酶的活性。
二、过氧化氢酶法测定土壤酶活性过氧化氢酶法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中过氧化氢酶的活性来间接反映土壤中的酶活性。
过氧化氢酶是一种催化过氧化氢分解的酶,可以将过氧化氢分解为水和氧气。
测定土壤中过氧化氢酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
过氧化氢酶法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有过氧化氢和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的过氧化氢,计算出过氧化氢酶的活性。
三、醋酸红法测定土壤酶活性醋酸红法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中醋酸红酶的活性来间接反映土壤中的酶活性。
醋酸红酶是一种催化醋酸红分解的酶,可以将醋酸红分解为醋酸和二氧化碳。
测定土壤中醋酸红酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
醋酸红法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有醋酸红和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的醋酸红,计算出醋酸红酶的活性。
测定土壤酶活性可以通过脲酶法、过氧化氢酶法和醋酸红法等方法来进行。
土壤酶活性测定方法综合引言:土壤酶活性是指土壤中特定酶在一定时间内分解特定底物的能力,是评估土壤生态系统功能和土壤肥力状况的重要指标。
土壤酶活性测定方法是研究土壤酶活性的关键手段之一、本文将综合介绍常用的土壤酶活性测定方法,包括蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法。
一、蔗糖酶活性测定方法:蔗糖酶是一种重要的有机磷酸酶,广泛存在于土壤中,能够水解蔗糖为葡萄糖和果糖。
测定土壤蔗糖酶活性可以反映土壤中酶的数量和活性。
1.提取土壤酶液:将土壤与玻璃棒研磨均匀,用0.5mol/L甘油缓冲液(pH6.8)溶解土壤,离心沉淀,得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入蔗糖底物和缓冲液,在37℃恒温振荡下反应30分钟,用酒精停止反应,加入硫酸,取样测定比色液的吸光度。
3.统计分析:根据比色液吸光度与标准曲线对照,计算出土壤蔗糖酶活性。
二、过氧化氢酶活性测定方法:过氧化氢酶是一种氧化还原酶,能够催化过氧化氢分解为氧气和水。
测定土壤过氧化氢酶活性可以反映土壤中氧化还原反应的发生情况。
1.提取土壤酶液:将土壤与甘油缓冲液混合,加入液氮使其冷冻破碎,离心沉淀得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入过氧化氢底物和缓冲液,在25℃恒温振荡下反应一定时间,停止反应后加入酒精,用紫外分光光度计测定吸光度。
3.统计分析:根据吸光度与过氧化氢递减曲线对照,计算出土壤过氧化氢酶活性。
三、脲酶活性测定方法:脲酶是一种解脲酸酯的酶,能够水解尿素为氨和二氧化碳。
测定土壤脲酶活性可以反映土壤中氮循环的情况。
1.提取土壤酶液:将土壤与脲酸酯缓冲液混合,用玻璃棒研磨均匀,离心沉淀得到土壤酶液。
2.酶活性测定:将一定量的土壤酶液加入脲酶底物和缓冲液,在37℃恒温振荡下反应一定时间,反应停止后加入酒精,用比色法测定吸光度。
3.统计分析:根据吸光度与标准曲线对照,计算出土壤脲酶活性。
结论:以上就是蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法的综合介绍。
土壤酶活性测定方法
土壤酶活性测定方法,主要用于评估土壤中各种酶的活性水平,以了解土壤肥力、有机质分解和养分循环等生态过程的状况。
常见的土壤酶活性测定方法包括呼吸酶活性、脲酶活性、过氧化氢酶活性、过氧化物酶活性等。
以下是常用的几种土壤酶活性测定方法:
1.呼吸酶活性测定法
呼吸酶活性是衡量土壤微生物活性和有机质分解的一种指标。
方法基于土壤微生物呼吸作用的过程,通过测定土壤呼吸二氧化碳释放速率来评估土壤微生物活性。
常用的测定方法有浸提法、插管法和接触式法等。
2.脲酶活性测定法
脲酶在土壤中参与尿素的分解过程,是一个重要的氮素转化酶。
脲酶活性的测定方法通常利用碳酸二乙酯在酶的作用下水解成二乙酰胺,通过测定产物的吸光度或荧光强度来评估脲酶活性。
3.过氧化氢酶活性测定法
过氧化氢酶是土壤中对过氧化氢具有催化降解作用的一种酶。
测定过氧化氢酶活性的方法常采用比色法或荧光法。
其中,比色法是通过过氧化氢与乳酸铁催化反应产生的底物和酶催化下的反应速率相关的颜色变化来测定酶活性。
而荧光法则是通过过氧化物与具有荧光基团的底物反应产生荧光信号来测定酶活性。
4.过氧化物酶活性测定法
过氧化物酶包括过氧化物歧化酶和过氧化氢酶,是土壤中分解有毒过氧化物的关键酶。
测定该酶活性的方法主要有过氧化氢法和氧化还原法。
过氧化氢法利用过氧化氢催化底物的氧化反应来测定过氧化物酶活性,而氧化还原法则是通过直接测定底物与过氧化物酶反应后产生的电流或电势差来评估酶活性。
以上是常见的几种土壤酶活性测定方法,通过测定土壤中相关酶活性的变化,可以评估土壤生物学特性并指导土壤改良和管理措施的制定。
几种常用的土壤酶活性意义及测定土壤酶是土壤中的重要组成部分,它们参与了土壤的有机质分解、养分转化等重要生态过程。
土壤酶活性的意义在于指示土壤的生物活性和健康状况,能够反映土壤的肥力和生态功能。
因此,研究土壤酶活性对于评价土壤质量和改善土壤生态环境具有重要意义。
本文将介绍几种常用的土壤酶活性意义及测定方法。
一、脲酶活性脲酶是一种氧化酶,广泛存在于土壤中。
它能催化脲类化合物的分解,参与土壤氮的生物循环过程。
脲酶活性可以反映土壤中的氮转化能力和有机质的分解速率。
脲酶活性的测定常用碘酸钠法和银盐法,可以通过测定脲酶催化反应产生的碘或银色沉淀的数量来评估脲酶的活性水平。
二、过氧化氢酶活性过氧化氢酶存在于土壤中的微生物和植物中,它是一种氧化还原酶,能够催化过氧化氢的分解。
过氧化氢是土壤中常见的活性氧化物,它对土壤微生物和植物的生长发育具有毒害作用。
过氧化氢酶活性的测定可以用过氧化氢法和双酚A法,其原理是利用过氧化氢催化反应的颜色变化或双酚A氧化反应的速率来评估过氧化氢酶的活性。
三、脱氢酶活性脱氢酶包括脱氢酶、脱氢酶、过氧化酶等,广泛存在于土壤中的微生物中。
它们能够催化有机物的氧化还原反应,参与土壤中有机质的降解分解过程。
脱氢酶活性的测定可以用间苯二酚法、尼羧酸法和氨基酸反应法等方法,通过测定产生的颜色变化、吸光度变化或氨基酸含量的变化来评估脱氢酶的活性水平。
四、葡萄糖酶活性葡萄糖酶是一种分解葡萄糖的酶,广泛存在于土壤中的微生物和植物中。
它能够催化葡萄糖的氧化反应,参与土壤中有机质的分解和碳的循环过程。
葡萄糖酶活性的测定可以用邻苯二酚法、硫酸酚法和氨基酸反应法等方法,通过测定产生的颜色变化、吸光度变化或氨基酸含量的变化来评估葡萄糖酶的活性水平。
土壤酶活性的测定方法多种多样,选择适合的方法要考虑到土壤样品的特性、目标酶的特性和测定的灵敏度。
通过研究土壤酶活性,可以了解土壤中的生物活性和功能,为土壤质量评价、生态环境保护和土壤养分管理提供科学依据。
一、脲酶测定(苯酚钠-次氯酸钠比色法)脲酶是对尿素转化起关键作用的酶,它的酶促反应产物是可供植物利用的氮源,它的活性可以用来表示土壤供氮能力。
1、试剂配制:(1)pH6.7柠檬酸盐溶液:取368g柠檬酸溶于600mL蒸馏水中,另取295g氢氧化钾溶于水,再将两种溶液合并,用1N氢氧化钠将pH调至6.7,并用水稀释至2L。
(2)苯酚钠溶液:称取62.5g苯酚溶于少量乙醇中,加2mL甲醇和18.5mL丙酮,后用乙醇稀释至100mL(A液),保存再冰箱中。
称取27g氢氧化钠溶于100mL水中(B液),保存于冰箱中。
使用前,取A、B两液各20mL混和,并用蒸馏水稀释至100mL备用。
(3)次氯酸钠溶液:用水稀释制剂至活性氯的浓度为0.9%,溶液稳定。
(4)10%尿素溶液:10g尿素溶于100mL水中。
(5)N的标准溶液:精确称取0.4717g硫酸铵溶于水稀释至1L,则得1mL含0.1mgN 的标液,再将此液稀释10倍制成氮工作液(0.01mg/mL)。
标准曲线绘制:分别取0、0.5、1.5、2.5、3.5、4.5、5.5、6.5mL氮工作液置于25mL刻度试管中,加蒸馏水至10mL,再加2mL苯酚钠溶液和1.5mL次氯酸钠溶液,随加随摇匀,20min 后显色,定容25mL。
1h内再分光光度计上于578nm处比色。
1020304050607000.20.40.62、操作步骤(1)称取2.5g土置于25mL 刻度试管中, 加0.5mL 甲苯处理,加塞塞紧轻摇15min;往瓶中加入2.5mL10%尿素液和5mL 的柠檬酸盐缓冲液(pH6.7),仔细混匀。
在37℃恒温箱中培养3h。
(当脲酶活性为3~80微克NH3-N 时,本法能获得可靠的结果。
若脲酶活性小于3微克,培养时间需增至24h )。
(2)然后用热至38℃的蒸馏水稀释至刻度(甲苯应浮在刻度以上),摇荡,将悬液过滤。
对每一土样,设置用水代替基质的对照。
对整个实验,进行无土壤基质的对照,以检验实验的纯度。
土壤酶活性测定方法土壤酶活性测定方法一、蔗糖酶: 3,5-二硝基水杨酸比色法1. 试剂配制(1)2N氢氧化钠200mL:称取16g 氢氧化钠,用蒸馏水溶解,定溶于200mL容量瓶中。
(2)3,5-二硝基水杨酸溶液1000mL:称5g二硝基水杨酸,溶于200mL2N氢氧化钠和500mL蒸馏水中,再加300g酒石酸钾钠,用蒸馏水稀释至1000mL(不超过7天)。
(3)1/15M 磷酸氢二钠1000mL:23.867g N a2HPO4·12H2O 溶于1000mL蒸馏水中。
(4)1/15M 磷酸二氢钾1000mL:9.078g KH2PO4溶于1000mL蒸馏水中。
(5)pH5.5磷酸缓冲液100mL:5 mL磷酸氢二钠(1/15M)加95mL磷酸二氢钾(1/15M) (6)8%蔗糖1000mL:称取80g蔗糖,用水溶解,稀释至1000mL。
(7)甲苯。
(8)标准葡萄糖溶液(1mg/mL)1000mL:取少量葡萄糖在真空干燥箱中,于55℃条件下真空干燥至恒重。
然后取1.00g葡萄糖溶于100ml蒸馏水中成标准葡萄糖母液(10mg还原糖/ml)。
取此母液10ml, 用蒸馏水定容至100mL即成标准葡萄糖液(1mg/ml);2. 操作步骤(1)标准曲线绘制:分别取标准葡萄糖液0.4mL,0.8 mL,1.2mL, 1.6mL, 2.0mL,2.8mL, 3.2mL于50 mL比色管中,另取一管做空白对照。
用蒸馏水补足至10mL。
加入3.0mL 3,5-二硝基水杨酸,沸水浴5min,随即在自来水流下冷却。
最后用蒸馏水稀释至50mL,并在分光光度计上于波长508nm处进行比色。
比色后,以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。
(2)土壤蔗糖酶活性测定:称5.00g土样,置于50mL三角瓶中,注入15.0mL 8%蔗糖溶液,5.0mL pH5.5磷酸缓冲液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养24h。
参考关松萌等编制的土壤酶及其研究法一、土壤蔗糖酶3,5- 二硝基水杨酸比色法:1、试剂的配制①3,5- 二硝基水杨酸溶液:称0.5g二硝基水杨酸,溶于20ml2N氢氧化钠和50ml水中,加30g的酒石酸钾钠,用水稀释至100ml.(不超过七天)②pH5.5磷酸缓冲溶液:1/15M磷酸氢二钠(11.867gNa2HPO4.2H2O溶于1L蒸馏水中)0.5ml加1/15M磷酸二氢钾(9.078g KH2PO4溶于1L蒸馏水中)9.5ml即成。
③8%蔗糖溶液。
④甲苯。
⑤标准葡萄糖溶液:将葡萄糖先在50—58℃条件下,真空干燥至恒重。
然后取500mg溶于100ml苯甲酸溶液中(5ml还原糖/ml),即成标准葡萄糖溶液。
再用标准溶液制成1ml含0.01—0.05mg葡萄糖工作溶液。
标准曲线绘制:取1ml不同浓度的工作液,并按与测定蔗糖酶活性同样的方法进行显色,比色后以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。
2、操作步骤称5g风干土,置于50ml的三角瓶中,注入15ml8%蔗糖溶液,5ml pH5.5磷酸缓冲溶液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养24h。
到时取出,迅速过滤。
从中吸取滤液1ml,注入50ml容量瓶中,加3ml3,5- 二硝基水杨酸溶液,并在沸腾的水浴锅中加热5min,随即将容量瓶移至自来水流下冷却3min。
溶液因生成3-氨基-5-硝基水杨酸而呈橙黄色,最后用蒸馏水稀释至50ml,并在分光光度计上于波长508nm处进行比色。
为了消除土壤中原有的蔗糖、葡萄糖引起的误差,每一土样需做无基质对照,整个实验需做无土对照。
无土对照:不加土样,其他操作与样品实验相同。
无基质对照:以等体积的水代替基质,其他操作与样品实验相同。
3、结果计算蔗糖酶活性以24小时后1g土壤葡萄糖的毫克数表示。
葡萄糖(毫克)=a×4式中:a——从标准曲线查得的葡萄糖毫克数4——换算成1g土的系数二、土壤淀粉酶3,5- 二硝基水杨酸比色法:1、试剂配制①1%淀粉。
土壤微生物量及土壤酶活性测定方法土壤中的微生物是维持土壤生态系统健康的重要组成部分,土壤酶活性则可以作为评价土壤肥力和生物活性的重要指标。
因此,在土壤微生物量和土壤酶活性测定方面的研究非常重要。
本文将介绍几种常用的土壤微生物量和土壤酶活性的测定方法。
一、土壤微生物量测定方法1.铺平法:将土壤样品铺平在玻璃板上,使用显微镜对土壤中的微生物进行直接观察和计数。
这种方法的优点是简单易行,但需要大量的时间和人力。
2.累积碳法:通过测定土壤中的有机碳含量来间接估算土壤微生物量。
有机碳水平与微生物量密切相关,所以可以通过测定土壤中的有机碳来推测微生物的数量和活性。
3.培养法:将土壤样品接种到适当的培养基上进行培养,然后通过菌落计数或直接计数来估算微生物的数量。
这种方法适用于数量较多的微生物,如细菌和真菌。
4.傅里叶变换红外光谱法(FTIR):通过测量土壤样品的傅里叶变换红外光谱,分析土壤中的微生物量。
该方法具有快速、准确、非破坏性等优点。
1.浊液法:通过观察测定液中的混浊度来测定土壤中的脲酶、过氧化氢酶等氧化酶的活性。
这种方法简单易行,但对于不同种类的土壤酶效果不一样。
2.比色法:采用酶底物与酶催化产物之间的化学反应,通过测定反应产物的颜色来估算土壤酶活性。
比色法可以用于测定脱氢酶、脱氢酶、脱氧核苷酸酶等酶的活性。
3.荧光法:将有机物和荧光试剂一起加入土壤样品中,经过反应后,在荧光分析仪中测定产生的荧光强度来测定土壤酶的活性。
荧光法适用于测定蔗糖酶、酚氧化酶和脱氢酶等酶的活性。
4.比浊法:通过加入酶底物后,观察土壤样品的混浊度来测定土壤中酶的活性。
比浊法适用于黄酶、脱氢酶等酶的活性测定。
5.电导法:通过测定土壤样品溶液中的电导率变化来估算土壤中酶的活性。
电导法适用于磷酸酶和脱氢酶等酶的活性测定。
总结起来,土壤微生物量和土壤酶活性的测定方法多种多样,选择合适的方法需要考虑样品特性和实验条件等因素。
每种方法都有其优点和局限性,研究者应根据需要选取合适的方法进行测定。
土壤酶的测定方法土壤酶是指存在于土壤中的各种生物所分泌的酶。
它们在土壤中起着关键的生物地球化学功能,包括有机质分解、养分循环和抑制有害物质等。
由于土壤酶的活性会受到环境因素的影响,因此准确测定土壤酶活性对于了解土壤生态系统的功能和健康状态至关重要。
测定土壤酶活性的方法有多种,下面将介绍几种常用的方法。
1.pH酶效应法pH酶效应法利用不同pH条件下土壤酶活性的变化来测定。
该方法通常使用缓冲液调节土壤pH,然后测定不同pH下的酶活性。
酶活性与pH变化的关系可以反映土壤酶的稳定性和耐受性。
2.酶活法酶活法是测定土壤中特定酶活性的一种常用方法。
常见的酶活性测定有蔗糖酶、脱氢酶和过氧化物酶等。
该方法通常在实验室条件下进行,通过添加特定底物并测定反应产物来测定酶活性。
3.酶基质法酶基质法是利用添加特定底物并测定底物降解产物的方法来测定土壤酶活性。
常见的酶基质法有蔗糖基质法、硝酸盐还原酶基质法和过氧化物酶基质法等。
该方法通常在实验室条件下进行,通过添加特定底物并测定底物降解产物来测定酶活性。
4.比色法比色法是利用特定化学反应物质与酶活性相关产物发生反应产生颜色变化来测定酶活性的方法。
常见的比色法有3,5-二硝基水杨酸盐法、PCP法和甲醛法等。
该方法通常是测定土壤酶活性的一种快速、简单和经济的方法。
以上介绍的方法只是常用的几种,实际上还有许多其他方法可以用来测定土壤酶活性。
需要注意的是,不同的酶活性测定方法适用于不同的酶和底物,因此在选择方法时应根据具体情况进行选择。
综上所述,测定土壤酶活性是了解土壤生态系统功能和健康状态的重要手段之一、通过选择合适的方法,可以准确测定土壤酶活性,为土壤管理和保护提供科学依据。
土壤磷酸酶(酸性)——磷酸苯二钠比色法(一)试剂1. pH5醋酸盐缓冲液:A:0.2mol/L 醋酸溶液(11.55ml稀释至1000ml)B:0.2mol/L醋酸钠溶液 A液14.8ml+B液35.2ml稀释至100ml 若使用无水乙酸及乙酸钠配制1升0.2M PH为5.0的乙酸盐缓冲液,则需要无水乙酸及乙酸钠的量计算如下:①无水乙酸用量的计算:无水乙酸的浓度为17.5M,则需无水乙酸的体积为0.071×1000/17.5=4.1(毫升);②乙酸钠用量的计算:查表知,无水乙酸钠的摩尔质量为82,则需无水乙酸钠的质量为0.13×82×1=11(克)。
使用无水乙酸及乙酸钠配制1升0.2M PH为5.0的乙酸盐缓冲液的方法如下:用量筒量取4.1毫升无水乙酸至1000毫升烧杯内,再用台秤称取无水乙酸钠11克至该烧杯,然后用量筒量取1000-4.1=996毫升蒸馏水至该烧杯内,搅拌至乙酸钠溶解并呈均匀的溶液即为1升0.2M PH为5.0的乙酸-乙酸钠缓冲液。
或者:量7ml 0.2M醋酸钠液+3ml 0.2M醋酸液混合即得。
2. 0.5%磷酸苯二钠:pH5醋酸缓冲液3. 氯代二溴对苯醌亚胺:称取0.125g 2,6-二溴苯醌氯酰亚胺,用10ml 96%乙醇(48ml乙醇+2ml水)溶解,贮存于棕色瓶中,存放在冰箱中,保存的黄色溶液未变褐色之前均可使用。
4. 酚标准溶液:酚原液---取1g苯酚溶于蒸馏水中,定容至1000ml水中,保存于棕色瓶中。
酚工作液---取10 ml酚原液稀释至1000ml水中,每毫升含0.01mg 酚5. 甲苯6.0.3%硫酸铝溶液,称取0.3g硫酸铝,定容至100ml。
(二)实验步骤1. 标线制作取0,1,3,5,7,9,11,13ml酚工作液,置于50ml容量瓶中,加入5ml缓冲液和4滴氯代二溴对苯醌亚胺试剂,显色后稀释至刻度,30min后比色测定。
土壤酶活活性测定方法酶活性是指酶在一定时间内单位体积或质量产生的酶催化反应产物的数量。
酶活性在土壤中起着关键作用,因为它们能够将无机和有机物质转化为可供植物吸收的形式。
常用的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
下面将介绍常见的土壤酶活活性测定方法:1.脲酶活性测定:脲酶能够催化尿素的水解,生成氨和二氧化碳。
用于测定土壤脲酶活性的方法是通过在土壤样品中加入一定浓度的尿素,经过一定时间后,测量生成的氨量来评估脲酶活性水平。
2.过氧化氢酶活性测定:过氧化氢酶是一种重要的抗氧化酶,能够将过氧化氢分解为氧气和水。
测定土壤中过氧化氢酶活性的方法是在土壤样品中加入过氧化氢底物,经过一定时间后,通过测量反应体系中氧气释放速率来评估过氧化氢酶活性水平。
3.蔗糖酶活性测定:蔗糖酶是一种能够催化蔗糖水解生成葡萄糖和果糖的酶。
测定土壤中蔗糖酶活性的方法是在土壤样品中加入一定浓度的蔗糖,经过一定时间后,测量生成的葡萄糖和果糖的量来评估蔗糖酶活性水平。
4.碱性磷酸酶活性测定:碱性磷酸酶是一种能够催化有机磷酸盐水解为无机磷酸盐的酶。
测定土壤中碱性磷酸酶活性的方法是在土壤样品中加入一定浓度的磷酸酯底物,经过一定时间后,通过测量反应体系中无机磷酸盐生成的速率来评估碱性磷酸酶活性水平。
除了以上几种常见的土壤酶活性指标外,还有其他一些指标可以用于评估土壤酶活性,如脱氢酶、葡萄糖氧化酶等。
具体选择测定方法应根据实际需求和研究目的来确定。
总结起来,土壤酶活活性测定方法是通过测定土壤中特定酶活性水平来评估土壤质量和生态系统功能的一种手段。
常见的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
选择适当的测定方法需要考虑实际需求和研究目的。
土壤酶活性的测定1.土壤样品采集与制备取根际土壤为土壤样品,同时挖取根系周围0-20cm和20-40cm土样,分层充分混合后作为非根际土壤样品。
充分混匀后取样,用于土壤酶活性测定的土壤经风干后,过1mm筛,测定多酚氧化酶活性土样过0.25mm筛。
供微生物分析的鲜土样装入已消毒过的密封塑料袋,带回实验室,磨细过2mm筛后,置于4℃冰箱内保存备测土壤微生物种群、数量等。
2.土壤酶活性的测定方法2.1.土壤脲酶比色法测定多酚氧化酶、过氧化物酶活性采用邻苯三酚比色法测定;过氧化氢酶活性采用高锰酸钾滴定法;碱性磷酸酶活性采用磷酸苯二钠比色法(2)测定操作步骤:称2g过1mm筛风干土,置于100mL三角瓶中,注入40mL蒸馏水和5mL 0.3%过氧化氢溶液,振荡(120次/分钟)20分钟。
随即加入3N硫酸5mL,稳定未分解的过氧化氢并终止反应。
用慢速型滤纸过滤瓶中的土壤悬浊液,吸取25nil滤液,用0.01N高锰敏钾滴定至淡粉红色终点。
结果计算:设滴定土壤滤液所消耗的高锰酸钾量(mL数)为B滴定25而原始的过氧化氢混合液所消耗的高锰酸钾量(mL数)为A高锰酸钾滴定度的校正值为T=(A-B)×T/2等于20分钟土壤的过氧化氢酶活性(mL 0.lmol KMnO4/g)2.2.脲酶采用靛酚蓝比色法操作步骤:取2.5g风干土,置于50mL三角瓶中,加0.5mL甲苯,15min后加5mL 10%尿素液和10mL pH6.7柠檬酸盐缓冲液。
摇匀后在37℃恒温箱中培养24h。
过滤后取0.5mL滤液注入25mL容量瓶中,然后按绘制标准曲线显色方法进行比色测定。
氮的标液:精确称取0.4717g硫酸按溶于水并稀释至1000mL,则得1mL含0.1mg氮的标准液。
绘制标准曲线时,可将此液稀释10倍供用。
标线绘制:取稀释的标准液l、3、5、7、9、11、13mL,移于50rnl容量瓶中,然后加入蒸馏水至20mL。
再加4mL苯酸钠溶液和3mL次氯酸钠溶液,随加随摇匀。
土壤酶活性测定方法……王强锋土壤脲酶的测定方法〔苯酚钠—次氯酸钠比色法〕一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反响后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚—次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1〕甲苯 2〕10%尿素:称取 10g 尿素,用水溶至 100ml。
3〕柠檬酸盐缓冲液〔PH6.7〕:184g柠檬酸和147.5g氢氧化钾〔KOH〕溶于蒸馏水。
将两溶液合并,用1mol/LNaOH 将PH 调至6.7,用水稀释定容至1000ml。
4〕苯酚钠溶液〔1.35mol/L〕:62.5g苯酚溶于少量乙醇,加2ml 甲醇和18.5ml 丙酮,用乙醇稀释至100ml〔A 液〕,存于冰箱中;27gNaOH 溶于100ml水〔B液〕。
将A、B 溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至 100ml。
5〕次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为 0.9%,溶液稳定。
6〕氮的标准溶液:准确称取 0.4717g 硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg 氮的标准液;再将此液稀释10倍〔吸取10ml 标准液定容至 100ml〕制成氮的工作液〔0.01mg/ml〕。
三、操作步骤称取5g土样于50ml三角瓶中,加1ml甲苯,振荡均匀,15min后加 10ml10%尿素溶液和20ml PH 6.7柠檬酸盐缓冲溶液,摇匀后在37℃恒温箱培养24小时。
培养完毕后过滤,过滤后取1ml滤液参加50ml容量瓶中,再加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。
20min 后显色,定容。
1h在分光光度计与578nm波长处比色。
〔靛酚的蓝色在1h 保持稳定〕。
标准曲线制作:在测定样品吸光值之前,分别取 0、1、3、5、7、9、11、13ml 氮工作液,移于50ml容量瓶中,然后补加蒸馏水至 20ml。
再参加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。
20min 后显色,定容。
1h在分光光度计上于578nm波长处比色。
然后以氮工作液浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
考前须知: 1、每一个样品应该做一个无基质对照,以等体积的蒸馏水代替基质,其他操作与样品实验一样,以排除土样中原有的氨对实验结果的影响。
2、整个实验设置一个无土对照,不加土样,其他操作与样品实验一样,以检验试剂纯度和基质自身分解。
3、如果样品吸光值超过标曲的最大值,那么应该增加分取倍数或减少培养的土样。
四、结果计算:以24小时后1g土壤中NH3-N的毫克数表示土壤脲酶活性〔Ure〕Ure=〔a 样品-a 无土-a 无基质〕×V×n/m 式中:a 样品为样品吸光值由标准曲线求得的 NH3-N毫克数;a无土为无土对照吸光值由标准曲线求得的 NH3-N毫克数;a无基质为无基质对照吸光值由标准曲线求得的 NH3-N 毫克数;V为显色液体积;n为分取倍数,浸出液体积/吸取滤液体积;m表示烘干土重土壤磷酸酶活性测定〔磷酸苯二钠比色法〕一、原理测定磷酸酶主要根据酶促生成的有机基团量或无机磷量计算磷酸酶活性。
前一种通常称为有有机基团含量法,是目前较为常用的测定磷酸酶的方法,后一种称为无机磷含量法。
研究证明:磷酸酶有三种最适 PH 值:4~5、6~7、8~10。
因此,测定酸性、中性和碱性土壤的磷酸酶,要提供相应的 PH缓冲液才能测出该土壤的磷酸酶最大活性。
测定磷酸酶常用的 PH缓冲体系有乙酸盐缓冲液〔PH5.0~5.4〕、柠檬酸盐缓冲液〔PH7.0〕、三羟甲基氨基甲烷缓冲液〔PH7.0~8.5〕、和硼酸缓冲液〔PH9~10〕。
磷酸酶测定时常用基质有磷酸苯二钠、酚酞磷酸钠、甘油磷酸钠、α-或者β-萘酚磷酸钠等。
现介绍磷酸苯二钠比色法。
二、试剂1〕缓冲液:〔1〕醋酸盐缓冲液〔PH 5.0〕0.2mol/L 醋酸溶液11.55ml 95% 冰醋酸溶至1L。
0.2mol/L醋酸钠溶液16.4gC2H3O2Na或27g C2H3O2Na.3H2O溶至1L.取14.8ml 0.2mol/L醋酸溶液和35.2ml 0.2mol/L 醋酸钠溶液稀释至1L.〔2〕柠檬酸盐缓冲液〔PH 7.0〕0.1mol/L 柠檬酸溶液19.2gC6H7O8溶至1L. 0.2mol/L磷酸氢二钠溶液53.63gNa2HPO4 .7H2O或者71.7g Na2HPO4.12H2O溶至1L. 取6.4ml 0.1mol/L柠檬酸溶液加43.6ml 0.2mol/L磷酸氢二钠溶液稀释至100ml.〔3〕硼酸盐缓冲液〔PH 9.6〕0.05mol/L硼砂溶液19.05g硼砂溶至1L.0.2mol/LNaOH溶液 8gNaOH溶至1L. 取50ml 0.05mol/L 硼砂溶液加23ml 0.2mol/L NaOH 溶液稀释至 200ml. 2〕0.5%磷酸苯二钠〔用缓冲液配制〕 3〕氯代二溴对苯醌亚胺试剂:称取 0.125g 氯代二溴对苯醌亚胺,用10ml96%乙醇溶解,贮于棕色瓶中,存放在冰箱里。
保存的黄色溶液未变褐色之前均可使用。
4〕甲苯 5〕0.3%硫酸铝溶液 6〕酚标准溶液酚原液:取1g重蒸酚溶于蒸馏水中,稀释至1L,存于棕色瓶中。
酚工作液〔0.01mg/ml〕:取10ml酚原液稀释至1L。
三、操作步骤称 5g土样置于 200ml 三角瓶中,加 2.5ml 甲苯,轻摇 15min 后,参加 20ml 0.5%磷酸苯二钠〔酸性磷酸酶用乙酸盐缓冲液;中性磷酸酶用柠檬酸盐缓冲液;碱性磷酸酶用硼酸盐缓冲液〕,仔细摇匀后放入恒温箱,37℃下培养24h。
然后在培养液参加100ml 0.3%硫酸铝溶液并过滤。
吸取 3ml 滤液于 50ml 容量瓶中,然后按绘制标准曲线方法显色。
用硼酸缓冲液时,呈现蓝色,于分光光度计上 660nm 处比色。
标准曲线绘制:取 0、1、3、5、7、9、11、13ml 酚工作液,置于 50ml 容量瓶中,每瓶参加5ml 硼酸缓冲液和4滴氯代二溴对苯醌亚胺试剂,显色后稀释至刻度,30min 后,在分光光度计上660nm 处比色。
以显色液中酚浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
考前须知: 1、每一个样品应该做一个无基质对照,以等体积的蒸馏水代替基质,其他操作与样品实验一样,以排除土样中原有的氨对实验结果的影响。
2、整个实验设置一个无土对照,不加土样,其他操作与样品实验一样,以检验试剂纯度和基质自身分解。
3、如果样品吸光值超过标曲的最大值,那么应该增加分取倍数或减少培养的土样。
四、结果计算以 24h 后1g土壤中释放出的酚的质量〔mg〕表示磷酸酶活性。
磷酸酶活性=〔a 样品-a 无土-a 无基质〕×V×n/m 式中:a样品为样品吸光值由标准曲线求得的酚毫克数;a无土为无土对照吸光值由标准曲线求得的酚毫克数;a无基质为无基质对照吸光值由标准曲线求得的酚毫克数;V为显色液体积;n为分取倍数,浸出液体积/吸取滤液体积;m 表示烘干土重土壤蔗糖酶活性测定〔3,5- 二硝基水酸比色法〕一、原理蔗糖酶与土壤许多因子有相关性,如与土壤有机质、氮、磷含量,微生物数量及土壤呼吸强度有关,一般情况下,土壤肥力越高,蔗糖酶活性越高。
蔗糖酶酶解所生成的复原糖与3,5- 二硝基水酸反响而生成橙色的 3-氨基-5-硝基水酸。
颜色深度与复原糖量相关,因而可用测定复原糖量来表示蔗糖酶的活性。
二、试剂1〕酶促反响试剂:基质 8%蔗糖,pH5.5磷酸缓冲液:1/15M磷酸氢二钠〔11.876g Na2HPO4·2H2O 溶于1L蒸馏水中〕0.5ml加1/15M磷酸二氢钾〔9.078g KH2PO4溶于1L蒸馏水中〕9.5ml 即成,甲苯2〕葡萄糖标准液〔1mg/mL〕预先将分析纯葡萄糖置80℃烘箱约12小时。
准确称取50mg葡萄糖于烧杯中,用蒸馏水溶解后,移至50mL容量瓶中,定容,摇匀〔冰箱中4℃保存期约一星期〕。
假设该溶液发生混浊和出现絮状物现象,那么应弃之,重新配制。
3〕3,5-二硝基水酸试剂〔DNS 试剂〕称0.5g二硝基水酸,溶于20ml 2mol/LNaOH 和50ml 水中,再加 30g 酒石酸钾钠,用水稀释定容至 100ml〔保存期不过 7 天〕。
三、操作步骤〔1〕标准曲线绘制分别吸1mg/mL的标准葡糖糖溶液 0、0.1、0.2、0.3、0.4、0.5mL于试管中,再补加蒸馏水至 1mL,加 DNS 试剂 3mL 混匀,于沸水浴中准确反响5min〔从试管放入重新沸腾时算起〕,取出立即泠水浴中冷却至室温,以空白管调零在波长540nm 处比色,以 OD 值为纵坐标,以葡萄糖浓度为横坐标绘制标准曲线。
〔2〕土壤蔗糖酶测定称取 5g土壤,置于50mL三角瓶中,注入15ml 8%蔗糖溶液,5ml pH 5.5 磷酸缓冲液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养 24h。
到时取出,迅速过滤。
从中吸取滤液 1ml,注入 50ml 容量瓶中,加 3ml DNS 试剂,并在沸腾的水浴锅中加热 5min,随即将容量瓶移至自来水流下冷却 3min。
溶液因生成 3-氨基-5-硝基水酸而呈橙黄色,最后用蒸馏水稀释至 50ml,并在分光光度计上于 508nm 处进展比色。
〔为了消除土壤中原有的蔗糖、葡萄糖而引起的误差,每一土样需做无基质对照,整个试验需做无土壤对照;如果样品吸光值超过标曲的最大值,那么应该增加分取倍数或减少培养的土样。
〕四、结果计算:蔗糖酶活性以 24h,1g 干土生成葡萄糖毫克数表示。
结果计算:蔗糖酶活性=〔a 样品-a 无土-a 无基质〕×n/m a 样品、a 无土、a 无机质分别表示其由标准曲线求的葡萄糖毫克数;n 为分取倍数; m 表示烘干土重土壤纤维素酶活性测定〔3,5- 二硝基水酸比色法〕一、原理纤维素是植物残体进入土壤的碳水化合物的重要组分之一。
在纤维素酶作用下,它的最初水解产物是纤维二糖,在纤二糖酶作用下,纤维二糖分解成葡萄糖。
所以,纤维素酶是碳素循环中的一个重要的酶。
纤维素酶解所生成的复原糖与 3,5- 二硝基水酸反响而生成橙色的 3-氨基-5-硝基水酸。
颜色深度与复原糖量相关,因而可用测定复原糖量来表示蔗糖酶的活性。
二、试剂1〕甲苯 2〕1%羧甲基纤维素溶液:1g 羧甲基纤维素钠,用 50%的乙醇溶至 100ml。